Exact shape-reconstruction by one-step linearization in EIT

Bastian von Harrach

harrach@math.uni-mainz.de

Zentrum Mathematik, M1, Technische Universität München, Germany

Joint work with Jin Keun Seo, Yonsei University, Seoul, Korea

Oberwolfach Workshop on Mathematics and Algorithms in Tomography,

Oberwolfach, Germany, 11th – 17th April, 2010.

Mathematical Model

Forward operator of EIT:

 $\Lambda: \sigma \mapsto \Lambda(\sigma)$, "conductivity" \mapsto "measurements"

- Conductivity: $\sigma \in L^{\infty}_{+}(\Omega)$
- Continuum model: $\Lambda(\sigma)$: Neumann-Dirichlet-operator

$$\Lambda(\sigma): g \mapsto u|_{\partial\Omega},$$
 "applied current" \mapsto "measured voltage"

$$\nabla \cdot (\sigma \nabla u) = 0 \quad \text{ in } \Omega, \quad \sigma \partial_{\nu} u|_{\partial \Omega} = g \quad \text{ on } \partial \Omega.$$

Linear elliptic PDE theory:

$$\forall g \in L^2_{\diamond}(\partial\Omega) \quad \exists! u \in H^1_{\diamond}(\Omega) \text{ solving (1)}.$$

$$\Lambda(\sigma): L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega)$$
 linear, compact, self-adjoint

(1)

Inverse problem

Non-linear forward operator of EIT

$$\Lambda: \ \sigma \mapsto \Lambda(\sigma), \quad L^{\infty}_{+}(\Omega) \to \mathcal{L}(L^{2}_{\diamond}(\partial\Omega))$$

Inverse problem of EIT:

$$\Lambda(\sigma) \mapsto \sigma$$
?

Uniqueness ("Calderón problem"):

- Measurements on complete boundary: Calderón (1980), Kohn/Vogelius (1984), Sylvester/Uhlmann (1987), Nachman (1996), Astala/Päivärinta (2006)
- Measurements on part of the boundary: Bukhgeim/Uhlmann (2002), Knudsen (2006), Isakov (2007), Kenig/Sjöstrand/Uhlmann (2007), H. (2008), Imanuvilov/Uhlmann/Yamamoto (2009)

Linearization

Generic approach: Linearization

$$\Lambda(\sigma) - \Lambda(\sigma_0) \approx \Lambda'(\sigma_0)(\sigma - \sigma_0)$$

 σ_0 : known reference conductivity / initial guess / . . .

 $\Lambda'(\sigma_0)$: Fréchet-Derivative / sensitivity matrix.

$$\Lambda'(\sigma_0): L^{\infty}_+(\Omega) \to \mathcal{L}(L^2_{\diamond}(\partial\Omega)).$$

 \sim Solve linearized equation for difference $\sigma - \sigma_0$.

Often: $supp(\sigma - \sigma_0) \subset\subset \Omega$ compact. ("shape" / "inclusion")

Linearization

Linear reconstruction method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve $\Lambda'(\sigma_0)\kappa \approx \Lambda(\sigma) - \Lambda(\sigma_0)$, then $\kappa \approx \sigma - \sigma_0$.

- Multiple possibilities to measure residual norm and to regularize.
- No rigorous theory for single linearization step.
- Almost no theory for Newton iteration:

Dobson (1992): (Local) convergence for regularized EIT equation. Lechleiter/Rieder(2008): (Local) convergence for discretized setting. No (local) convergence theory for non-discretized case!

Linearization

Linear reconstruction method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve $\Lambda'(\sigma_0)\kappa \approx \Lambda(\sigma) - \Lambda(\sigma_0)$, then $\kappa \approx \sigma - \sigma_0$.

- Seemingly, no rigorous results possible for single linearization step.
- Seemingly, only justifiable for small $\sigma \sigma_0$ (local results).

In this talk: Rigorous and global(!) result about the linearization error.

Exact Linearization

Theorem (H./Seo, accepted to SIAM J. Math. Anal.)

Let κ , σ , σ_0 piecewise analytic and $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0)$. Then

- (a) $\operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma \sigma_0)$.
- (b) $\frac{\sigma_0}{\sigma}(\sigma-\sigma_0) \leq \kappa \leq \sigma-\sigma_0$ on the bndry of $\operatorname{supp}_{\partial\Omega}(\sigma-\sigma_0)$.

 $\operatorname{supp}_{\partial\Omega}$: outer support (= supp, if supp is compact and has conn. complement)

- Exact solution of lin. equation yields correct (outer) shape.
- No assumptions on $\sigma \sigma_0!$
- → Single-step linearization error does not affect shape reconstrution.

