

Inverse Eddy Current Problems

Bastian von Harrach
bastian.harrach@uni-wuerzburg.de
(joint work with Lilian Arnold)

Institut für Mathematik - IX, Universität Würzburg

Oberwolfach workshop on Inverse Problems for Partial Differential Equations Oberwolfach, Germany, February 19–25, 2012.

Contents

- Motivation
- ▶ The direct problem
- ▶ The inverse problem

Motivation

Inverse Electromagnetics & Eddy currents

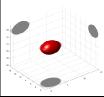
Inverse Electromagnetics

Inverse Electromagnetics:

- Generate EM field (drive excitation current through coil)
- Measure EM field (induced voltages in meas. coil)
- ► Gain information from measurements

Applications:

- Metal detection (buried conductor)
- Non-destructive testing (crack in metal, metal in concrete)



Maxwell's equations

Classical Electromagnetics: Maxwell's equations

$$\operatorname{curl} H = \epsilon \partial_t E + \sigma E + J \qquad \text{in } \mathbb{R}^3 \times]0, T[$$

$$\operatorname{curl} E = -\mu \partial_t H \qquad \text{in } \mathbb{R}^3 \times]0, T[$$

```
E(x,t): Electric field \epsilon(x): Permittivity H(x,t): Magnetic field \mu(x): Permeability J(x,t): Excitation current \sigma(x): Conductivity
```

Knowing $J, \sigma, \mu, \epsilon + init.$ cond. determines E and H.

Eddy currents

Maxwell's equations

Eddy current approximation: Neglect displacement currents $\epsilon \partial_t E$

▶ Justified for low-frequency excitations (Alonso 1999, Ammari/Buffa/Nédélec 2000)

$$ightarrow \partial_t(\sigma E) + \operatorname{curl}\left(rac{1}{\mu}\operatorname{curl} E
ight) = -\partial_t J \quad ext{in } \mathbb{R}^3 imes]0, T[$$

UNIVERSITÄT Where's Eddy?

• $\sigma = 0$: (Quasi-)Magnetostatics

$$\operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl} E\right) = -\partial_t J$$

Excitation $\partial_t J$ instantly generates magn. field $\frac{1}{\mu}$ curl $E=-\partial_t H$.

 $ightharpoonup \sigma \neq 0$: Eddy currents

$$\partial_t(\sigma E) + \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl} E\right) = -\partial_t J$$

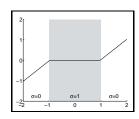
 $\partial_t J$ generates changing magn. field + currents inside conductor Induced currents oppose what created them (Lenz law)

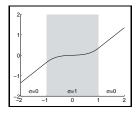
Parabolic-elliptic equations

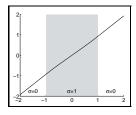
$$\partial_t(\sigma E) + \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl} E\right) = -\partial_t J \quad \text{in } \mathbb{R}^3 \times]0, T[$$

- parabolic inside conductor $\Omega = \text{supp}(\sigma)$
- elliptic outside conductor

Scalar example:
$$(\sigma u)_t = u_{xx}$$
, $u(\cdot, 0) = 0$, $u_x(-2, \cdot) = u_x(2, \cdot) = 1$.







The direct problem

Unified variational formulation for the parabolic-elliptic eddy current problem

Standard approach

$$\partial_t(\sigma E) + \operatorname{curl}\left(rac{1}{\mu}\operatorname{curl} E
ight) = -\partial_t J \quad ext{in } \mathbb{R}^3 imes]0,\, T[$$

Standard approach: Decouple elliptic and parabolic part (e.g. Bossavit 1999, Acevedo/Meddahi/Rodriguez 2009)

Find $(E_{\mathbb{R}^3\setminus\Omega}, E_{\Omega}) \in H_{\mathbb{R}^3\setminus\Omega} \times H_{\Omega}$ s.t.

- E_{Ω} solves parabolic equation + init. cond.
- $E_{\mathbb{R}^3 \setminus \Omega}$ solves elliptic equation
- interface conditions are satisfied

Problem: Theory (solution spaces, coercivity constants, etc.) depends on $\Omega = \operatorname{supp} \sigma$ and on lower bounds of $\sigma|_{\Omega}$.

Unified approach?

Parabolic-elliptic eddy current equation

$$\partial_t(\sigma E) + \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl} E\right) = -\partial_t J \quad \text{in } \mathbb{R}^3 \times]0, T[$$

Inverse problem: Find σ (or $\Omega = \operatorname{supp} \sigma$) from measurements of E

requires unified solution theory

Test for unified theory: Can we linearize E w.r.t. σ ?

