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Motivation

Inverse Electromagnetics & Eddy currents
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Inverse Electromagnetics

Inverse Electromagnetics:

◮ Generate EM field
(drive excitation current through coil)

◮ Measure EM field
(induced voltages in meas. coil)

◮ Gain information from measurements

Applications:

◮ Metal detection (buried conductor)

◮ Non-destructive testing
(crack in metal, metal in concrete)

◮ . . .
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Maxwell’s equations

Classical Electromagnetics: Maxwell’s equations

curlH = ǫ∂tE + σE + J in R
3×]0,T [

curlE = −µ∂tH in R
3×]0,T [

E (x , t): Electric field ǫ(x): Permittivity
H(x , t): Magnetic field µ(x): Permeability
J(x , t): Excitation current σ(x): Conductivity

Knowing J, σ, µ, ǫ + init. cond. determines E and H.
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Eddy currents

Maxwell’s equations

curlH = ǫ∂tE + σE + J in R
3×]0,T [

curlE = −µ∂tH in R
3×]0,T [

Eddy current approximation: Neglect displacement currents ǫ∂tE

◮ Justified for low-frequency excitations
(Alonso 1999, Ammari/Buffa/Nédélec 2000)

 ∂t(σE ) + curl

(

1

µ
curlE

)

= −∂tJ in R
3×]0,T [
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Where’s Eddy?

◮ σ = 0: (Quasi-)Magnetostatics

curl

(

1

µ
curl E

)

= −∂tJ

Excitation ∂tJ instantly generates magn. field 1
µ curl E = −∂tH.

◮ σ 6= 0: Eddy currents

∂t(σE ) + curl

(

1

µ
curlE

)

= −∂tJ

∂tJ generates changing magn. field + currents inside conductor

Induced currents oppose what created them (Lenz law)
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Parabolic-elliptic equations

∂t(σE ) + curl

(

1

µ
curlE

)

= −∂tJ in R
3×]0,T [

◮ parabolic inside conductor Ω = supp(σ)

◮ elliptic outside conductor

Scalar example: (σu)t = uxx , u(·, 0) = 0, ux(−2, ·) = ux(2, ·) = 1.
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The direct problem

Unified variational formulation
for the parabolic-elliptic eddy current problem
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Standard approach

∂t(σE ) + curl

(

1

µ
curlE

)

= −∂tJ in R
3×]0,T [

Standard approach: Decouple elliptic and parabolic part
(e.g. Bossavit 1999, Acevedo/Meddahi/Rodriguez 2009)

Find (ER3\Ω,EΩ) ∈ HR3\Ω × HΩ s.t.

◮ EΩ solves parabolic equation + init. cond.

◮ ER3\Ω solves elliptic equation

◮ interface conditions are satisfied

Problem: Theory (solution spaces, coercivity constants, etc.)
depends on Ω = suppσ and on lower bounds of σ|Ω.
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Unified approach?

Parabolic-elliptic eddy current equation

∂t(σE ) + curl

(

1

µ
curlE

)

= −∂tJ in R
3×]0,T [

Inverse problem: Find σ (or Ω = suppσ) from measurements of E

◮ requires unified solution theory

Test for unified theory: Can we linearize E w.r.t. σ?

How does the solution of an elliptic equation change
if the equation becomes a little bit parabolic?

(For scalar analogue: Frühauf/H./Scherzer 2007, H. 2007)
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Rigorous formulation

Rigorous formulation: Let µ ∈ L∞+ , σ ∈ L∞, σ ≥ 0,

Jt ∈ L2(0,T ,W (curl)′) with div Jt = 0

E0 ∈ L2(R3)3 with div(σE0) = 0.

For E ∈ L2(0,T ,W (curl)) the eddy current equations

∂t(σE ) + curl

(

1

µ
curlE

)

= −Jt in R
3×]0,T [

√
σE (x , 0) =

√

σ(x)E0(x) in R
3

are well-defined and (if solvable) uniquely determine curl E ,
√
σE .
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Natural variational formulation

Natural unified variational formulation (E0 = 0 for simplicity):

Find E ∈ L2(0,T ,W (curl)) that solves

∫ T

0

∫

R3

(

σE · ∂tΦ− 1

µ
curlE · curl Φ

)

=

∫ T

0

∫

R3

Jt · Φ.

for all smooth Φ with Φ(·,T ) = 0.

◮ equivalent to eddy current equation

◮ not coercive, does not yield existence results
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Gauged formulation

Gauged unified variational formulation (E0 = 0 for simplicity)

Find divergence-free E ∈ L2(0,T ,W 1(R3)) that solves

∫ T

0

∫

R3

(

σE · ∂tΦ− 1

µ
curlE · curl Φ

)

=

∫ T

0

∫

R3

Jt · Φ.

for all smooth divergence-free Φ with Φ(·,T ) = 0.

◮ coercive, yields existence and continuity results

◮ not equivalent to eddy current equation
(σ 6= const. div σE 6= σ divE )

◮ does not determine true solution up to gauge (curl-free) field
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Coercive unified formulation

How to obtain coercive + equivalent unified formulation?

◮ Ansatz E = A+∇ϕ with divergence-free A.
(almost the standard (A, ϕ)-formulation with Coulomb gauge)

◮ Consider ∇ϕ = ∇ϕA as function of A by solving

div σ∇ϕA = − div σA.

