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Electrical impedance tomography (EIT)

◮ Apply electric currents on subject’s boundary

◮ Measure necessary voltages

 Reconstruct conductivity inside subject.

Images from BMBF-project on EIT
(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)
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Mathematical Model

Forward operator of EIT:

Λ : σ 7→ Λ(σ), ”conductivity“ 7→ ”measurements“

◮ Conductivity: σ ∈ L∞+ (Ω)

◮ Continuum model: Λ(σ): Neumann-Dirichlet-operator

Λ(σ) : g 7→ u|∂Ω, ”applied current“ 7→ ”measured voltage“

∇ · (σ∇u) = 0 in Ω, σ∂νu|∂Ω = g on ∂Ω.

◮ Linear elliptic PDE theory:

Λ(σ) : L2⋄(∂Ω) → L2⋄(∂Ω) linear, compact, self-adjoint
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Inverse problem

Non-linear forward operator of EIT

Λ : σ 7→ Λ(σ), L∞+ (Ω) → L(L2⋄(∂Ω))

Inverse problem of EIT:

Λ(σ) 7→ σ?

Mathematical challenges:

◮ Uniqueness (”Calderón problem“): Is Λ injective?

◮ Ill-posedness: Convergent numerical methods to reconstruct σ?

◮ Non-linearity: Non-linearity conditions for convergence results?
Global vs. local convergence?
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Shape detection

In practice:

◮ large jumps in conductivity

◮ large interest in detecting shapes / inclusions / anomalies

Inclusion/shape detection problem:

Λ(σ) 7→ supp(σ − σ0)?, σ0: reference conductivity.

Advantages:

◮ Still contains the relevant information for most applications

◮ Simpler problem, more a-priori information

◮ Less affected by non-linearity (H./Seo 2010)
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Factorization method

Factorization method (Inverse Scattering: Kirsch 1998, EIT: Hanke/Brühl 1999)

z ∈ supp(σ − σ0) ⇐⇒ Φz ∈ R(|Λ(σ)− Λ(σ0)|
1/2).

Φz : dipole function with singularity in point z (and arbitrary direction)

Progress on FM for EIT since 1998/99:
(Brühl, Hakula, Hanke, H., Hyvönen, Kirsch, Lechleiter, Nachman, Päivärinta,

Pursiainen, Schappel, Schmitt, Seo, Teirilä, Woo)

◮ realistic electrode models, real data (not in this talk)

◮ simplified proofs, weakened assumptions, . . .

In this talk: Formulation and proof of FM (for continuous data in EIT)

from (my personal) today’s standpoint

(H., to appear in Computational and Mathematical Methods in Medicine)
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Virtual measurement operators

Let D ⊆ Ω be open and D ⊆ Ω have connected complement.

LD : F 7→ u|∂Ω, ”source term on D“ 7→ ”measured voltage“

∆u = ∇ · F in Ω, ∂νu|∂Ω = 0 on ∂Ω.

Properties of LD : L2(D)n → L2(∂Ω):

◮ For all z 6∈ ∂D and associated dipole functions Φz :

z ∈ D ⇐⇒ Φz ∈ R(LD).

◮ Adjoint L∗D : L2(∂Ω) → L2(D)n:

L∗D : g 7→ ∇u|D , ”current“ 7→ ”(hom.) solution on D“

∆u = 0 in Ω, ∂νu|∂Ω = g on ∂Ω.
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FM for simple case

Theorem
Let σ = 1 + χD , D ⊆ Ω open, D ⊆ Ω have connected complement.
For all z 6∈ ∂D and associated dipole functions Φz

z ∈ D ⇐⇒ Φz ∈ R(|Λ(σ) − Λ(1)|1/2).

Proof (traditional).

I. Introduce virtual measurement operators LD

II. Prove Factorization Λ(1)− Λ(σ) = LFL∗

III. Study properties of F to show that R(|Λ(σ)−Λ(1)|1/2) = R(L)

Here: replace II.+III. by monotony and range inclusions
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Monotony and range inclusions

◮ Let σ1, σ0 ∈ L∞+ (Ω). Then, for all g ∈ L2⋄(∂Ω),

∫

Ω

(σ0 − σ1)|∇u0|
2 dx ≤

∫

∂Ω
g (Λ(σ1)− Λ(σ0)) g dx

≤

∫

Ω

σ0
σ1

(σ0 − σ1)|∇u0|
2 dx .

(Kang/Seo/Sheen 1997, Ikehata 1998)

◮ A,B : H1 → H2 bnd. linear operators between Hilbert spaces

‖Ax‖ ≤ C ‖Bx‖ ∀x =⇒ R(A∗) ⊆ R(B∗)

(Corollary of the Bourbaki’s ”14th important property of Banach spaces”)
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FM for simple case

Theorem
Let σ = 1 + χD , D ⊆ Ω open, D ⊆ Ω have connected complement.
For all z 6∈ ∂D and associated dipole functions Φz

z ∈ D ⇐⇒ Φz ∈ R(|Λ(σ) − Λ(1)|1/2).

