Detecting inclusions in complex conductivity EIT without reference measurements

Bastian Gebauer

gebauer@math.uni-mainz.de

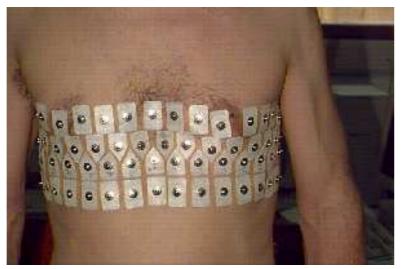
Institut für Mathematik, Joh. Gutenberg-Universität Mainz, Germany

Joint work with Jin Keun Seo, Yonsei University, Seoul, Korea

MIMS Workshop on New Directions in Tomographic Image Reconstruction

Manchester, UK, 30 June – 1 July 2008

Electrical impedance tomography



(Images taken from EIT group at Oxford Brookes University, published in Wikipedia by William Lionheart)

- Apply one or several input currents to a body and measure the resulting voltages
- Goal: Obtain an image of the interior conductivity distribution.
- Possible advantages:
 - EIT may be less harmful than other tomography techniques,
 - Conductivity contrast is high in many medical applications

Modelling equations

Time-harmonic Maxwell's equations

$$\operatorname{curl} H^{\omega} - \mathrm{i} \,\omega \epsilon E^{\omega} = J + \sigma E^{\omega},$$
$$-\operatorname{curl} E^{\omega} - \mathrm{i} \,\omega \mu H^{\omega} = 0,$$

- ω :frequency E^{ω} :electric field ϵ :dielectricityJ:appl. currents H^{ω} :magnetic field μ :permeability σ :conductivity
- **Quasi-static approximation:** $i \omega \mu H^{\omega} \approx 0$

 $\operatorname{curl} H^{\omega} - \mathrm{i}\,\omega\epsilon E^{\omega} = J + \sigma E^{\omega}, \qquad -\operatorname{curl} E^{\omega} = 0,$

- \rightsquigarrow $E = \nabla u$, with electric potential u:
- → Conductivity equation

$$\operatorname{div}(\sigma + \mathrm{i}\omega\epsilon)E^{\omega} = -\operatorname{div}J$$

Electrical impedance tomography

Idealized model for EIT:

- Apply all possible currents g on boundary of the body B
- \rightarrow Electric potential u that solves

$$\nabla \cdot \gamma^{\omega} \nabla u = 0, \qquad \gamma^{\omega} \partial_{\nu} u |_{\partial B} = g$$

 $(\gamma^{\omega} = \sigma + i\omega\epsilon)$

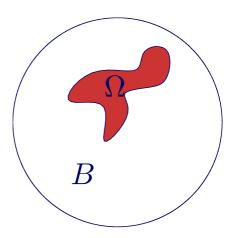
- Measure corresponding potential u everywhere on ∂B .
- \rightsquigarrow Current-to-voltage map Λ : $g \mapsto u|_{\partial B}$.

Direct Problem: (Standard theory for linear, elliptic PDEs):

- For $\sigma \in L^{\infty}_{+}(B)$, $\epsilon \in L^{\infty}(B)$, $g \in L^{2}_{\diamond}(\partial B) := \{\tilde{g} \in L^{2} : \int \tilde{g} = 0\}$ there exists a unique solution $u \in H^{1}_{\diamond}(B) := H^{1}(B)/\mathbb{C}$.
- Current-to-voltage map Λ : $L^2_{\diamond}(\partial B) \to L^2_{\diamond}(\partial B)$ is a compact, linear operator.

Detecting inclusions in EIT

Special case of EIT: locate inclusions in known background medium.



B

Current-to-voltage map with inclusion: $\Lambda_1: g \mapsto u_1|_{\partial B},$ where u_1 solves $\nabla \cdot \gamma^{\omega} \nabla u_1 = 0 \quad \gamma^{\omega} \partial_{\nu} u_1|_{\partial B} = g$ with $\gamma^{\omega} = \gamma_0^{\omega} + \gamma_{\Omega}^{\omega} \chi_{\Omega},$ $(\gamma_0^{\omega} \in \mathbb{C}:$ background conductivity). Current-to-voltage map without inclusion:

 $\Lambda_0: g \mapsto u_0|_{\partial B},$

where u_0 solves analogous equation with $\gamma^{\omega} = \gamma_0^{\omega}$.

"Reference measurements"

Goal: Locate Ω from comparing Λ_1 with Λ_0 .

Detecting inclusions

Goal: Locate Ω from comparing Λ_1 with Λ_0 .

