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Electrical impedance tomography (EIT)

> Apply electric currents on subject’s boundary
» Measure necessary voltages
~~ Reconstruct conductivity inside subject.

Images from BMBF-project on EIT
(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)
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i Mathematical Model

Electrical potential u(x) solves
V- -(e(x)Vu(x)) =0 xe€Q

Q CR™ imaged body, n > 2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

o0yu(x)|aq: applied electric current
u(x)|sq: measured boundary voltage (potential)
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v Calderén problem

Can we recover o € LY(Q) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(uloq,00,ulpq) : wusolves (1)}7

Equivalent: Recover ¢ from Neumann-to-Dirichlet-Operator
No): L3(09) = L3(09), g — ulan,

where u solves (1) with 00, ulgpq = g.

B. Harrach: Inverse coefficient problems and shape reconstruction



niversity of Stuttgart

' Partial /local data

Measurements on open part of boundary ¥ C 9Q:
(02 \ X is kept insulated.)

Recover o from
No): LAZ) — L3(X), g+ uls,

where u solves V - (6Vu) = 0 with

on X,
o0y uls = { g else.
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’ Challenges

Challenges in inverse coefficient problems such as EIT:

» Uniqueness
> Is o uniquely determined from the NtD A(c)?
» Non-linearity and ill-posedness
> Reconstruction algorithms to determine o from A(o)?
» Local/global convergence results?
» Realistic data
» What can we recover from real measurements?

(Finite number of electrodes, realistic electrode models, .. .)
» Measurement and modelling errors? Resolution?

In this talk: A simple strategy (monotonicity + localized potentials)
to attack these challenges.
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Uniqueness
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Uniqueness results

» Measurements on complete boundary (full data):
Calderdn (1980), Druskin (19824-85), Kohn/Vogelius (1984+-85),
Sylvester/Uhlmann (1987), Nachman (1996), Astala/Péivirinta (2006)

» Measurements on part of the boundary (local data):
Bukhgeim/Uhlmann (2002), Knudsen (2006), Isakov (2007),
Kenig/Sjéstrand/Uhlmann (2007), H. (2008),
Imanuvilov/Uhlmann/Yamamoto (2009+10), Kenig/Salo (2012413)

» L coefficients are uniquely determined from full data in 2D.
» In all cases, piecew.-anal. coefficients are uniquely determined.

» Sophisticated research on uniqueness for ~ C?-coefficients
(based on CGO-solutions for Schrédinger eq. —Au+ qu =0, g = A_\/\/;E)
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e Monotonicity

For two conductivities o9, 01 € L>(Q):
oo < 01 — /\(O’o) > /\(0'1)

This follows from
o= o0Vul = [ g(heo) = Mew)g = | 21— o) Vol
Q b Q 01
for all solutions ug of
V- (00Vup) =0, 0edyuply = { g

(e.g., Kang/Seo/Sheen 1997, lkehata 1998)

Can we prove uniqueness by controlling |V up|??
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v Localized potentials

Theorem (H., 2008)
Let og fulfill unique continuation principle (UCP),

DiNDy=10, and Q\(D;UD3) be connected with X.

Then there exist solutions u(()k), k € N with

)‘ dx — 00 and

)‘ dx — 0.

|V up|? small |V up|? small

|V uol|? large |V uol|? large

B. Harrach: Inverse coefficient problems and shape reconstruction



University of Stuttgart
Germany

m Proof 1/3

Virtual measurements:

Lp: HYD) — L%(X), f ulg, with

/ oVu-Vvdx = (f,v|p) Vve HY(D).
Q

By (UCP): If Dy Dy = and Q\ (D1 U D3) is connected with %,
then R(Lp,) N R(Lp,) = 0.

Sources on different domains yield different virtual measurements.
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i Proof 2/3

Dual operator:

Ly : L2(X) — HY(D), g+~ ulp,, with

g onzx,

V- (oVu)=0, ocduly = { 0 else.

Evaluating solutions on D is dual operation to virtual measurements.
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g Proof 3/3

Functional analysis:
X, Y1, Ya reflexive Banach spaces, Ly € £(Y1, X), Ly € L(Y1,X).

