Localized potentials and reconstruction methods for EIT

Bastian von Harrach, geb. Gebauer

gebauer@math.uni-mainz.de

Institut für Mathematik, Joh. Gutenberg-Universität Mainz, Germany

Yonsei University, Seoul, South Korea, 25 September 2008

Overview

- Motivation
- Existence of localized potentials
- Construction and numerical examples
- Detecting inclusions in EIT

Motivation

Electrical impedance tomography

B: bounded domain $S \subseteq \partial B$: relatively open subset $\sigma \in L^{\infty}_{+}(B)$: electrical conductivity in B $g \in L^{2}_{\circ}(S)$: applied current on S

 \rightsquigarrow Electric potential $u \in H^1_{\diamond}(B)$ that solves

$$abla \cdot \sigma \nabla u = 0, \qquad \sigma \partial_{\nu} u|_{\partial B} = \begin{cases} g & \text{on } S, \\ 0 & \text{else.} \end{cases}$$

EIT: Measure $u|_S$ for one or several input currents g and reconstruct (properties of) σ from it.

Regularity assumption:

 ∇

 σ satisfies (UCP) in connected neighbourhoods U of S, i.e.,

$$\cdot \sigma \nabla u = 0 \text{ in } U, \quad \begin{cases} u|_S = 0, \ \sigma \partial_{\nu} u|_S = 0 & \Longrightarrow & u = 0. \\ u|_V = \text{const.}, V \subset U \text{ open} & \Longrightarrow & u = \text{const.} \end{cases}$$

Localized potentials

Can we localize (the energy of) the potentials in given subsets?

Restrictions:

- High energy parts have to be connected to the boundary.
- Because of (UCP) zero energy parts are not possible.
- \rightsquigarrow Goal: sequences (g_n) such that energy of (u_n) diverges on some subset while tending to zero on another.

Energy of a potential
$$u$$
: $\int_{\Omega} \sigma |\nabla u|^2 \, \mathrm{d}x \approx \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \approx ||u||^2_{H^1_{\diamond}(\Omega)}$

Theoretical motivation

Calderon problem with partial data:

Is σ uniquely determined by the (local) current-to-voltage map

$$\Lambda_{\sigma}: L^2_{\diamond}(S) \to L^2_{\diamond}(S), \quad g \mapsto u|_S ?$$

For measurements on whole boundary $S = \partial B$:

- Identifiability question posed by Calderon 1980.
- For smooth σ answered positively by Sylvester and Uhlmann 1987 for $n \ge 3$ and by Nachmann 1996 for n = 2.
- For n = 2 and general $\sigma \in L^{\infty}_+$ answered positively by Astala and Päivärinta 2006.
- Still an open question for general $\sigma \in L^{\infty}_+$ (with or without (UCP)) for $n \geq 3$.

Theoretical motivation

Connection between Calderon problem (with $S \subseteq \partial B$) and localized potentials:

Monotonicity property:

Let u_1 , u_2 be electric potentials for conductivities σ_1 , σ_2 created by the same boundary current $g \in L^2_{\diamond}(S)$. Then

$$\int_{B} (\sigma_1 - \sigma_2) |\nabla u_2|^2 \, \mathrm{d}x \ge ((\Lambda_{\sigma_2} - \Lambda_{\sigma_1})g, g) \ge \int_{B} (\sigma_1 - \sigma_2) |\nabla u_1|^2 \, \mathrm{d}x.$$

 $\stackrel{\longrightarrow}{} \quad \text{If } \sigma_1 - \sigma_2 > 0 \text{ in some region where we can localize the electric} \\ \text{energy } |\nabla u_1|^2 \text{ then } \Lambda_{\sigma_1} \neq \Lambda_{\sigma_2}.$

"A higher conductivity in such a region can not be balanced out."

Known results on loc. potentials

Potential can be concentrated around $z \in S$ if $\sigma \in C^2$ around z.