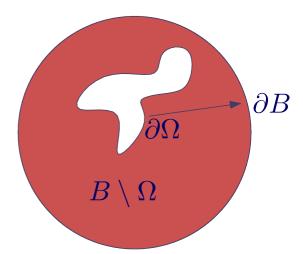
Promising approach: Factorization Method (Kirsch, 1998)

- Non-iterative (no forward solutions of the conductivity equation)
- ✓ Yields pointwise, binary criterion whether $z \in \Omega$ or not → Detect Ω by checking this criterion for every z below S ("sampling/probing")
- Needs no a priori information about number and type of inclusions.
- Also implies theoretical uniqueness results.
- **Based on functions** Φ_z with singularity in sampling point z:

$$\nabla_x \cdot \gamma_0^\omega \nabla_x \Phi_z(x) = d \cdot \nabla_x \delta_z(x) \quad \gamma_0^\omega \partial_{\nu(x)} \Phi_z|_{\partial B} = 0$$

(electric potential of dipole in point z with arbitrary direction d).

Virtual Measurements



 ψ : given boundary flux on $\partial \Omega$

 $L: \psi \mapsto v|_{\partial B}, \quad \text{where}$

$$\nabla \cdot \gamma_0^{\omega} \nabla v = 0 \quad \text{in } B \setminus \overline{\Omega}, \qquad (1)$$

$$\gamma_0^{\omega} \partial_{\nu} v |_{\partial B} = 0 \quad \text{on } \partial B, \qquad (2)$$

$$\gamma_0^{\omega} \partial_{\nu} v |_{\partial \Omega} = \psi \quad \text{on } \partial \Omega. \tag{3}$$

 $\mathcal{R}(L)$ determines Ω :

 $\Phi_z|_{\partial B} \in \mathcal{R}(L)$ if and only if $z \in \Omega$

Proof:

If $z \in \Omega$, then the dipole function $\Phi_z|_{B \setminus \overline{\Omega}}$ solves (1)–(3).

If $\Phi_z|_{\partial B} \in \mathcal{R}(L)$, then Φ_z has no singularity outside Ω due to unique continuation principle.

Factorization Method

 $\Phi_z|_{\partial B} \in \mathcal{R}(L)$ if and only if $z \in \Omega$

 $\rightsquigarrow \mathcal{R}(L)$ determines Ω .

Key identity of the Factorization Method:

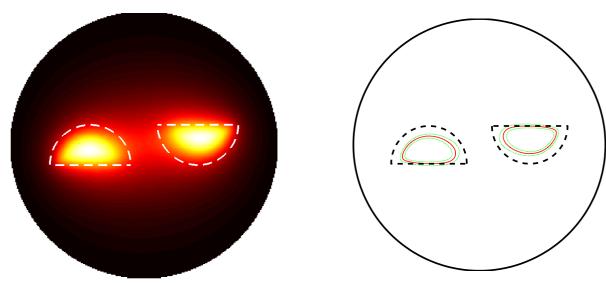
$$\mathcal{R}(L) = \mathcal{R}(|\Lambda_0 - \Lambda_1|^{1/2}).$$

 $\rightsquigarrow \mathcal{R}(L)$ (and thus Ω) can be computed from the measurements. Numerical implementation:

- Calculate regularized approximation of preimage $|\Lambda_0 \Lambda_1|^{-1/2} \Phi_z|_{\partial B}$
- Plot norm of this approximation as function of z. ("Indicator function")
 - Larger norm \rightsquigarrow preimage does not exist $\rightsquigarrow z \notin \Omega$.
 - Smaller norm \rightsquigarrow preimage exists $\rightsquigarrow z \in \Omega$.

Typical reconstruction

Typical reconstruction for FM:



indicator function

level sets

- Background: real, constant conductivity $\gamma_0^{\omega} = 1$
- Inclusions: two demicircles, real conductivity raises from 1 on circular parts to 2 on line segment (smooth deviation at circular part, jump on lines).

History and known results

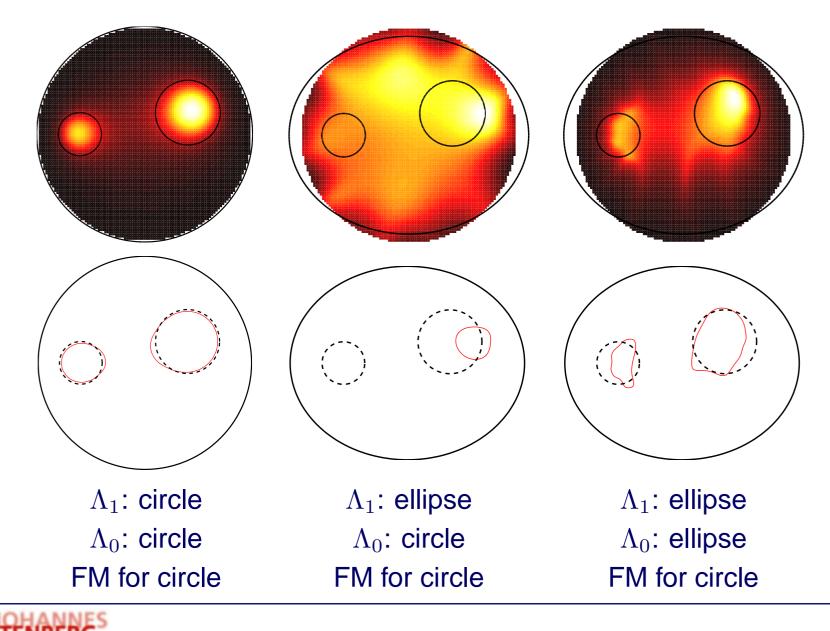
FM relies on range identity like $\mathcal{R}(L) = \mathcal{R}(|\Lambda_0 - \Lambda_1|^{1/2}).$

