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18th ÖMG Congress and Annual DMV Meeting
University of Innsbruck, Austria, September 23–27, 2013

B. Harrach: Inverse coefficient problems and shape reconstruction



Electrical impedance tomography (EIT)

◮ Apply electric currents on subject’s boundary

◮ Measure necessary voltages

 Reconstruct conductivity inside subject.

Images from BMBF-project on EIT
(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)
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Mathematical Model

Electrical potential u(x) solves

∇ · (σ(x)∇u(x)) = 0 x ∈ Ω

Ω ⊂ R
n: imaged body, n ≥ 2

σ(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

σ∂νu(x)|∂Ω: applied electric current
u(x)|∂Ω: measured boundary voltage (potential)
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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇ · (σ∇u) = 0, x ∈ Ω (1)

from all possible Dirichlet and Neumann boundary values

{(u|∂Ω, σ∂νu|∂Ω) : u solves (1)} ?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) : L2⋄(∂Ω) → L2⋄(∂Ω), g 7→ u|∂Ω,

where u solves (1) with σ∂νu|∂Ω = g .
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Partial/local data

Measurements on open part of boundary Σ ⊂ ∂Ω:
(∂Ω \Σ is kept insulated.)

Recover σ from

Λ(σ) : L2⋄(Σ) → L2⋄(Σ), g 7→ u|Σ,

where u solves ∇ · (σ∇u) = 0 with

σ∂νu|Σ =

{
g on Σ,
0 else.

Ω

Σ
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Challenges

Challenges in inverse coefficient problems such as EIT:

◮ Uniqueness
◮ Is σ uniquely determined from the NtD Λ(σ)?

◮ Non-linearity and ill-posedness
◮ Reconstruction algorithms to determine σ from Λ(σ)?
◮ Local/global convergence results?

◮ Realistic data
◮ What can we recover from real measurements?

(Finite number of electrodes, realistic electrode models, . . . )
◮ Measurement and modelling errors? Resolution?

In this talk: A simple strategy to attack these challenges
(monotonicity + localized potentials)
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Uniqueness

B. Harrach: Inverse coefficient problems and shape reconstruction



Uniqueness results

◮ Measurements on complete boundary (full data):
Calderón (1980), Druskin (1982+85), Kohn/Vogelius (1984+85),

Sylvester/Uhlmann (1987), Nachman (1996), Astala/Päivärinta (2006)

◮ Measurements on part of the boundary (local data):
Bukhgeim/Uhlmann (2002), Knudsen (2006), Isakov (2007),

Kenig/Sjöstrand/Uhlmann (2007), H. (2008),

Imanuvilov/Uhlmann/Yamamoto (2009+10), Kenig/Salo (2012+13)

◮ L∞ coefficients are uniquely determined from full data in 2D.

◮ In all cases, piecew.-anal. coefficients are uniquely determined.

◮ Sophisticated research on uniqueness for ≈ C 2-coefficients
(based on CGO-solutions for Schrödinger eq. −∆u + qu = 0, q = ∆

√

σ
√

σ

).
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Monotonicity

For two conductivities σ0, σ1 ∈ L∞(Ω):

σ0 ≤ σ1 =⇒ Λ(σ0) ≥ Λ(σ1)

This follows from
∫

Ω
(σ1 − σ0)|∇u0|

2 ≥

∫

Σ
g (Λ(σ0)− Λ(σ1)) g ≥

∫

Ω

σ0
σ1

(σ1 − σ0)|∇u0|
2

for all solutions u0 of

∇ · (σ0∇u0) = 0, σ0∂νu0|Σ =

{
g on Σ,
0 else.

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)

Can we prove uniqueness by controlling |∇u0|
2 ?
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Localized potentials

Theorem (H., Inverse Probl. Imaging 2008)

Let σ0 fulfill unique continuation principle (UCP),

D1 ∩ D2 = ∅, and Ω \ (D1 ∪ D2) be connected with Σ.

