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Setting I: Scattering

S

Ω

S: Measurement device
Ω: Magnetic / dielectric object

Apply surface currents J on S

(time-harmonic with frequency ω).

 Electromagnetic field (Eω, Hω)

(time-harmonic with frequency ω)

Measure field on S

(and try to locate Ω from it).

Idealistic assumption:

Measure (tangential component of) Eω|S for all possible J

 Measurement operator: Mω : J 7→ γτEω|S

Goal: Locate Ω from the measurements Mω.
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Maxwell’s equations

Time-harmonic Maxwell’s equations

curlHω + i ωǫEω = J in R
3,

− curlEω + i ωµHω = 0 in R
3.

Silver-Müller radiation condition (RC)
∫

∂Bρ

∣

∣ν ∧√
µHω +

√
ǫEω

∣

∣

2
dσ = o(1), ρ → ∞.

Eω: electric field ǫ: dielectricity
Hω: magnetic field µ: permeability

ω: frequency J : applied currents, suppJ ⊆ S

More idealistic assumptions: ǫ = 1, µ = 1 outside the object Ω

Typical metal detectors work at very low frequencies:

frequency ≈ 20kHz, wavelength ≈ 15km, ω ≈ 4 × 10−4m−1
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Forward Problem

Eliminate Hω from Maxwell’s equations:

curl
1

µ
curlEω − ω2ǫEω = iωJ in R

3, (1)

+ radiation condition. (RC)

Function space: Eω ∈ Hloc(curl, R3; C3)

 

{

Left side of (1) makes sense (in D′(R3; C3)),
Eω has tangential trace on S: γtE

ω|S ∈ TH−1/2(curl, S).

Under certain conditions (1)+(RC) have a unique solution for all

J ∈ TH−1/2(div, S) = TH−1/2(curl, S)′

and the solution depends continuously on J .

 

Mω : TH−1/2(div, S) → TH−1/2(curl, S), J 7→ γτEω|S
is a continuous, linear operator.
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Scattered Field

S

Ω

S

Ω

Mω
t : J 7→ γτEω

t , Mω
i : J 7→ γτEω

i , Mω
s := Mω

t − Mω
i

Eω
t solution for

ǫ= 1 + ǫ1χΩ(x)

µ= 1 + µ1χΩ(x)

Eω
i solution for

ǫ = 1, µ = 1

"total field" "incoming field" "scattered field"
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Detecting the scatterer

Goal: Locate Ω from the measurements Mω
s .

Promising approach: linear sampling / factorization methods

Non-iterative (no forward solutions of 3D Maxwell’s equations)

Yield pointwise, binary criterion whether z ∈ Ω or not
 Detect Ω by checking this criterion for every z below S

("sampling/probing")

Independent of number and type of scatterers

FM also implies theoretical uniqueness results.

Based on functions Eω
z,d with singularity in sampling point z:

curl curlEω
z,d − ω2Eω

z,d = iωδzd in R
3, + (RC)

(electric field of a point current in point z with direction d).
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LSM / FM

Eω
z,d: electric field of a point current in point z with direction d.

Linear Sampling Method (Colton, Kirsch 1996):

γτEω
z,d ∈ R(Mω

s ) =⇒ z ∈ Ω

(holds for every z below S and every direction d).
 (LSM) finds a subset of Ω.

Factorization Method (Kirsch 1998):

γτEω
z,d ∈ R(|Mω

s |1/2) ⇐⇒ z ∈ Ω (∗)
(holds for similar problems).
 (FM) finds Ω (If (*) holds!).

(*) only known to hold for far-field measurements (Kirsch, 2004).

In this talk: FM works in the low-frequency limit
(actually: in various low-frequency limits).
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Low-frequency asymptotics

Maxwell’s equation curl
1

µ
curlEω − ω2ǫEω = iωJ in R

3

also implies div (ǫEω) =
1

iω
div J in R

3.

(Time-harmonic formulation of conservation of surface charges ρ

div J = −∂tρ, div (ǫEω) = ρ.)

Formal asymptotic analysis for div J 6= 0:

Eω =
1

iω
∇ϕ + O(ω), where div (ǫ∇ϕ) = div J.

Rigorous analysis (for fixed incoming waves): Ammari, Nédélec, 2000
(Low frequency electromagnetic scattering, SIAM J. Math. Anal.)

Interpretation:
1

iω
ϕ : electrostatic potential created by surface charges ρ =

1

iω
div J .
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Electrostatic measurements

Consequence for the measurements Mω
s : J 7→ γτEω

s

Mω
s ≈ − 1

iω
∇SΛs∇∗

S , J
∇

∗

S7−→ div J = ρ
Λs7−→ ϕ|S ∇S7−→ γτ∇ϕ,

with the electrostatic measurement operator Λs = Λt − Λi,

Λt :

{

H−1/2(S)→H1/2(S),

ρ 7→ϕt|S ,
Λi :

{

H−1/2(S)→H1/2(S),

ρ 7→ϕi|S ,

div (ǫt∇ϕt) = ρ div (ǫi∇ϕi) = 0

ǫt = 1 + ǫ1χΩ ǫi = 1

"electrostatic measurements "electrostatic measurements
with object" "without object"

LF measurements are essentially electrostatic measurements.
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Current loops

In practice: currents will be applied along closed loops.

 div J = 0

Also the electric field can only be measured along closed loops.