How does the solution of an elliptic equation change if the equation becomes a little bit parabolic?

(For scalar analogue: Frühauf/H./Scherzer 2007, H. 2007)

Rigorous formulation

Rigorous formulation: Let $\mu \in L^{\infty}_+$, $\sigma \in L^{\infty}$, $\sigma \geq 0$,

$$J_t \in L^2(0,T,W(\operatorname{curl})')$$
 with $\operatorname{div} J_t = 0$
$$E_0 \in L^2(\mathbb{R}^3)^3$$
 with $\operatorname{div}(\sigma E_0) = 0$.

For $E \in L^2(0, T, W(\text{curl}))$ the eddy current equations

$$\partial_t(\sigma E) + \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl} E\right) = -J_t \qquad \text{in } \mathbb{R}^3 \times]0, T[$$

$$\sqrt{\sigma}E(x,0) = \sqrt{\sigma(x)}E_0(x) \quad \text{in } \mathbb{R}^3$$

are well-defined and (if solvable) uniquely determine curl E, $\sqrt{\sigma E}$.

Natural variational formulation

Natural unified variational formulation ($E_0 = 0$ for simplicity):

Find $E \in L^2(0, T, W(curl))$ that solves

$$\int_0^T \int_{\mathbb{R}^3} \left(\sigma E \cdot \partial_t \Phi - \frac{1}{\mu} \operatorname{curl} E \cdot \operatorname{curl} \Phi \right) = \int_0^T \int_{\mathbb{R}^3} J_t \cdot \Phi.$$

for all smooth Φ with $\Phi(\cdot, T) = 0$.

- equivalent to eddy current equation
- ▶ not coercive, does not yield existence results

Gauged formulation

Gauged unified variational formulation ($E_0 = 0$ for simplicity)

Find divergence-free $E \in L^2(0, T, W(\text{curl}))$ that solves

$$\int_0^T \int_{\mathbb{R}^3} \left(\sigma E \cdot \partial_t \Phi - \frac{1}{\mu} \operatorname{curl} E \cdot \operatorname{curl} \Phi \right) = \int_0^T \int_{\mathbb{R}^3} J_t \cdot \Phi.$$

for all smooth divergence-free Φ with $\Phi(\cdot, T) = 0$.

- coercive, yields existence and continuity results
- ▶ not equivalent to eddy current equation $(\sigma \neq \text{const.} \leadsto \text{div } \sigma E \neq \sigma \text{ div } E)$
- ▶ does not determine true solution up to gauge (curl-free) field

Coercive unified formulation

How to obtain coercive + equivalent unified formulation?

- ▶ Ansatz $E = A + \nabla \varphi$ with divergence-free A. (almost the standard (A, φ) -formulation with Coulomb gauge)
- ► Consider $\nabla \varphi = \nabla \varphi_A$ as function of A by solving $\operatorname{div} \sigma \nabla \varphi_A = -\operatorname{div} \sigma A.$ (\leadsto div $\sigma E = 0$).
- ▶ Obtain coercive formulation for A (Lions-Lax-Milgram Theorem → Solvability and continuity results)
- ► A determines E (more precisely: curl E and $\sqrt{\sigma}E$)

Unified variational formulation

Unified variational formulation (Arnold/H., SIAP, to appear)

Find divergence-free $A \in L^2(0, T, W(\text{curl}))$ that solves

$$\int_0^T \int_{\mathbb{R}^3} \left(\sigma(A + \nabla \varphi_A) \cdot \partial_t \Phi - \frac{1}{\mu} \operatorname{curl} A \cdot \operatorname{curl} \Phi \right) = \int_0^T \int_{\mathbb{R}^3} J_t \cdot \Phi.$$

for all smooth divergence-free Φ with $\Phi(\cdot, T) = 0$.

- ► coercive, uniquely solvable
- $E := A + \nabla \varphi_A$ is one solution of the eddy current equation
- \rightsquigarrow curl E, $\sqrt{\sigma}E$ depend continuously on J_t (uniformly w.r.t. σ) (for all solutions of the eddy current equation)

Solved and open problems

Unified variational formulation

- ightharpoonup allows to study inverse problems w.r.t. σ
- ▶ allows to rigorously linearize E w.r.t. σ around $\sigma_0 = 0$ (elliptic equation becoming a little bit parabolic in some region...)