Using Runge's approximation property the high energy part can be "shifted" into the interior of *B*. *(Kohn, Vogelius 1984+85)*

- \rightarrow Piecewise analytic σ is determined by local voltage-to-current map.
- For dimension $n \ge 3$ and additional condition on boundary parts, C^2 -conductivities σ are determined by local voltage-to-current map. *(Kenig, Sjöstrand, Uhlmann 2007)*
- If boundary part is part of a plane or sphere, C^2 -conductivities σ are determined by the current-to-voltage map. *(Isakov 2007)*

In this talk:

Localized potentials exist for arbitrary $\sigma \in L^{\infty}_{+}$ that fulfill (UCP).

Existence of localized potentials

Virtual Measurements

 $f \in (H^1_\diamond(\Omega))'$: applied source on Ω $L_\Omega: (H^1_\diamond(\Omega))' \to L^2_\diamond(S), \quad f \mapsto u|_S,$ where $u \in H^1_\diamond(B)$ solves

 $\int_{B} \sigma \nabla u \cdot \nabla v \, \mathrm{d}x = \langle f, v |_{\Omega} \rangle \quad \text{ for all } v \in H^{1}_{\diamond}(B).$

If $\overline{\Omega} \subset B$: $\nabla \cdot \sigma \nabla u = f$, $\sigma \partial_{\nu} u |_{\partial B} = 0$.

(UCP) yields: If $\overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset$, $B \setminus (\overline{\Omega_1} \cup \overline{\Omega_2})$ is connected and its boundary contains *S* then $\mathcal{R}(L_{\Omega_1}) \cap \mathcal{R}(L_{\Omega_2}) = 0$.

Dual operator L'_{Ω} : $L^2_{\diamond}(S) \to H^1_{\diamond}(\Omega), \quad g \mapsto u|_{\Omega}$, where u solves

 $abla \cdot \sigma \nabla u = 0, \qquad \sigma \partial_{\nu} u|_{\partial B} = \begin{cases} g & \text{on } S, \\ 0 & \text{else.} \end{cases}$

Some functional analysis

Lemma

Let X, Y be two reflexive Banach spaces, $A \in \mathcal{L}(X, Y)$, $y \in Y$. Then

 $y \in \mathcal{R}(A)$ iff $|\langle y', y \rangle| \le C ||A'y'|| \quad \forall y' \in Y'.$

Corollary If $||L'_{\Omega_1}g|| \leq C ||L'_{\Omega_2}g||$ for all applied currents g, i.e., $||u|_{\Omega_1}|| \leq C ||u|_{\Omega_2}||$ for the corresponding potentials u, then $\mathcal{R}(L_{\Omega_1}) \subseteq \mathcal{R}(L_{\Omega_2})$.

Contraposition If $\mathcal{R}(L_{\Omega_1}) \not\subseteq \mathcal{R}(L_{\Omega_2})$ then there exist currents (g_n) such that the corresponding potentials (u_n) satisfy

 $||u_n|_{\Omega_1}||_{H^1_\diamond(\Omega_1)} \to \infty \quad \text{and} \quad ||u_n|_{\Omega_2}||_{H^1_\diamond(\Omega_2)} \to 0.$

Existence of localized potentials

Theorem

If $\overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset$, $B \setminus (\overline{\Omega_1} \cup \overline{\Omega_2})$ is connected and its boundary contains S, then there exists currents (g_n) such that (the energy of) the corresponding potentials (u_n) diverges on Ω_1 while tending to zero on Ω_2 , i.e.,

Result uses only ellipticity properties, thus also holds e.g. for linear elasticity, electro- and magnetostatics.

Theoretical consequence

Corollary

Let $\sigma_1, \sigma_2 \in L^{\infty}_+(B)$ satisfy (UCP) and Λ_{σ_1} , Λ_{σ_2} be the corresponding current-to-volage-maps.