Then there exist solutions u
(k)
0 , k ∈ N with

∫

D1

∣
∣
∣∇u

(k)
0

∣
∣
∣

2
dx → ∞ and

∫

D2

∣
∣
∣∇u

(k)
0

∣
∣
∣

2
dx → 0.

Σ

|∇u0|2 small

|∇u0|2 large Σ

|∇u0|2 small

|∇u0|2 large
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Consequences

◮ Back to Calderón: Let Λ(σ0) = Λ(σ1), σ0 fulfills (UCP).

◮ By monotonicity,

∫

Ω
(σ1 − σ0)|∇u0|

2 dx ≥ 0 ≥

∫

Ω

σ0
σ1

(σ1 − σ0)|∇u0|
2 dx ∀u0

◮ Assume: ∃ neighbourhood U of Σ where σ1 ≥ σ0 but σ1 6= σ0

 Potential with localized energy in U contradicts monotonicity

Higher conductivity reachable by the bndry cannot be balanced out.

Corollary (Druskin 1982+85, Kohn/Vogelius, 1984+85)

Calderón problem is uniquely solvable for piecw.-anal. conductivities.
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Non-linearity
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Non-linearity

Back to the non-linear forward operator of EIT

Λ : σ 7→ Λ(σ), L∞+ (Ω) → L(L2⋄(Σ))

Generic approach for inverting Λ: Linearization

Λ(σ)− Λ(σ0) ≈ Λ′(σ0)(σ − σ0)

σ0: known reference conductivity / initial guess / . . .

Λ′(σ0): Fréchet-Derivative / sensitivity matrix.

Λ′(σ0) : L
∞
+ (Ω) → L(L2⋄(Σ)).

 Solve linearized equation for difference σ − σ0.

Often: supp(σ − σ0) ⊂ Ω (”shape“ / ”inclusion“)
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Linearization

Linear reconstruction method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve Λ′(σ0)κ ≈ Λ(σ)− Λ(σ0), then κ ≈ σ − σ0.

◮ Multiple possibilities to measure residual norm and to regularize.

◮ No rigorous theory for single linearization step.
◮ Almost no theory for Newton iteration:

◮ Dobson (1992): (Local) convergence for regularized EIT equation.
◮ Lechleiter/Rieder(2008): (Local) convergence for discretized setting.

◮ No (local) convergence theory for non-discretized case!
Non-linearity condition (Scherzer / tangential cone cond.) still open problem

◮ D-bar method: convergent 2D-implementation for σ ∈ C 2

and full bndry data (Knudsen, Lassas, Mueller, Siltanen 2008)
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Linearization

Linear reconstruction method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve Λ′(σ0)κ ≈ Λ(σ)− Λ(σ0), then κ ≈ σ − σ0.

◮ Seemingly, no rigorous results possible for single lineariz. step.

◮ Seemingly, only justifiable for small σ − σ0 (local results).

Here: Rigorous and global(!) result about the linearization error.
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Linearization and shape reconstruction

Theorem (H./Seo, SIAM J. Math. Anal. 2010)

Let κ, σ, σ0 piecewise analytic and Λ′(σ0)κ = Λ(σ)− Λ(σ0). Then

suppΣκ = suppΣ(σ − σ0)

suppΣ: outer support ( = support, if support is compact and has conn. complement)

◮ Solution of lin. equation yields correct (outer) shape.

◮ No assumptions on σ − σ0!

 Linearization error does not lead to shape errors.

Taking the (wrong) reference current paths for reconstruction
still yields the correct shape information!
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Proof

◮ Linearization: Λ′(σ0)κ = Λ(σ)− Λ(σ0)

◮ Monotonicity: For all ”reference solutions“ u0:
∫

Ω
(σ − σ0)|∇u0|

2 dx

≥

∫

Σ
g (Λ(σ0)− Λ(σ)) g

︸ ︷︷ ︸

=

∫

Σ
g
(
Λ′(σ0)κ

)
g =

∫

Ω
κ|∇u0|

2 dx

≥

∫

Ω

σ0
σ
(σ − σ0)|∇u0|

2 dx .