R(L) CR(L2) <= x| S bl vx € X"

Here: R(Lp,) £ R(Lp,) = |luolp |z Z lluolosll iz

If two sources do not generate the same data, then the respective
evaluations are not bounded by each other.

Note: Hl(D)-source <—  HZX(D)-evaluation.
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Consequences

» Back to Calderdn: Let A(og) = A(o1), oo fulfills (UCP).

» By monotonicity,
/(01 — 00)|Vug|? dx >0 > / @(01 —00)|Vuo)? dx  Vup
Q Q01

» Assume: d neighbourhood U of X where o1 > 09 but 01 # 09

~ Potential with localized energy in U contradicts monotonicity

Higher conductivity reachable by the bndry cannot be balanced out.

Corollary (Druskin 1982+85, Kohn/Vogelius, 1984+85)
Calderén problem is uniquely solvable for piecw.-anal. conductivities.
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i Two coefficients

Can we recover two coefficients a(x), c(x) € L5°(L2) in
-V-(aVu)+cu=0 inQ (1)
from the NtD (with partial data)
Aa,c): [3(Z) = L3(%), g+ uls,
where u solves (1) with

on X,
o0y uls = { g else.

Application: Diffuse optical tomography (DOT).

Quasilinear case a(u), C(X)Z Egger, Pietschmann, Schlottbom 2013
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* Monotonicity
/Q (a2 — )| Vel + (2 — 1) ?) dx
> / g (A(a1, c1) — A2z, 2)) g ds
>
> / ((a2 = a1)|Vw]? + (2 — a1)|u2f?) dx,
Q

Method of localized potentials:
» Again, sources on different regions produce different data.
» (H')-sources produce different data than L2-sources

= |ullppy Z lull 2(py-

We can control |[Vui|? and |u1|? separately.
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e Uniqueness
Theorem (H., 2009)
Let
> ay,ax € LT(Q2) piecewise constant,
> c1, 0 € LT(Q) piecewise analytic.
Then

N1, a) =Naz, ) <= a1=a, oa=aoc.

Note that v := \/au transforms —V - (aVu) + cu = 0 into

Aa ¢
Vi ¢

Va @ a

—Av+nv=0, n:=

(when the coefficients are smooth).
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Uniqueness

Theorem (H., 2012)
Let a1, ap,c1, ¢ € L°(Q2) be piecew. analytic. Then

A(a1, 1) = N(az, ) if and only if

(a)  ailz =a2ly, Ovailr =0valy on kX,

8yal a1/'32
(b) o los\s = - lo8\s on 00\ X,
(c) n =12 in smooth regions,
+ +
(d alr =22 I [9y22r = [Ovanr on inner boundaries I'.

alr alr  alr arlr

NtD A(,,) determines 1 = AT\f + 5 and the jumps of a and Va.
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Non-linearity
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Non-linearity
Back to the non-linear forward operator of EIT

A: o No), L2(Q) — L(LA(X))

Generic approach for inverting A: Linearization
A(o) — N(oo) ~ N(o0)(o — 00)

oo: known reference conductivity / initial guess / ...

N (o9): Fréchet-Derivative / sensitivity matrix.

N(00) : LT(Q) — L(LZ(X)).

~> Solve linearized equation for difference o — oyp.

Often: supp(c — o9) C Q ("shape” / "inclusion *)
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Linearization

Linear reconstruction method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve N'(o9)k ~ A(c) — A(op), then k = o — 0p.

v

Multiple possibilities to measure residual norm and to regularize.

v

No rigorous theory for single linearization step.

v

Almost no theory for Newton iteration:

> Dobson (1992): (Local) convergence for regularized EIT equation.
> Lechleiter/Rieder(2008): (Local) convergence for discretized setting.

» No (local) convergence theory for non-discretized case!
Non-linearity condition (Scherzer / tangential cone cond.) still open problem
D-bar method: convergent 2D-implementation for o € C?
and full bndry data (Knudsen, Lassas, Mueller, Siltanen 2008)

v
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e Linearization

Linear reconstruction method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve N'(o9)k ~ A(c) — N(op), then k = o — 0y.

» Seemingly, no rigorous results possible for single lineariz. step.

» Seemingly, only justifiable for small o — o (local results).

