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M athematical M odel

Forward operator of EIT:
A: o~ A(o), ’conductivity" — "measurements*

® Conductivity: o € L°(2)

® Continuum model: A(¢): Neumann-Dirichlet-operator

A(o) : g+ ulsq, “applied current* — "measured voltage*
V-(oVu)=0 inQ, ocdulsgg=g onol. (1)

® Linear elliptic PDE theory:

Vg € L2(0Q)) Fu € H(Q) solving (1).
A(o) : LZ(09) — L2(09) linear, compact, self-adjoint
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| nver se problem

Non-linear forward operator of EIT
A: o A(o), LT(Q) — L(LZ(OQ))

Inverse problem of EIT:

A(o) — o7

Uniqueness ("Calderdn problem®):

® Measurements on complete boundary:
Calderon (1980), Kohn/Vogelius (1984), Sylvester/Uhlmann (1987),
Nachman (1996), Astala/Paivarinta (2006)

® Measurements on part of the boundary:
Bukhgeim/Uhlmann (2002), Knudsen (2006), Isakov (2007),
Kenig/Sjostrand/Uhlmann (2007), H. (2008), Imanuvilov/Uhlmann/Yamamoto (2009)
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L Inearization

Generic approach: Linearization
A(o) — A(og) ~ N (og) (o — 09)
oo. known reference conductivity / initial guess /. ..

A (oq): Fréchet-Derivative / sensitivity matrix.

N (og) : L°(Q) — L(LZ(09)).
~» Solve linearized equation for difference o — oy.

Often: supp(c — gg) CC €2 compact. ("shape”/ "inclusion®)
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L Inearization

Linear reconstruction method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve A'(0g)k =~ A(o) — A(oy), then k =~ o — oy.

® Multiple possibilities to measure residual norm and to regularize.

°

No rigorous theory for single linearization step.

°

Almost no theory for Newton iteration:

Dobson (1992): (Local) convergence for regularized EIT equation.
Lechleiter/Rieder(2008): (Local) convergence for discretized setting.

No (local) convergence theory for non-discretized case!
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L Inearization

Linear reconstruction method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve A'(0g)k =~ A(o) — A(oy), then k =~ o — oy.

® Seemingly, no rigorous results possible for single linearization step.

® Seemingly, only justifiable for small o — oy (local results).

In this talk: Rigorous and global(!) result about the linearization error.
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Exact Linearization

Theorem (H./Seo, accepted to SIAM J. Math. Anal.)
Let k, o, og piecewise analytic and A'(og)x = A(c) — A(op). Then

(&) suppygk = suppyq(c — gg).

b) °(0 — 0p) < k < o — o 0on the bndry of suppyg (o — o).
02

suppgq: outer support ( = supp, if supp is compact and has conn. complement)

® Exact solution of lin. equation yields correct (outer) shape.

® No assumptions on o — og!

~  Single-step linearization error does not affect shape reconstrution.

Proof: Combination of monotony and localized potentials.
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Monotony

Monotony (in the sense of quadr. forms):
00

A'(00)(0 — 00) < A(0) — A(on) < A (o) (;(a _ 00)) .

N~

=A(o0)k
Kang/Seo/Sheen (1997), Kirsch (2005), Ide/lsozaki/Nakata/Siltanen/Uhimann (2007)

Quadratic forms / energy formulation:

/ gA(ao)gdSZ/ao\Vuo\2dx
G1Y) Q

/ gA(a)gdS:/a|Vu|2da:
o0 Q

/ g(A(ao)’/ﬁ;)gds:—//ﬁ:\Vuo\de
of

Q

ug (resp. u): solution corresponding to o (resp. o) and bndry current g.
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Bounds on squares

Exact linearization: A’(og)x = A(o) — A(op)

g0

PUNN /(a—ao)|Vuo|2dx > / /ﬁ)‘VUQPdZIZ 2/ —(O’—O’o)‘VUo|2dCIZ.
Q Q Q0
for all "reference solutions” .
Does this imply
g0

og—0o9g>kKk>—(0—0g)?
o

® Famous concept of inverse problems for PDESs:
"Completeness of products” (of solutions of a PDE)

® Here: "bounds on squares” (of gradients of solutions of a PDE).

