

Localized potentials for elliptic inverse coefficient problems

Bastian von Harrach harrach@ma.tum.de

Fakultät für Mathematik, M1, Technische Universität München, Germany

Inverse Problems, Computation, and Applications CIRM Luminy, France, May 31 – June 4, 2010

Can we recover $\sigma \in L^\infty_+(\Omega)$ in

$$\nabla \cdot (\sigma \nabla u) = 0 \quad \text{in } \Omega \subset \mathbb{R}^n$$
 (1)

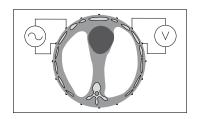
from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial\Omega},\sigma\partial_{\nu}u|_{\partial\Omega}): u \text{ solves } (1)\}?$$

Equivalent: Recover σ from **Neumann-to-Dirichlet-Operator (NtD)**

$$\Lambda_{\sigma}: L^{2}_{\diamond}(\partial\Omega) \to L^{2}_{\diamond}(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves (1) with $\sigma \partial_{\nu} u|_{\partial\Omega} = g$.



Electrical impedance tomography (EIT):

- Apply currents $\sigma \partial_{\nu} u|_{\partial\Omega}$ (Neumann boundary data)
 - \rightarrow Electric potential u in Ω (solution of $\nabla \cdot (\sigma \nabla u) = 0$)
- Measure voltages $u|_{\partial\Omega}$ (Dirichlet boundary data)

Current-Voltage-Measurements \rightsquigarrow Fin.-dim. approx. to Λ_{σ}

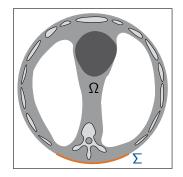
Measurements on open part of boundary $\Sigma \subset \partial \Omega$: $(\partial \Omega \setminus \Sigma \text{ is kept insulated.})$

Recover σ from

$$\Lambda_{\sigma}: L^{2}_{\diamond}(\Sigma) \to L^{2}_{\diamond}(\Sigma), \quad g \mapsto u|_{\Sigma},$$

where u solves $\nabla \cdot (\sigma \nabla u) = 0$ with

$$\sigma \partial_{\nu} u|_{\Sigma} = \left\{ egin{array}{ll} g & ext{on } \Sigma, \\ 0 & ext{else}. \end{array}
ight.$$



Uniqueness results

- Measurements on complete boundary:
 Calderón (1980), Kohn/Vogelius (1984), Sylvester/Uhlmann (1987),
- Measurements on part of the boundary:

Nachman (1996), Astala/Päivärinta (2006)

Bukhgeim/Uhlmann (2002), Knudsen (2006), Isakov (2007), Kenig/Sjöstrand/Uhlmann (2007), **H**. (2008), Imanuvilov/Uhlmann/Yamamoto (2009)

In this talk:

A new method (localized potentials) to prove uniqueness results

For two conductivities $\sigma_0, \sigma_1 \in L^{\infty}(\Omega)$:

$$\begin{split} & \int_{\Omega} (\sigma_1 - \sigma_0) |\nabla u_0|^2 \, dx \\ & \geq \int_{\Sigma} g \left(\Lambda_{\sigma_0} - \Lambda_{\sigma_1} \right) g \, ds \geq \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0) |\nabla u_0|^2 \, dx \end{split}$$

for all solutions u_0 of

$$abla \cdot (\sigma_0 \nabla u_0) = 0, \quad \sigma_0 \partial_{\nu} u_0|_{\Sigma} = \left\{ egin{array}{ll} g & \mbox{on } \Sigma, \\ 0 & \mbox{else.} \end{array}
ight.$$

(e.g., Kang/Seo/Sheen 1997, Kirsch 2005, Ide et al. 2007, **H**./Seo 2009+10)

Can we control $|\nabla u_0|^2$?