If $\sigma_2 \ge \sigma_1$ in some neighbourhood V of S and $\sigma_2 - \sigma_1 \in L^{\infty}_+(U)$ for some open $U \subseteq V$ then there exists (g_n) such that

$$\langle (\Lambda_{\sigma_2} - \Lambda_{\sigma_1}) g_n, g_n \rangle \to \infty,$$

so in particular $\Lambda_{\sigma_2} \neq \Lambda_{\sigma_1}$.

Consequences (already known from the Kohn-Vogelius result):

- \bullet $\sigma|_S$ and its derivatives on S are uniquely determined by Λ_{σ} .
- Piecewise analytic conductivities σ are uniquely determined by Λ_{σ} .

More practical consequence

Lechleiter, Rieder (2008):

- studied EIT with more realistic electrode model (CEM) in discrete fem-setting
- used localized potentials to show injectivity of Frechét derivative of the conductivity-to-data-map
- deduced so-called "tangential cone condition"
- convergence of regularized Newton-like reconstruction algorithms

Construction

Construction

More constructive version of the functional analysis: Let $h \in \mathcal{R}(L_{\Omega_1})$, $h \notin \mathcal{R}(L_{\Omega_2})$. Define $\gamma_{\alpha} \in L^2_{\diamond}(S)$ by

$$\gamma_{\alpha} = (L_{\Omega_2} L_{\Omega_2}^* + \alpha I)^{-1} h, \qquad \alpha > 0.$$

Then

$$\begin{split} \|L'_{\Omega_2}\gamma_{\alpha}\|^2 &\leq C \|L'_{\Omega_1}\gamma_{\alpha}\| \quad \text{and} \quad \|L'_{\Omega_2}\gamma_{\alpha}\| \to \infty \quad \text{for } \alpha \to 0. \\ \text{So for the currents } g_{\alpha} &:= \frac{1}{\|L'_{\Omega_2}\gamma_{\alpha}\|^{3/2}}\gamma_{\alpha}, \text{ the corresponding potentials } u_{\alpha} \\ \text{satisfy} \\ \|L'_{\Omega_1}g_{\alpha}\|^2 &\approx \int_{\Omega} \sigma |\nabla u_{\alpha}|^2 \, \mathrm{d}x \to \infty, \end{split}$$

$$\|L'_{\Omega_2}g_{\alpha}\|^2 \approx \int_{\Omega_2} \sigma |\nabla u_{\alpha}|^2 \,\mathrm{d}x \to 0.$$

Construction

Even more specific for $\sigma = 1$:

• h_z : boundary data of a electric dipole in $z \in B$, i.e., $h_z = u_z|_S$, where

$$\Delta u_z = d \cdot \nabla \delta_z, \qquad \partial_\nu u_z |_{\partial B} = 0$$

 $(d \in \mathbb{R}^n, |d| = 1$ fixed arbitrary direction).

- If $B \setminus \overline{\Omega}$ is connected and its boundary contains S, then for $z \notin \partial \Omega$: $h_z \in \mathcal{R}(L_{\Omega})$ iff $z \in \Omega$.
- Define currents $g_{\alpha,z}$, potentials $u_{\alpha,z}$ as on the last slide, then

$$\int_{\Omega_1} \sigma |\nabla u_{\alpha,z}|^2 \, \mathrm{d}x \to \infty, \qquad \int_{\Omega_2} \sigma |\nabla u_{\alpha,z}|^2 \, \mathrm{d}x \to 0$$

for every neighbourhood Ω_1 of z.

Numerical examples

Find a potential with high energy around z and low energy in Ω !

Numerical examples

Plots of $|\nabla u_{\alpha,z}|$, α choosen "by hand", color axis cropped above $2|\nabla u_{\alpha,z}(z)|$.

Detecting inclusions in EIT

Detecting inclusions in EIT

Special case of EIT: locate inclusions in known background medium.