◮ Use localized potentials to control |∇u0|
2

 suppΣκ = suppΣ(σ − σ0) �

In shape reconstruction problems we can avoid non-linearity.
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Reconstruction from realistic data
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Monotonicity based imaging

◮ Monotonicity:

τ ≤ σ =⇒ Λ(τ) ≥ Λ(σ)

◮ Idea: Simulate Λ(τ) for test cond. τ and compare with Λ(σ).
(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, . . . )

◮ Inclusion detection: For σ = 1 + χD with unknown D,
use τ = 1 + χB , with small ball B .

B ⊆ D =⇒ τ ≤ σ =⇒ Λ(τ) ≥ Λ(σ)

◮ Algorithm: Mark all balls B with Λ(1 + χB) ≥ Λ(σ)

◮ Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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Converse monotonicity relation

Theorem (H./Ullrich, SIAM J. Math. Anal., to appear)

Ω \ D connected. σ = 1 + χD .

B ⊆ D ⇐⇒ Λ(1 + χB) ≥ Λ(σ).

 Monotonicity method detects exact shape.

For faster implementation:

B ⊆ D ⇐⇒ Λ(1) + 1
2Λ

′(1)χB ≥ Λ(σ).

 Linearized monotonicity method detects exact shape.

Proof: Monotonicity + localized potentials
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General case

Theorem (H./Ullrich). Let σ ∈ L∞+ (Ω) be piecewise analytic.
The intersection of all hole-free C ⊆ Ω with

∃α > 1 : Λ(1 + αχC ) ≤ Λ(σ) ≤ Λ(1− χC/α)

is identical to the (outer) support of σ − 1.

◮ Result also holds with linearized condition

∃α > 1 : Λ(1) + αΛ′(1)χC ≤ Λ(σ) ≤ Λ(1)− αΛ′(1)χC .

◮ Result covers indefinite case,
e.g., σ = 1 + χD1

− 1
2χD2
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Monotonicity based shape reconstruction

Monotonicity based reconstruction

◮ is intuitive, yet rigorous

◮ is stable (no infinity or range tests)

◮ works for pcw. anal. conductivities
(no definiteness conditions)

◮ requires only the reference solution
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Theoretical results rely on idealized measurements (NtD-operators)

Can we use these ideas for realistic measurements?
(finitely many electrodes, electrode models/shunting effects, uncertainties/noise, . . . )
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Realistic data & Uncertainties

◮ Finite number of electrodes, CEM, noisy data Λδ(σ)

◮ Unknown background, e.g., 1− ǫ ≤ σ0(x) ≤ 1 + ǫ

◮ Anomaly with some minimal contrast to background, e.g.,
σ(x) = σ0(x) + κ(x)χD , κ(x) ≥ 1

◮ Can we rigorously guarantee to find inclusion D?

H./Ullrich: Monotonicity-based
Rigorous Resolution Guarantee

◮ If D = ∅, methods return ∅.

◮ If D ⊃ ωi then it is detected.

(Here: 32 electrodes, ǫ = 1%, δ = 1.4%)
e1
e2
e3
e4
e5
e6

...ωi

Ω
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Conclusions

Using monotonicity and localized potentials we showed that

◮ Unique identifiability holds for piecewiese analytic parameters.

◮ In shape reconstruction problems we can avoid non-linearity.

◮ Resolution guarantees for locating anomalies in unknown
backgrounds with realistic finite precision data are possible.

Major limitations / open problems for our approach

◮ Piecewise analyticity required to prevent infinite oscillations.

◮ Voltage has to be measured on current-driven electrodes.
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