Proof: Combination of monotony and localized potentials.

Monotony

Monotony (in the sense of quadr. forms):

$$\Lambda'(\sigma_0)(\sigma - \sigma_0) \leq \underbrace{\Lambda(\sigma) - \Lambda(\sigma_0)}_{=\Lambda'(\sigma_0)\kappa} \leq \Lambda'(\sigma_0) \left(\frac{\sigma_0}{\sigma}(\sigma - \sigma_0)\right).$$

Kang/Seo/Sheen (1997), Kirsch (2005), Ide/Isozaki/Nakata/Siltanen/Uhlmann (2007)

Quadratic forms / energy formulation:

$$\int_{\partial\Omega} g\Lambda(\sigma_0)g \,ds = \int_{\Omega} \sigma_0 |\nabla u_0|^2 \,dx$$
$$\int_{\partial\Omega} g\Lambda(\sigma)g \,ds = \int_{\Omega} \sigma |\nabla u|^2 \,dx$$
$$\int_{\partial\Omega} g \left(\Lambda(\sigma_0)'\kappa\right)g \,ds = -\int_{\Omega} \kappa |\nabla u_0|^2 \,dx$$

 u_0 (resp. u): solution corresponding to σ_0 (resp. σ) and bndry current g.

Bounds on squares

Exact linearization: $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0)$

$$\iint_{\Omega} (\sigma - \sigma_0) |\nabla u_0|^2 dx \ge \int_{\Omega} \kappa |\nabla u_0|^2 dx \ge \int_{\Omega} \frac{\sigma_0}{\sigma} (\sigma - \sigma_0) |\nabla u_0|^2 dx.$$

for all "reference solutions" u_0 .

Does this imply

$$\sigma - \sigma_0 \ge \kappa \ge \frac{\sigma_0}{\sigma} (\sigma - \sigma_0)$$
?

Famous concept of inverse problems for PDEs:

"Completeness of products" (of solutions of a PDE)

Here: "bounds on squares" (of gradients of solutions of a PDE).

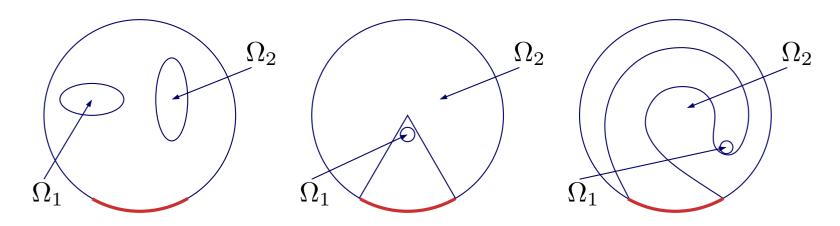
Can we control the "squares"?

Existence of localized potentials

Theorem (H. 2008)

If $\overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset$, $B \setminus (\overline{\Omega}_1 \cup \overline{\Omega}_2)$ is connected and its boundary contains S, then \exists currents $(g^{(n)})$ s.t. the corresponding reference potentials $(u_0^{(n)})$ fulfill:

$$\int_{\Omega_1} |\nabla u_0^{(n)}|^2 dx \to \infty, \quad \text{and} \quad \int_{\Omega_2} |\nabla u_0^{(n)}|^2 dx \to 0.$$



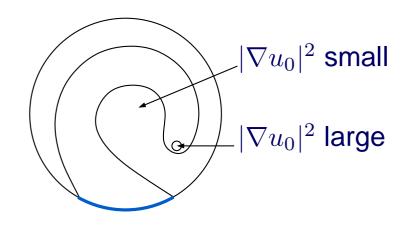
We can make "squares" large on Ω_1 and small on Ω_2 .

Bounds on squares

$$\int_{\Omega} (\sigma - \sigma_0) |\nabla u_0|^2 dx \ge \int_{\Omega} \kappa |\nabla u_0|^2 dx \ge \int_{\Omega} \frac{\sigma_0}{\sigma} (\sigma - \sigma_0) |\nabla u_0|^2 dx.$$

Localized potentials:

Make $|\nabla u_0|^2$ arbitrarily large in a region connected to the boundary but keep it small outside the connecting domain.



$$\operatorname{supp}_{\partial\Omega} \frac{\sigma_0}{\sigma} (\sigma - \sigma_0) = \operatorname{supp}_{\partial\Omega} (\sigma - \sigma_0) \quad \leadsto \quad \operatorname{supp}_{\partial\Omega} \kappa = \operatorname{supp}_{\partial\Omega} (\sigma - \sigma_0)$$

Also:
$$\frac{\sigma_0}{\sigma}(\sigma - \sigma_0) \le \kappa \le \sigma - \sigma_0$$
 on the bndry of $\operatorname{supp}_{\partial\Omega}(\sigma - \sigma_0)$

Consequences

Theorem

Let κ , σ , σ_0 piecewise analytic and $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0)$. Then

- (a) $\operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma \sigma_0)$.
- (b) $\frac{\sigma_0}{\sigma}(\sigma-\sigma_0) \leq \kappa \leq \sigma-\sigma_0$ on the bndry of $\operatorname{supp}_{\partial\Omega}(\sigma-\sigma_0)$.

