Fast shape-reconstruction in electrical impedance tomography

Bastian Harrach bastian.harrach@uni-wuerzburg.de

Department of Mathematics - IX, University of Würzburg

DMV Jahrestagung, Köln, 19–22 September 2011.

Calderón problem

Calderón problem: Can we recover $\sigma \in L^{\infty}_{+}(\Omega)$ in

$$\nabla \cdot (\sigma \nabla u) = 0 \quad \text{in } \Omega \subset \mathbb{R}^n$$
 (1)

from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial\Omega},\sigma\partial_{\nu}u|_{\partial\Omega}): u \text{ solves } (1)\}?$$

Equivalent: Recover σ from **Neumann-to-Dirichlet-Operator (NtD)**

$$\Lambda(\sigma):\ L^2_{\diamond}(\partial\Omega)\to L^2_{\diamond}(\partial\Omega),\quad g\mapsto u|_{\partial\Omega},$$

where u solves (1) with $\sigma \partial_{\nu} u = g$ on $\partial \Omega$.

FIT

Electrical impedance tomography (EIT):

- Apply currents $\sigma \partial_{\nu} u|_{\partial \Omega}$ (Neumann boundary data)
 - \rightarrow Electric potential u in Ω (solution of $\nabla \cdot (\sigma \nabla u) = 0$)
- Measure voltages $u|_{\partial\Omega}$ (Dirichlet boundary data)

Current-Voltage-Measurements \rightsquigarrow Fin.-dim. approx. to $\Lambda(\sigma)$

Inverse problem

Non-linear forward operator of EIT

$$\Lambda: \ \sigma \mapsto \Lambda(\sigma), \quad L^{\infty}_{+}(\Omega) \to \mathcal{L}(L^{2}_{\diamond}(\partial\Omega))$$

Inverse problem of EIT:

$$\Lambda(\sigma) \mapsto \sigma$$
?

Uniqueness ("Calderón problem"):

- ► Measurements on complete boundary: Calderón (1980), Druskin (1982+85), Kohn/Vogelius (1984+85), Sylvester/Uhlmann (1987), Nachman (1996), Astala/Päivärinta (2006)
- ► Measurements on part of the boundary: Bukhgeim/Uhlmann ('02), Knudsen ('06), Isakov ('07), Kenig/Sjöstrand/Uhlmann ('07), H. ('08), Imanuvilov/Uhlmann/Yamamoto ('09)

Linearization

Generic approach: Linearization

$$\Lambda(\sigma) - \Lambda(\sigma_0) \approx \Lambda'(\sigma_0)(\sigma - \sigma_0)$$

 σ_0 : known reference conductivity / initial guess / . . .

 $\Lambda'(\sigma_0)$: Fréchet-Derivative / sensitivity matrix.

$$\Lambda'(\sigma_0): L^{\infty}_+(\Omega) \to \mathcal{L}(L^2_{\diamond}(\partial\Omega)).$$

 \rightsquigarrow Solve linearized equation for difference $\sigma - \sigma_0$.

Often: supp $(\sigma - \sigma_0) \subset\subset \Omega$ compact. ("shape" / "inclusion")

Linearization

Linear reconstruction method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve
$$\Lambda'(\sigma_0)\kappa \approx \Lambda(\sigma) - \Lambda(\sigma_0)$$
, then $\kappa \approx \sigma - \sigma_0$.

- ▶ Multiple possibilities to measure residual norm and to regularize.
- ▶ No rigorous theory for single linearization step.
- ► Almost no theory for Newton iteration:

Dobson (1992): (Local) convergence for regularized EIT equation. Lechleiter/Rieder(2008): (Local) convergence for discretized setting.

No (local) convergence theory for non-discretized case!

Linearization

Linear reconstruction method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve
$$\Lambda'(\sigma_0)\kappa \approx \Lambda(\sigma) - \Lambda(\sigma_0)$$
, then $\kappa \approx \sigma - \sigma_0$.

It seems that

- ▶ EIT is a non-linear problem, many Newton-iterations required.
- ▶ No rigorous results possible for single linearization step.
- ▶ Linearization only justifiable for small $\sigma \sigma_0$ (local results).

In this talk:

- Shape detection in EIT is essentially a linear problem!
- Fast shape detection algorithms are possible.

Exact Linearization

Theorem (H./Seo, SIAM J. Math. Anal. 2010)

Let κ , σ , σ_0 piecewise analytic and $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0)$. Then

- (a) $\operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma \sigma_0)$.
- (b) $\frac{\sigma_0}{\sigma}(\sigma \sigma_0) \le \kappa \le \sigma \sigma_0$ on the bndry of $\operatorname{supp}_{\partial\Omega}(\sigma \sigma_0)$.

 $\operatorname{supp}_{\partial\Omega}$: outer support (= support, if support is compact and has conn. complement)

- ► Exact solution of lin. equation yields correct (outer) shape.
- ▶ No assumptions on $\sigma \sigma_0!$
- → Linearization error does not lead to shape errors.