Can we control the "squares”?
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Existence of localized potentials

Theorem(H. 2008)
IfQ, NQy =0, B\ (Q; UQ,) is connected and its boundary contains S,

then 3 currents (¢(™) s.t. the corresponding reference potentials (ué”))
fulfill:

/ |Vugn)|2 dr — oo, and / |Vugn)|2 dz — 0.
Ql QQ

QQ QQ QQ

Ql Q1 Ql

We can make "squares” large on €2; and small on 2.
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Bounds on squares

g0

Q

/(0—00)\Vu0|2da:2//<;|Vu0\2dx2/ % (6 — )| Vo |2 da.
Q Q g

Localized potentials:

Make |Vug|? arbitrarily large in a
region connected to the bound-
ary but keep it small outside the
connecting domain.

o)

|Vugl? small

Vugl? large

suppfmg(a — 00) = Suppy (0 —0g) ~»  SUppyqk = SUPPyq(c — do)

Also: @(0—00) <k<o—o0g
o

on the bndry of suppyq (0 — o¢)
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Conseguences

Theorem
Let x, o, o¢ piecewise analytic and A'(cg)x = A(o) — A(op). Then

(&) suppygk = suppyq(c — gg).

b) °(0 — 0p) < k < o — o on the bndry of suppyg (o — o).
o

Same arguments applied to the Calderdn-problem:
A(o) = A(oy) — k=0:
~»  Calderdn problem uniquely solvable for piecew. anal. conduct.
(already known: Kohn/Vogelius, 1984).

~  Linearized Calderon problem uniguely solvable for p.a. conduct.
(already known for piecewise polynomials: Lechleiter/Rieder, 2008).
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Non-exact L i1nearization?

Theorem
Let x, o, o¢ piecewise analytic and A'(cg)x = A(o) — A(op). Then

(&) suppygk = suppyq(c — gg).

b) °(0 — 0p) < k < o — o on the bndry of suppyg (o — o).
o

® Existence of exact solution is unknown!

® In practice: finite-dimensional, noisy measurements.
Proof only requires
N (00)(0 = 00) < N(o0)k < A (00) (o = 00)) . (+)
o

~ Solve linearized equation s.t. (*) is fulfilled.
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Non-exact L 1nearization

Additional definiteness assumption: o > oy.

Assume we are given

® Noisy data A,,,(0) — Ay (00) — A(o) — Aoy)

® Noisy sensitivity A’ (co) — A’(00).

®  Finite-dim. subspace V; C V5 C ... C L2(09) with dense union.

Equip Vi with norm

~

l911 5y = (A (0) = A (00))g, 9)-

Minimize (Galerkin approx. of) linearization residual

~

A(O’) — A(O'O) — ]\/(O'O)K/m

in the sense of quadratic forms on V.
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Non-exact L 1nearization

Theorem (H./Seo, accepted to SIAM J. Math. Anal.)
For appropriately chosen 6,5 > 0, every Vi and suff. large m,

ki : —01 < A(0) — Aoo) — A (00)km < 0.

(in the sense of quadr. forms on V%, k,,, piecewise analytic)

Every piecewise analytic L°°-limit x of a converging subsequence fulfills
(&) suppygk = suppyq (o — gg).

(b) (2 —61) (0—00) < k < (2+1)(c—00) on bndry of suppyq, (c—09).

Convergence guaranteed if o — oy belongs to fin-dim. ansatz space.

~ Globally convergent shape reconstruction by one-step linearization.
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Summary and open questions

® The linearization error in EIT does not affect the shape.
» With additional definiteness assumption, we derived a
local one-step linearization algorithm
with globally convergent shape reconstruction properties.

® Additional definiteness property is typical for shape reconstruction.

Open questions

» Numerical implementation?
® Formulation as Tikhonov regularization with special norms?

® Definiteness only enters in V,,-norm. Can this be replaced by other
oszillation-preventing regularization?
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