- originally developed by Kirsch, 1998 for inverse scattering problems,
- generalized to real conductivity EIT with inclusions "with sharp jumps" and connected complement (Brühl and Hanke, 1999),
- extended to electrode models (Hyvönen, Hakula, Pursiainen, Lechleiter),
- detects inclusions with complex conductivity in real conductivity background (*Kirsch*, 2005),
- detects inclusions "without sharp jumps" (G. and Hyvönen 2007), "fills up holes" in case of disconn. complements (G. and Hyvönen 2008).
 - Here: Variant of FM that detects inclusion in complex conductivity case and works without reference measurements.

Reference measurements

- Factorization method uses difference $\Lambda_1 \Lambda_0$ between
 - actual measurements Λ_1
 - \bullet reference measurements Λ_0 at an inclusion-free body
- Advantage: If reference measurements are available then systematic errors cancel out, e.g., forward modeling errors about the body geometry.
- Disadvantage: If reference measurements have to be simulated (or calculated analytically) then forward modeling errors have a large impact on the reconstructions.
- In medical application, reference measurements at an inclusion-free body are usually not available.

Example



mainz

Possible solution

Replace reference measurements by meas. at another frequency:

- Solution Assume that for all x outside the inclusion Ω

 $\gamma^{\omega}(x) = \gamma_{0}^{\omega} \in \mathbb{C} \quad \text{ and } \quad \gamma^{\tau}(x) = \gamma_{0}^{\tau} \in \mathbb{C}$

- Using $\gamma_0^{\omega} \Lambda_{\omega}$ and $\gamma_0^{\tau} \Lambda_{\tau}$ scales down conductivity outside Ω to 1.
- \rightarrow Difference $\gamma_0^{\omega} \Lambda_{\omega} \gamma_0^{\tau} \Lambda_{\tau}$ should have similar properties to $\Lambda_1 \Lambda_0$.

FM should also work with $\gamma_0^{\omega}\Lambda_{\omega} - \gamma_0^{\tau}\Lambda_{\tau}$ instead of $\Lambda_1 - \Lambda_0$.

For non-zero frequencies, $\gamma_0^{\omega} \Lambda_{\omega}$ is not self-adjoint, so we will have to use its real or imaginary part

$$\Im(A) := \frac{1}{2i}(A - A^*), \qquad \Re(A) := \frac{1}{2}(A + A^*)$$

for an operator $A: L^2_{\diamond}(S) \to L^2_{\diamond}(S)$.

fdEIT

Theorem (G, Seo 2008)

Let Ω have a connected complement,

 $\gamma^{\omega}(x) = \gamma_0^{\omega} + \gamma_{\Omega}^{\omega}(x)\chi_{\Omega}(x), \text{ and } \gamma^{\tau}(x) = \gamma_0^{\tau} + \gamma_{\Omega}^{\tau}(x)\chi_{\Omega}(x).$ If $\Im\left(\frac{\gamma_{\Omega}^{\omega}}{\gamma_{\omega}^{\omega}}\right) \in L^{\infty}_{+}(\Omega)$ or $-\Im\left(\frac{\gamma_{\Omega}^{\omega}}{\gamma_{\omega}^{\omega}}\right) \in L^{\infty}_{+}(\Omega)$, then $z \in \Omega$ if and only if $\Phi_z|_{\partial B} \in \mathcal{R}\left(\left|\Im\left(\sigma_0^{\omega}\Lambda_{\omega}\right)\right|^{1/2}\right)$, $z \in \Omega$ if and only if $\Phi_z|_{\partial B} \in \mathcal{R}\left(|\Re\left(\sigma_0^{\omega}\Lambda_{\omega} - \sigma_0^{\tau}\Lambda_{\tau}\right)|^{1/2}\right)$. $(\tau = 0 \text{ possible and same assertion also holds with interchanged } \omega \text{ and } \tau).$

FM can be used on single non-zero frequency data or on frequency-difference data.