Proof

- Exact linearization: $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) \Lambda(\sigma_0)$
- ▶ Monotony: For all "reference solutions" *u*₀:

$$\int_{\Omega} (\sigma - \sigma_0) |\nabla u_0|^2 dx$$

$$\geq \underbrace{\langle g, (\Lambda(\sigma) - \Lambda(\sigma_0)) g \rangle}_{\Omega} \geq \int_{\Omega} \frac{\sigma_0}{\sigma} (\sigma - \sigma_0) |\nabla u_0|^2 dx.$$

$$= \int_{\Omega} \kappa |\nabla u_0|^2 dx$$

- ▶ Use localized potentials (H 2008) to control $|\nabla u_0|^2$
- $\rightsquigarrow \operatorname{supp}_{\partial\Omega} \kappa = \operatorname{supp}_{\partial\Omega} (\sigma \sigma_0)$
- ▶ Similarly, $\frac{\sigma_0}{\sigma}(\sigma \sigma_0) \le \kappa \le \sigma \sigma_0$ on bndry of $\operatorname{supp}_{\partial\Omega}(\sigma \sigma_0)$

Non-exact Linearization?

Theorem requires $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0)$.

- Existence of exact solution is unknown!
- ▶ In practice: finite-dimensional, noisy measurements

Ongoing research:

▶ How to use this result for fast shape detection

(Fast = based on linearized equation, i.e., only one forward solution)

Promising approach:

▶ Reconstruction algorithm based on monotony arguments

Monotony

$$\int_{\Omega} (\sigma_1 - \sigma_2) |\nabla u_1|^2 dx \le (g, (\Lambda(\sigma_2) - \Lambda(\sigma_1))g)$$

 u_1 solution corresponding to σ_1 and boundary current g.

Simple consequence:

$$\sigma_1 \leq \sigma_2 \implies \Lambda(\sigma_1) \geq \Lambda(\sigma_2)$$

Monotony based imaging

- ▶ True conductivity: $\sigma = 1 + \chi_D$, D: unknown inclusion
- \rightarrow $\Lambda(\sigma)$: measured data
 - ▶ Test conductivity: $\kappa = 1 + \chi_B$, B: small ball
- $\rightsquigarrow \Lambda(\kappa)$ can be simulated for different balls B

Monotony:

$$B \subseteq D \implies \Lambda(\sigma) \ge \Lambda(\kappa)$$

Monotony based reconstruction algo. for EIT (Tamburrino/Rubinacci 02)

- ▶ For all balls B, calculate $\Lambda(\kappa)$ and test whether $\Lambda(\sigma) \geq \Lambda(\kappa)$
- \rightsquigarrow Result: upper bound of D.

Only an upper bound? Converse montony relation?

Converse montony relation

Theorem (H./Ullrich)

$$\Omega \setminus \overline{D}$$
 connected. $\sigma = 1 + \chi_D$, $\kappa = 1 + \chi_B$.

$$B \not\subseteq D \implies \Lambda(\kappa) \not\geq \Lambda(\sigma).$$

→ Monotony method detects exact shape.

(Extensions possible for non-connected complement, inhomogeneous inclusions or background, continuous transitions between inclusion and background,...)

Converse montony relation

Proof
$$(\sigma = 1 + \chi_D, \ \kappa = 1 + \chi_B)$$

$$\int_{\Omega} (\kappa - \sigma) |\nabla u_{\kappa}|^2 \ \mathrm{d}x \le (g, (\Lambda(\sigma) - \Lambda(\kappa))g)$$

Apply localized potentials (H 2008) to control power term $|\nabla u_{\kappa}|^2$.

$$\rightsquigarrow \exists g: (g, (\Lambda(\sigma) - \Lambda(\kappa))g) \geq 0 \implies \Lambda(\sigma) \nleq \Lambda(\kappa)$$

Fast implementation

- ▶ Testing $\Lambda(\sigma) \ge \Lambda(\kappa)$ is expensive. One forward problem per κ .
- Using linear approx. of $\Lambda(\kappa)$ still fulfills monotony relation (still exact, no linearization error!)

$$\Omega \setminus \overline{D}$$
 connected. $\sigma = 1 + \chi_D$, $\kappa = 1 + k\chi_B$ (here: $0 < k \le 1/2$)

$$B\subseteq D\iff \Lambda(1)+k\Lambda'(1)\chi_B\geq \Lambda(\sigma).$$

- \leadsto Fast implementation, requires only homogeneous forward solution
 - ► Comp. cost equivalent to standard linearized methods

(Again, extensions possible for non-connected complement, inhomogeneous inclusions or background, continuous transitions between inclusion and background,...)

Numerical results

Reconstructions with exact data and with 0.1% noise.

Conclusions

- ► Electrical impedance tomography is a non-linear problem
- ► For shape detection it can be replaced by a linear problem without losing information
- ▶ Designing fast, convergent shape detection algorithms is possible but non-trivial.
- Promising approach: monotony-based methods.