Proof.

◮ Monotony:
1

2

∫

D
|∇u0|

2 dx

︸ ︷︷ ︸

=‖L∗Dg‖
2

≤

∫

∂Ω
g (Λ(1)− Λ(σ)) g dx ≤

∫

D
|∇u0|

2 dx

︸ ︷︷ ︸

=‖L∗Dg‖
2

 
1

2
‖L∗Dg‖

2 ≤ ‖ (Λ(1)− Λ(σ))1/2 g‖2 ≤ ‖L∗Dg‖
2

 R(LD) = R
(

|Λ(1)− Λ(σ)|1/2
)
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Advantages

Advantages of this factorization-free aproach:

◮ Monotony estimates simpler than studying ”middle-operator” F

◮ Upper and lower range bound can be treated separately

Two applications where this helps:

◮ Dealing with a-priori separated, indefinite inclusions
(originally treated by Grinberg/Kirsch 2004, Schmitt 2009)

◮ Dealing with non-connected complements, less regular
conductivities
(originally treated by H./Hyvönen 2007)
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FM for indefinite case

Indefinite inclusions: σ = 1 + χD+ − 1/2χD−

Open question: z ∈ D+ ∪ D− ⇐⇒ Φz ∈ R(|Λ(σ)− Λ(1)|1/2)?

Monotony:

1

2

∫

D−

|∇u0|
2 dx −

∫

D+

|∇u0|
2 dx ≤

∫

∂Ω
g (Λ(σ)− Λ(1)) g dx

≤

∫

D−

|∇u0|
2 dx −

1

2

∫

D+

|∇u0|
2 dx

How to identify a-priori separated inclusions:

◮ Adding
∫

E |∇u0|
2 dx = ‖L∗Eg‖

2 with E ⊇ D+ excludes D+

 R(LE∪D−) = R(Λ(σ)− Λ(1) + 2LEL
∗
E )

◮ D− can be reconstructed after excluding E ⊃ D+.
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More general conductivities

For measurable κ : Ω → R we define (slightly simplified)

◮ the support suppκ:
complement of all open U with κ|U = 0

◮ the outer support out∂Ωsuppκ:
complement of all open U connected to ∂Ω with κ|U = 0

◮ the inner support innsuppκ:
union of all open U with infκ|U > 0
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FM for general definite case

Theorem
Let

◮ σ0 ∈ L∞+ (Ω) pcw. anal, σ ∈ L∞+ (Ω), either σ ≥ σ0, or σ ≤ σ0,

◮ z 6∈ ∂D have a neighborhood in which σ0 is analytic.

Then

z ∈ innsupp(σ − σ0) =⇒ Φz ∈ R(|Λ(σ)− Λ(σ0)|
1/2),

z ∈ out∂Ωsupp(σ − σ0) ⇐= Φz ∈ R(|Λ(σ)− Λ(σ0)|
1/2).

Proof. Monotony + Properties of LD for general D ⊆ Ω.

FM detects inclusions up to difference between inner and outer supp.
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FM for general indefinite case

Theorem
Let

◮ σ0 ∈ L∞+ (Ω) pcw. anal, σ ∈ L∞+ (Ω),

◮ E ⊆ Ω measurable, σ0 ≥ σ on Ω \ E , α > ‖σ0 − σ‖L∞ ,

◮ z 6∈ ∂D have a neighbourhood in which σ0 is analytic.

Then

z ∈ innsupp(σ − σ0) ∪ E =⇒ Φz ∈ R(|Λ(σ) − Λ(σ0) + αLEL
∗
E |

1
2 ),

z ∈ out∂Ω(supp(σ − σ0) ∪ E ) ⇐= Φz ∈ R(|Λ(σ) − Λ(σ0) + αLEL
∗
E |

1
2 ).

Analogous result holds for σ0 ≤ σ on Ω \ E

Indefinite inclusions can be detected by excluding domains.
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Remarks and conclusions

Generalizations: Everything stays valid for

◮ measurements taken on open subset of boundary ∂Ω,

◮ σ0 ∈ L∞+ if UCP and existence of dipoles is guaranteed.

Conclusions:

◮ FM detects inclusions up to diff. between inner and outer supp.

◮ FM requires definiteness condition on whole domain or after
excluding an a-priori known part.

◮ Monotony and range inclusions yield simpler factorization-free
proofs that seem easier to generalize.

Open problem:

◮ Monotony for inverse scattering? Up to fin.-dim. spaces?
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