Same arguments applied to the Calderón-problem:

$$\Lambda(\sigma) = \Lambda(\sigma_0) \implies \kappa = 0$$
:

- Calderón problem uniquely solvable for piecew. anal. conduct. (already known: Kohn/Vogelius, 1984).
- Linearized Calderón problem uniquely solvable for p.a. conduct. (already known for piecewise polynomials: Lechleiter/Rieder, 2008).

Non-exact Linearization?

Theorem

Let κ , σ , σ_0 piecewise analytic and $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0)$. Then

- (a) $\operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma \sigma_0)$.
- (b) $\frac{\sigma_0}{\sigma}(\sigma-\sigma_0) \leq \kappa \leq \sigma-\sigma_0$ on the bndry of $\operatorname{supp}_{\partial\Omega}(\sigma-\sigma_0)$.
- Existence of exact solution is unknown!
- In practice: finite-dimensional, noisy measurements.

Proof only requires

$$\Lambda'(\sigma_0)(\sigma - \sigma_0) \le \Lambda'(\sigma_0)\kappa \le \Lambda'(\sigma_0)\left(\frac{\sigma_0}{\sigma}(\sigma - \sigma_0)\right). \tag{*}$$

→ Solve linearized equation s.t. (*) is fulfilled.

Non-exact Linearization

Additional definiteness assumption: $\sigma \geq \sigma_0$.

Assume we are given

- ullet Noisy data $ilde{\Lambda}_m(\sigma) ilde{\Lambda}_m(\sigma_0)
 ightarrow \Lambda(\sigma) \Lambda(\sigma_0)$
- Noisy sensitivity $\tilde{\Lambda}'_m(\sigma_0) \to \Lambda'(\sigma_0)$.
- Finite-dim. subspace $V_1 \subset V_2 \subset \ldots \subset L^2_{\diamond}(\partial\Omega)$ with dense union.

Equip V_k with norm

$$||g||_{(m)}^2 := \langle (\tilde{\Lambda}_m(\sigma) - \tilde{\Lambda}_m(\sigma_0))g, g \rangle.$$

Minimize (Galerkin approx. of) linearization residual

$$\tilde{\Lambda}(\sigma) - \tilde{\Lambda}(\sigma_0) - \tilde{\Lambda}'(\sigma_0)\kappa_m$$

in the sense of quadratic forms on V_k .

Non-exact Linearization

Theorem (H./Seo, accepted to SIAM J. Math. Anal.)

For appropriately chosen $\delta_1, \delta_2 > 0$, every V_k and suff. large m,

$$\exists \kappa_m : -\delta_1 \leq \tilde{\Lambda}(\sigma) - \tilde{\Lambda}(\sigma_0) - \tilde{\Lambda}'(\sigma_0) \kappa_m \leq \delta_2.$$

(in the sense of quadr. forms on V_k , κ_m piecewise analytic)

Every piecewise analytic L^{∞} -limit κ of a converging subsequence fulfills

- (a) $\operatorname{supp}_{\partial\Omega}\kappa=\operatorname{supp}_{\partial\Omega}(\sigma-\sigma_0)$.
- (b) $\left(\frac{\sigma_0}{\sigma} \delta_1\right)(\sigma \sigma_0) \le \kappa \le (\delta_2 + 1)(\sigma \sigma_0)$ on bndry of $\operatorname{supp}_{\partial\Omega}(\sigma \sigma_0)$.

Convergence guaranteed if $\sigma - \sigma_0$ belongs to fin-dim. ansatz space.

→ Globally convergent shape reconstruction by one-step linearization.

Summary and open questions

- The linearization error in EIT does not affect the shape.
- With additional definiteness assumption, we derived a local one-step linearization algorithm with globally convergent shape reconstruction properties.
- Additional definiteness property is typical for shape reconstruction.

Open questions

- Numerical implementation?
- Formulation as Tikhonov regularization with special norms?
- Definiteness only enters in V_k -norm. Can this be replaced by other oszillation-preventing regularization?