Localized potentials

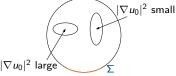
Theorem (H., 2008)

Let σ_0 fulfill unique continuation principle (UCP),

$$\overline{D_1} \cap \overline{D_2} = \emptyset, \quad \text{ and } \quad \Omega \setminus (\overline{D}_1 \cup \overline{D}_2) \text{ be connected with } \Sigma.$$

Then there exist solutions $u_0^{(k)}$, $k \in \mathbb{N}$ with

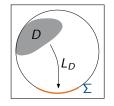
$$\int_{D_1} \left| \nabla u_0^{(k)} \right|^2 \, \mathrm{d}x \to \infty \quad \text{ and } \quad \int_{D_2} \left| \nabla u_0^{(k)} \right|^2 \, \mathrm{d}x \to 0.$$



Virtual measurements:

$$L_D:\ H^1_\diamond(D)'\to L^2_\diamond(\Sigma),\quad f\mapsto u|_\Sigma, \text{ with }$$

$$\int_{\Omega} \sigma \nabla u \cdot \nabla v \ \mathrm{d}x = \langle f, v|_D \rangle \quad \forall v \in H^1_{\diamond}(D).$$



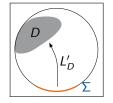
By (UCP): If $\overline{D_1} \cap \overline{D_2} = \emptyset$ and $\Omega \setminus (\overline{D}_1 \cup \overline{D}_2)$ is connected with Σ , then $\mathcal{R}(L_{D_1}) \cap \mathcal{R}(L_{D_2}) = 0$.

Sources on different domains yield different virtual measurements.

Dual operator:

$$L_D':\ L_\diamond^2(\Sigma) o H_\diamond^1(D), \quad g \mapsto u|_D,, \ \ \text{with}$$

$$abla \cdot (\sigma
abla u) = 0, \quad \sigma \partial_{
u} u|_{\Sigma} = \left\{ egin{array}{ll} g & ext{ on } \Sigma, \\ 0 & ext{ else.} \end{array}
ight.$$



Evaluating solutions on D is dual operation to virtual measurements.

Functional analysis:

 X, Y_1, Y_2 reflexive Banach spaces, $L_1 \in \mathcal{L}(Y_1, X)$, $L_2 \in \mathcal{L}(Y_1, X)$.

$$\mathcal{R}(L_1) \subseteq \mathcal{R}(L_2) \quad \Longleftrightarrow \quad \|L_1'x\| \lesssim \|L_2'x\| \ \forall x \in X'.$$

Here:
$$\mathcal{R}(L_{D_1}) \not\subseteq \mathcal{R}(L_{D_2}) \implies \|u_0|_{D_1}\|_{H^1_{\diamond}} \not\lesssim \|u_0|_{D_2}\|_{H^1_{\diamond}}.$$

If two sources do not generate the same data, then the respective evaluations are not bounded by each other.

Note: $H^1_{\diamond}(D)'$ -source \longleftrightarrow $H^1_{\diamond}(D)$ -evaluation.

- ▶ Back to Calderón problem: Let $\Lambda_{\sigma_0} = \Lambda_{\sigma_1}$, σ_0 fulfills (UCP).
- By monotony,

$$\int_{\Omega} (\sigma_1 - \sigma_0) |\nabla u_0|^2 dx \ge 0 \ge \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0) |\nabla u_0|^2 dx \quad \forall u_0$$

- ▶ Assume: \exists neighbourhood U of Σ in which $\sigma_1 \geq \sigma_0$ but $\sigma_1 \neq \sigma_0$
- \rightarrow Potential with localized energy in U contradicts monotony.

Higher conductivity reachable by the bndry cannot be balanced out.

Corollary (Kohn/Vogelius, 1984/85)

Calderón problem is uniquely solvable for piecw.-anal. conductivities.