Open problem:

- ▶ Theory requires some regularity of $\Omega = \operatorname{supp} \sigma$ and $\sigma \in L^{\infty}_{+}(\Omega)$ in order to determine φ from A.
- ► Solution theory for

$$\operatorname{div} \sigma \nabla \varphi = -\operatorname{div} \sigma A$$

for general $\sigma \in L^{\infty}$, $\sigma \geq 0$?

The inverse problem

UNIVERSITÄT Setup

Locate $\Omega = \operatorname{supp} \sigma$ in

Detecting conductors:

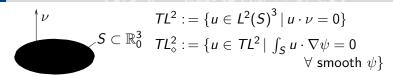
- Apply surface currents J on S (divergence-free, no electrostatic effects)
- ▶ Measure electric field E on S (tangential component, up to grad. fields)
- Measurement operator

$$\Lambda_{\sigma}: J_t \mapsto \gamma_{\tau} E := (\nu \wedge E|_{S}) \wedge \nu$$

$$\partial_t(\sigma E) + \operatorname{curl}\left(\frac{1}{u}\operatorname{curl} E\right) = -J_t \quad \text{in } \mathbb{R}^3 \times]0, T[$$

(+ zero IC) from all possible surface currents and measured values.

Measurement operator



Measurement operator

$$\Lambda_{\sigma}: L^{2}(0, T, TL_{\diamond}^{2}) \rightarrow L^{2}(0, T, TL_{\diamond}^{2'}), \quad J_{t} \mapsto \gamma_{\tau} E,$$

where E solves eddy current eq. with $[\nu \times \text{curl } E]_S = J_t$ on S.

Remark

$$TL_{\diamond}^{2'} \cong TL^2/TL_{\diamond}^{2\perp} \iff E \text{ not unique, but } \Lambda_{\sigma} \text{ well-defined.}$$

Sampling methods

Working plan for the inverse problem:

- ► Linear Sampling Method (Colton/Kirsch 1996)
 - characterizes subset of scatterer by range test
 - allows fast numerical implementation
- ► Factorization Method (Kirsch 1998)
 - characterizes scatterer by range test
 - yields uniqueness under definiteness assumptions
 - allows fast numerical implementation

(FM for scalar parabolic-elliptic equ.: Frühauf/H./Scherzer 2007)

► Next step?

Sampling ingredients

Ingredients for LSM and FM:

- ▶ Reference measurements: $\Lambda := \Lambda_{\sigma} \Lambda_{0}$, $\Lambda_{0} : J_{t} \mapsto \gamma_{\tau} F$, F solves curl curl $F = -J_{t}$ in $\mathbb{R}^{3} \times]0, T[$.
- ► Time-integration: Consider $I\Lambda$, with $I: E(\cdot, \cdot) \mapsto \int_0^T E(\cdot, t) dt$
- ► Singular test functions

$$G_{z,d}(x) := \operatorname{curl} \frac{d}{4\pi|x-z|}, \qquad x \in \mathbb{R}^3 \setminus \{z\}$$

Theorem (LSM): For every z below S and direction $d \in \mathbb{R}^3$

$$\gamma_{\tau}G_{z,d} \in \mathcal{R}(I\Lambda) \quad \Rightarrow \quad z \in \Omega$$

Theorem ("half" FM): For every z below S and direction $d \in \mathbb{R}^3$

$$\gamma_{\tau} G_{z,d} \in \mathcal{R}(I(\Lambda + \Lambda')^{1/2}) \iff z \in \Omega$$

Work in progress ("other half" FM):"⇒" holds.

- ► Next step(?): Monotony methods
- For EIT: Λ_{σ} NtD-operator for conductivity $\sigma=1+\chi_{D}$ D= Union of all balls B where $\Lambda_{1+\chi_{B}}\leq\Lambda_{\sigma}$ (H./Ullrich) (under the assumptions of the FM)
- stable test criterion (no infinity tests)
- allows fast numerical implementation
- allows extensions to indefinite cases

Inverse transient eddy current problems

- require unified parabolic-elliptic theory
- can be approached by sampling methods (LSM/FM)

Open problems

► Solution theory for

$$\operatorname{div} \sigma \nabla \varphi = -\operatorname{div} \sigma A$$
 for general $\sigma \in L^\infty$, $\sigma \geq 0$?

Monotony based methods beyond EIT? Parabolic-elliptic problems? Inverse Scattering?