( div σE = 0).

◮ Obtain coercive formulation for A
(Lions-Lax-Milgram Theorem  Solvability and continuity results)

◮ A determines E
(more precisely: curlE and

√
σE )
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Unified variational formulation

Unified variational formulation (Arnold/H., SIAP, 2012)

Find divergence-free A ∈ L2(0,T ,W 1(R3)) that solves

∫ T

0

∫

R3

(

σ(A +∇ϕA) · ∂tΦ− 1

µ
curlA · curl Φ

)

=

∫ T

0

∫

R3

Jt · Φ.

for all smooth divergence-free Φ with Φ(·,T ) = 0.

◮ coercive, uniquely solvable

◮ E := A+∇ϕA is one solution of the eddy current equation

 curlE ,
√
σE depend continuously on Jt (uniformly w.r.t. σ)

(for all solutions of the eddy current equation)
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Asymptotic results

Unified variational formulation

◮ allows to rigorously linearize E w.r.t. σ around σ0 = 0
(elliptic equation becoming a little bit parabolic in some region...)

◮ easily extends from R
3 to bounded domain O

(O simply conn. with Lipschitz-boundary, ν ∧ E |∂O = 0)

◮ justifies parabolic regularization: If Eǫ solves

∂t(σǫEǫ) + curl

(

1

µ
curl Eǫ

)

= −∂tJ in O×]0,T [,

with σǫ(x) = max{σ(x), ǫ} then

σǫEǫ → σE , curlEǫ → curl E

(Arnold/H., submitted to proceedings of IPDO 2013)
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Open problems

◮ Theory requires some regularity of Ω = suppσ and σ ∈ L∞+ (Ω)
in order to determine ϕ from A.

◮ Solution theory for

div σ∇ϕ = − div σA

for general σ ∈ L∞, σ ≥ 0?

◮ Elliptic regularization of the variational formulation
(i.e., adding ǫ

∫ T

0

∫

R3 A · Φ dx)

is justified, but relation to elliptic regularization of the PDE

∂t(σE ) + curl

(

1

µ
curlE

)

+ǫE = −∂tJ in R
3×]0,T [,

is not clear.
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The inverse problem
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Setup

S

Ω

Detecting conductors:

◮ Apply surface currents J on S
(divergence-free, no electrostatic effects)

◮ Measure electric field E on S
(tangential component, up to grad. fields)

◮ Measurement operator

Λσ : Jt 7→ γτE := (ν ∧ E |S ) ∧ ν
Locate Ω = suppσ in

∂t(σE ) + curl

(

1

µ
curlE

)

= −Jt in R
3×]0,T [

(+ zero IC) from all possible surface currents and measured values.
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Measurement operator

S ⊂ R
3
0

ν TL2 : = {u ∈ L2(S)
3 | u · ν = 0}

TL2⋄ : = {u ∈ TL2 |
∫

S u · ∇ψ = 0
∀ smooth ψ}

Measurement operator

Λσ : L2(0,T ,TL2⋄) → L2(0,T ,TL2⋄
′
), Jt 7→ γτE ,

where E solves eddy current eq. with [ν × curlE ]S = Jt on S .

Remark

TL2⋄
′ ∼= TL2/TL2⋄

⊥
 E not unique, but Λσ well-defined.
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Sampling methods

Non-iterative shape detection methods:

◮ Linear Sampling Method (Colton/Kirsch 1996)
◮ characterizes subset of scatterer by range test
◮ allows fast numerical implementation

◮ Factorization Method (Kirsch 1998)
◮ characterizes scatterer by range test
◮ yields uniqueness under definiteness assumptions
◮ allows fast numerical implementation

◮ Beyond LSM/FM?
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Sampling ingredients

Ingredients for LSM and FM:

◮ Reference measurements: Λ := Λσ − Λ0,
Λ0 : Jt 7→ γτF , F solves curl curlF = −Jt in R

3×]0,T [.

◮ Time-integration: Consider IΛ,
with I : E (·, ·) 7→

∫ T
0

E (·, t) dt
◮ Singular test functions

Gz ,d(x) := curl
d

4π|x − z | , x ∈ R
3 \ {z}
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LSM and FM

Arnold/H. (submitted):
For every z below S , z 6∈ Ω and direction d ∈ R

3.

Theorem (LSM)

γτGz ,d ∈ R(IΛ) ⇒ z ∈ Ω

Theorem (FM)
If, additionally, supµ|Ω < 1 (diamagnetic scatterer)

γτGz ,d ∈ R(I (Λ + Λ′)1/2) ⇔ z ∈ Ω
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Beyond LSM/FM?

◮ Beyond LSM/FM?: Monotony methods

◮ For EIT: Λσ NtD-operator for conductivity σ = 1 + χD

D = Union of all balls B where Λ1+χB
≤ Λσ (H./Ullrich)

(under the assumptions of the FM)

◮ stable test criterion (no infinity tests)

◮ allows fast numerical implementation

◮ allows extensions to indefinite cases
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Conclusions

Inverse transient eddy current problems

◮ require unified parabolic-elliptic theory

◮ can be approached by sampling methods (LSM/FM)

Open problems

◮ Solution theory for

div σ∇ϕ = − div σA

for general σ ∈ L∞, σ ≥ 0?

◮ Monotony based methods beyond EIT?
Monotony for parabolic-elliptic problems?
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