Can we recover two coefficients $a, c \in L^{\infty}_{+}(\Omega)$ in

$$-\nabla \cdot (a\nabla u) + cu = 0 \quad \text{in } \Omega$$
 (2)

from the NtD (with partial data)

$$\Lambda_{(a,c)}: L^2(\Sigma) \to L^2(\Sigma), \quad g \mapsto u|_{\Sigma},$$

where u solves (2) with

$$\sigma \partial_{\nu} u|_{\Sigma} = \left\{ egin{array}{ll} g & ext{on } \Sigma, \ 0 & ext{else}. \end{array}
ight.$$

Application: Diffuse optical tomography (DOT).

$$\begin{split} & \int_{\Omega} \left((a_2 - a_1) |\nabla u_1|^2 + (c_2 - c_1) |u_1|^2 \right) \, \mathrm{d}x \\ & \geq \int_{\Sigma} g \left(\Lambda_{a_1, c_1} - \Lambda_{a_2, c_2} \right) g \, \mathrm{d}s \\ & \geq \int_{\Omega} \left((a_2 - a_1) |\nabla u_2|^2 + (c_2 - c_1) |u_2|^2 \right) \, \mathrm{d}x, \end{split}$$

Method of localized potentials:

- Again, sources on different regions produce different data.
- $(H^1)'$ -sources produce different data than L^2 -sources

$$\implies \|u\|_{H^1(D)} \lesssim \|u\|_{L^2(D)}.$$

We can control $|\nabla u_1|^2$ and $|u_1|^2$ separately.

Theorem (H., 2009)

Let

- ▶ $a_1, a_2 \in L^{\infty}_+(\Omega)$ piecewise constant,
- $c_1, c_2 \in L^{\infty}_+(\Omega)$ piecewise analytic.

Then

$$\Lambda_{a_1,c_1}=\Lambda_{a_2,c_2}\quad\Longleftrightarrow\quad a_1=a_2,\quad c_1=c_2.$$

Note that $v := \sqrt{a}u$ transforms $-\nabla \cdot (a\nabla u) + cu = 0$ into

$$-\Delta v + \eta v = 0, \quad \eta := \frac{\Delta \sqrt{a}}{\sqrt{a}} + \frac{c}{a}$$

(when the coefficients are smooth).

 \rightsquigarrow No uniqueness for smooth a and c!

Uniqueness

Theorem (H., submitted)

Let $a_1, a_2, c_1, c_2 \in L^{\infty}_+(\Omega)$ be piecew. anal. Then $\Lambda_{(a_1,c_1)} = \Lambda_{(a_2,c_2)}$ if and only if

(a)
$$a_1|_{\Sigma} = a_2|_{\Sigma}, \quad \partial_{\nu}a_1|_{\Sigma} = \partial_{\nu}a_2|_{\Sigma} \quad \text{ on } \Sigma,$$

(b)
$$\frac{\partial_{\nu} a_1}{a_1}|_{\partial B \setminus \overline{S}} = \frac{\partial_{\nu} a_2}{a_2}|_{\partial B \setminus \overline{S}} \qquad \text{on } \partial \Omega \setminus \Sigma,$$

(c)
$$\eta_1=\eta_2$$
 in smooth regions,

(d)
$$\frac{a_1^+|_{\Gamma}}{a_1^-|_{\Gamma}} = \frac{a_2^+|_{\Gamma}}{a_2^-|_{\Gamma}}, \quad \frac{[\partial_{\nu}a_2]_{\Gamma}}{a_2^-|_{\Gamma}} = \frac{[\partial_{\nu}a_1]_{\Gamma}}{a_1^-|_{\Gamma}}$$
 on inner boundaries Γ .

NtD $\Lambda_{(a,c)}$ determines $\eta = \frac{\Delta\sqrt{a}}{\sqrt{a}} + \frac{c}{a}$ and the jumps of a and ∇a .

Method of localized potentials

- relies on (UCP) and simple functional analytic duality principles,
- extends known uniqueness results on Calderón problem,
- yields uniqueness results for determination of two coefficients,
- requires local definiteness of the coefficients, e.g., piecw. anal.

Method is non-constructive, but can be used for

- ▶ local convergence of Newton algo. (Lechleiter/Rieder, 2008)
- ▶ shape reconstruction by single linearization step (H./Seo, 2010)
- monotonicity based reconstruction algo. (H./Ullrich, in progress)