 $\begin{array}{l} \text{Current-to-voltage map with inclusion:} \\ \Lambda_1: \ g \mapsto u_1 \big|_{\partial B}, \\ \text{where } u_1 \text{ solves} \\ \nabla \cdot \sigma \nabla u_1 = 0 \quad \partial_{\nu} u_1 \big|_{\partial B} = \left\{ \begin{array}{cc} g & \text{on } S, \\ 0 & \text{else,} \end{array} \right. \\ \text{with } \sigma = 1 + \sigma_1 \chi_{\Omega}, \sigma_1 > 0. \end{array}$

Current-to-voltage map without inclusion: $\Lambda_0: g \mapsto u_0|_{\partial B},$ where u_0 solves the analogous equation with $\sigma = 1.$

Goal: Reconstruct Ω from comparing Λ_1 with Λ_0 .

Virtual measurements again

Connection between $\Lambda_0 - \Lambda_1$ and virtual measurements L_Ω :

Lemma

There exist c, C > 0 such that

 $c \|L_{\Omega}^* g\|^2 \le ((\Lambda_0 - \Lambda_1)g, g) \le C \|L_{\Omega}^* g\|^2$ for all $g \in L_{\diamond}^2(S)$,

so, roughly speaking, $L_{\Omega}L_{\Omega}^* \approx \Lambda_0 - \Lambda_1$.

Only $L_{\Omega}L_{\Omega}^*$ is needed to construct a localized potential that is large in some $z \notin \Omega$ and small in Ω .

→ Simple reconstruction algorithm:

Given a $z \notin \overline{\Omega}$ (must be known!), use $\Lambda := \Lambda_0 - \Lambda_1$ to create such a potential and locate Ω from it.

Reconstruction algorithm

Theorem

 $z \notin \overline{\Omega}$, h_z : electric dipole in z, $g_z^{\alpha} := \Lambda^* (\Lambda \Lambda^* + \alpha I)^{-1} h_z \approx \Lambda^{-1} h_z$, u_z^{α} hom. potential for currents $g_z^{\alpha} / (\Lambda g_z^{\alpha}, g_z^{\alpha})^{3/2}$. Then

 $|\nabla u_z^{\alpha}(z)| \to \infty$ and $|\nabla u_z^{\alpha}(x)| \to 0$ for $x \in \Omega$.

Connection to the Factorization Method (slightly simplified):

- Factorization Method (Kirsch, Hanke, Brühl,...): $z \notin \Omega$ if and only if $\|\Lambda^{-1/2}h_z\| \to \infty$.
- EIT-analogue of Arens' variant of this criterion: $z \notin \Omega$ if and only if $|\nabla v_z^{\alpha}(z)| \to \infty$, where v_z^{α} hom. potential for currents $g_z^{\alpha} \approx \Lambda^{-1} h_z$.

Here:
$$z \notin \overline{\Omega}$$
 fixed. $|\nabla u_z^{\alpha}(x)| \to 0$ if $x \in \Omega$

Numerical example

G

M

mainz

SITÄT

Outlook / Bold ideas

- Reconstruction algorithm needs to invert measurement matrix Λ for only one right hand side.
- Can be done iteratively, e.g. CG, so that only a few applications of Λ are needed.
- → Method might work with only a few measurements.

 Possible alternative to one-measurement techniques (cf., Kwon, Seo, Yoon 2002, Hanke 2008).

Very bold idea

Maybe this even works when inclusion moves between measurements...

- CG with 5 measurements taken for each plot,
- Object continuously moves between measurements

Summary

- In theory, localized electric potentials exist for almost arbitrary conductivities and on almost arbitrary regions as long as they are connected to the boundary.
- Consequence for the Calderon problem for partial data: Two L[∞]-conductivities (with (UCP)) can be distinguished if one is larger in some part that can be connected to the boundary without crossing a sign change.
- In practice, localized potentials can be calculated by solving ill-posed equations.
- For detecting inclusions in EIT, quick rough reconstructions can be obtained from few measurements by calculating localized potentials.