Here: Rigorous and global(!) result about the linearization error.
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Linearization and shape reconstruction

Theorem (H./Seo 2010)
Let x, o, op piecewise analytic and A'(og)x = A(o) — A(op). Then

suppsk = supps (o — o)

supps: outer support ( = support, if support is compact and has conn. complement)

» Solution of lin. equation yields correct (outer) shape.
» No assumptions on o — og!

~~ Linearization error does not lead to shape errors.

Taking the (wrong) reference current paths for reconstruction
still yields the correct shape information!
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i Proof

» Linearization: A'(og)x = A(o) — A(op)

» Monotonicity: For all "reference solutions” ug:
/(a — 00)| Vo2 dx
Q
> [ &Moo -ADe = [ Do —o0)Vuof d.

:/zg(/\/(ao)/f)g:/QH\Vuo\z dx

» Use localized potentials to control |V ug|?

~~ suppsk = suppy (o — o) O

In shape reconstruction problems we can avoid non-linearity.
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Reconstruction from realistic data
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Monotonicity based imaging

» Monotonicity:
<o = N7)>N\(0)

» |dea: Simulate A(7) for test cond. 7 and compare with A(c).

(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, )

> Inclusion detection: For ¢ = 1 4 xp with unknown D,
use 7 = 1+ xg, with small ball B.

BCD = 71<0 = NA)>NM\0)

» Algorithm: Mark all balls B with A(1+ xg) > A(0)
» Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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Theorem (H./Ullrich, SIAM J. Math. Anal., to appear)
Q\ D connected. 0 =1+ xp.

BCD < A1+ xg)>N\o).

niversity of Stuttgart

~» Monotonicity method detects exact shape.

For faster implementation:

BCD <<= A1)+ iN(1)xg > NAo).

~~ Linearized monotonicity method detects exact shape.

Proof: Monotonicity + localized potentials
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" General case

Theorem (H./Ullrich, SIAM J. Math. Anal., to appear).
Let 0 € L5°(€2) be piecewise analytic. The intersection of all
hole-free C C Q2 with

Ja>1: M1+ axc) <Ao) <A1 - xc/a)

is identical to the (outer) support of o — 1.

» Result also holds with linearized condition
Ja>1: A1)+ aN(D)xe < A(o) < A1) —aN(1)xc.

» Result covers indefinite case,
eg,o=1+xp — %XDz
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Monotonicity based shape reconstruction
Monotonicity based reconstruction

> is intuitive, yet rigorous

» is stable (no infinity or range tests)

» works for pcw. anal. conductivities
(no definiteness conditions)

» requires only the reference solution =

1

Approach is closely related to (and heavily inspired by)
» Factorization Method of Kirsch and Hanke

(in EIT: Briihl, Hakula, H., Hyvénen, Lechleiter, Nachman, Pdivéarinta, Pursiainen,

Schappel, Schmitt, Seo, Teirild, Woo, ... )

> lkehata's Enclosure Method and probing with Sylvester-
Uhlmann-CGOs (Ide, Isozaki, Nakata, Siltanen, Wang, ...)

» Classic inclusion detection results (Friedmann, Isakov, . ..)
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‘ Realistic data & Uncertainties

v

Finite number of electrodes, CEM, noisy data /\5(0)
Unknown background, e.g., 1 — e < og(x) <1+e¢€

v

v

Anomaly with some minimal contrast to background, e.g.,
o(x) = oo(x) + K(x)xp, K(x) 21
Can we rigorously guarantee to find inclusion D?

v

H./Ullrich: Monotonicity-based
Rigorous Resolution Guarantee w; 596
» If D = (), methods return 0. — T} es
» If D D wj then it is detected. — — gg'
(Here: 32 electrodes, € = 1%, § = 1.4%) gf
Q
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Conclusions

Using monotonicity and localized potentials we showed that

» Uniqueness results for piecewiese smooth parameters may
significantly differ from that for globally smooth ones.

» In shape reconstruction problems we can avoid non-linearity.
» Resolution guarantees for locating anomalies in unknown
backgrounds with realistic finite precision data are possible.
Major limitations / open problems for our approach
» Piecewise analyticity required to prevent infinite oscillations.

» Voltage has to be measured on current-driven electrodes.
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