 More realistic model for the measurements:

j∗Mωj : TL2

⋄
(S) → TL2

⋄
(S)

where j : TL2
⋄
(S) = {v ∈ TL2(S), div v = 0} →֒ TH−1/2(div, S).

j∗ "factors out gradient fields", in particular

j∗(∇SΛs∇∗

S)j = 0.

Electrostatic effects do not appear in practice.
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Asymptotics again

div J = 0  Eω = iωE+O(ω3), with curl
1

µ
curlE = J, div(ǫE) = 0.

(Rigorous asymptotic analysis and existence theory: G., 2006)

B := curlE solves

curl 1

µB = J, div B = 0.

 B is the magnetostatic field generated
by a steady current J (Ampère’s Law).

B = 1

i
curlE  E is a vector potential of B

(unique up to addition of A with curlA = 0, i. e. up to A = ∇ϕ).

div(ǫE) = 0 determines E uniquely (so-called Coulomb gage).

 E is (a potential of) the magnetostatic field induced by J .
(Figure based on http://de.wikipedia.org/wiki/Bild:RechteHand.png)
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Magnetostatic measurements

Consequence for the measurements j∗Mω
s j : J 7→ γτEω

s

j∗Mω
s j ≈ −iωMs,

with the magnetostatic measurement operator Ms = Mt − Mi,

Mt :

{

TL2
⋄
(S)→TL2

⋄
(S)′,

J 7→ γτEt|S ,
Mi :

{

TL2
⋄
(S)→TL2

⋄
(S)′,

J 7→ γτEi|S ,

curl 1

µt
curlEt =J

div Et =0

µt =1 + µ1χΩ

curl 1

µi
curlEi =J

div Ei =0

µi =1

"magnetostatic measurements "magnetostatic measurements
with object" "without object"

(Note that replacing div ǫE = 0 with div E = 0 changes E only by a gradient field.)

LF measurements are essentially magnetostatic measurements.
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Eddy currents

What happens if the object has a finite conductivity σχΩ > 0?

curl
1

µ
curl Eω − ω2ǫEω = iω(J+σEω)

Low frequency asymptotics in the time domain lead to

∂t(σE) − curl
1

µ
curlE = −∂tJ,

which is parabolic in the object (σ > 0) and elliptic outside (σ = 0).
(Ammari, Buffa, Nédélec, 2000, SIAM J. Math. Anal.)

Scalar model problem (heat equation)

∂t(χΩu) − grad κ div u = 0

describes domain of low heat capacity with inclusion of high heat capacity.
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LF asymptotics

Low-frequency asymptotics for the scattering measurements

Mω
s : J 7→ γτEω

s .

If div J 6= 0 (presence of surface charges)

Mω
s ≈ − 1

iω
∇SΛs∇∗

S

essentially consists of electrostatic measurements Λs.

More realistic: div J = 0 (currents applied along closed loops)

j∗Mω
s j ≈ −iωMs

are essentially magnetostatic measurements Λs.

Conducting objects lead to parabolic-elliptic, eddy-current problems.
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Factorization Method

Factorization Method for the three cases:

FM works for electrostatic limit: (Haehner 1999, G. 2006)

z ∈ Ω ⇐⇒ γτEz,d ∈ R(|∇SΛs∇∗

S |1/2) ≈ R(|Mω
s |1/2)

(Ez,d: electrostatic field of a dipole in z with direction d).

FM works for magnetostatic limit: (G, Hanke and Schneider 2008)

z ∈ Ω ⇐⇒ γτGz,d ∈ R(|Ms|1/2) ≈ R(|j∗Mω
s j|1/2) (*)

(Gz,d: vector potential of the magnetostatic field of a magnetic dipole)

FM works for parabolic-elliptic scalar model problem
(Frühauf, G and Scherzer 2007)

 We expect that (*) also holds for conducting, diamagnetic objects.
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Numerical result

Conducting object in dielectric halfspace:

Measurement device S:
square at height z = 5cm,
size 32cm × 32cm

ω = 4 × 10−4, i. e. freq. ≈ 20kHz

Ω: copper ellipsoid,
15cm below S,
in dielectric halfspace
(z > 0: air, z < 0: humid earth)

Currents imposed / electric
fields measured on a 6 × 6 grid
on S

Forward solver: BEM from Schulz, Erhard, Potthast, Göttingen

Implementation of FM: C. Schneider, Mainz
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Outlook: EIT

Even more low-frequency asymptotics:

In this talk: measurement device S separated from object by
non-conducting medium
 wave scattering

Currents imposed directly to a conducting medium
 electrical impedance tomography

Again, modelling equations are LF-asymptotics of Maxwell’s equ.:

∇ · γω∇uω = 0, γω∂νuω|∂B =

{

g on S,

0 else.

ω = 0: static currents, real conductivity γω = σ.

ω2 = 0: phase shifts due to complex conductivity γω = σ + iǫω.
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Factorization Method

Factorization Method also woks for EIT:

FM works for real conductivity (frequency < 1kHz).
(Brühl and Hanke 1999)

z ∈ Ω ⇐⇒ Φz|S ∈ R(|Λ|1/2)

Ω: inclusion where conductivity differs from known background,
Φz: electric potential of a dipole in z,
Λ: difference of current-voltage measurements and

reference measurements at inclusion-free body

FM works for complex conductivity (1kHz < frequ. < 500kHz).
(Kirsch 2005, G. and Seo 2008)

z ∈ Ω ⇐⇒ Φz|S ∈ R(|Λ|1/2)

Λ: weigthed frequency-difference current-voltage measurements
(no reference measurements needed)
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