Interpretation

 $z \in \Omega$ if and only if $\Phi_z|_{\partial B} \in \mathcal{R}\left(|\Im\left(\sigma_0^{\omega}\Lambda_{\omega}\right)|^{1/2}\right)$,

- Using $\Im(\ldots)$ compares Λ_{ω} to its own adjoint ("phase information").
- Inclusion can be found from measurements at a single non-zero frequency without any reference measurements.

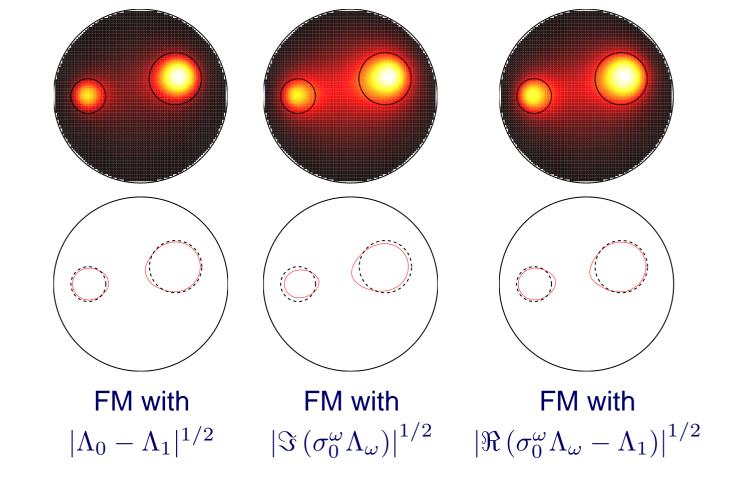
$$z \in \Omega$$
 if and only if $\Phi_z|_{\partial B} \in \mathcal{R}\left(|\Re\left(\sigma_0^{\omega}\Lambda_{\omega} - \sigma_0^{\tau}\Lambda_{\tau}
ight)|^{1/2}
ight).$

- \mathfrak{P} $\Re(\ldots)$ compares two different frequencies.
- Reference measurements can be replaced by measurements at a different frequency, e.g. by comparing static with non-zero frequency measurements.

 $\omega = 0$ ("static measurements"): freq. < 1khz

 $\omega > 0$, but still low frequency: 1khz < freq. < 500khz

Numerical example



(Conductivities: $\sigma = 0.3 - 0.2\chi_{\Omega}(x), \quad \sigma_{\omega}(x) = 0.3 + 0.1i - 0.2\chi_{\Omega}(x).$)

Mainz

Numerical example

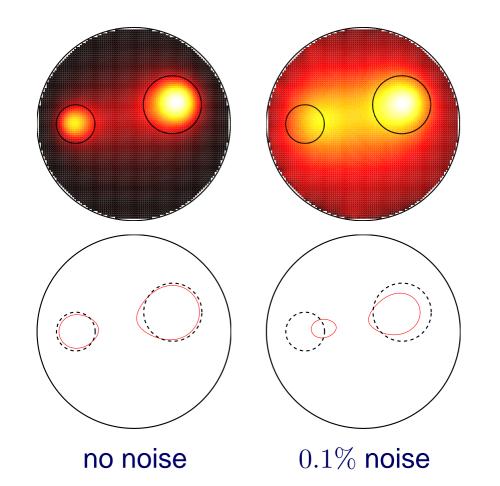


Reconstructions of an ellipse-shaped body that is wrongly assumed to be a circle.

Unknown background

- FM for frequency-difference EIT requires no reference data but still needs to know the constant background conductivity
- Heuristic method to estimate this from the data:
 - Eigenvectors for low eigenvalues should belong to highly oscillating potentials that do not penetrate deeply.
 - Most of the quotients of eigenvalues of Λ^{ω} and Λ^{τ} should behave like $\gamma_0^{\tau}/\gamma_0^{\omega}$.
 - For zero-frequency data $\Lambda^{\tau} = \Lambda_1$ we use $|\Re (\alpha \Lambda_{\omega} \Lambda_1)|^{\frac{1}{2}}$ with the median α of quotients of eigenvalues of Λ^{ω} and Λ_1 .
 - Analogously, the phase of γ_0^{ω} can be estimated from quotients of real and imaginary part of the eigenvalues of Λ^{ω} .

Unknown background



Reconstructions for unknown background conductivity without and with noise.

Conclusions

Conclusions:

- Simulating reference data makes Factorization Method vulnerable to forward modeling errors.
- Using frequency-difference measurements instead strongly improves FMs robustness. Results are comparable to those with correct reference data.
- Unknown background conductivities can be estimated from the data.

Open problems:

- Scaling the conductivity by simple multiplication only works for constant background conductivity.
- Unsolved problems in the theory of FM: convergent threshold choice, definiteness properties.

