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Electrical impedance tomography

(Images taken from EIT group at Oxford Brookes University,
published in Wikipedia by William Lionheart)

Apply one or several input currents to a body and measure the
resulting voltages

Goal: Obtain an image of the interior conductivity distribution.

Possible advantages:

EIT may be less harmful than other tomography techniques,

Conductivity contrast is high in many medical applications
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Modelling equations

Time-harmonic Maxwell’s equations

curlHω − iωǫEω = J + σEω,

− curlEω − iωµHω = 0,

ω: frequency Eω: electric field ǫ: dielectricity
J : appl. currents Hω: magnetic field µ: permeability
σ: conductivity

Quasi-static approximation: iωµHω ≈ 0

curlHω − iωǫEω = J + σEω, − curlEω = 0,

 E = ∇u, with electric potential u:

 Conductivity equation

div(σ + iωǫ)Eω = − div J
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Electrical impedance tomography

Idealized model for EIT:

Apply all possible currents g on boundary of the body B

 Electric potential u that solves

∇ · γω∇u = 0, γω∂νu|∂B = g

(γω = σ + iωǫ)

Measure corresponding potential u everywhere on ∂B.

 Current-to-voltage map Λ : g 7→ u|∂B.

Direct Problem: (Standard theory for linear, elliptic PDEs):

For σ ∈ L∞
+ (B), ǫ ∈ L∞(B), g ∈ L2

⋄(∂B) := {g̃ ∈ L2 :
∫

g̃ = 0}

there exists a unique solution u ∈ H1
⋄ (B) := H1(B)/C.

Current-to-voltage map Λ : L2
⋄(∂B) → L2

⋄(∂B) is a compact, linear
operator.
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Detecting inclusions in EIT
Special case of EIT: locate inclusions in known background medium.

Ω

B

Current-to-voltage map with inclusion:

Λ1 : g 7→ u1|∂B,

where u1 solves

∇ · γω∇u1 = 0 γω∂νu1|∂B = g

with γω = γω
0 + γω

ΩχΩ,

(γω
0 ∈ C: background conductivity).

B

Current-to-voltage map without inclusion:

Λ0 : g 7→ u0|∂B,

where u0 solves analogous equation with γω = γω
0 .

”Reference measurements”

Goal: Locate Ω from comparing Λ1 with Λ0.
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Detecting inclusions

Goal: Locate Ω from comparing Λ1 with Λ0.

Promising approach: Factorization Method (Kirsch, 1998)

Non-iterative (no forward solutions of the conductivity equation)

Yields pointwise, binary criterion whether z ∈ Ω or not
 Detect Ω by checking this criterion for every z below S
("sampling/probing")

Needs no a priori information about number and type of inclusions.

Also implies theoretical uniqueness results.

Based on functions Φz with singularity in sampling point z:

∇x · γω
0 ∇xΦz(x) = d · ∇xδz(x) γω

0 ∂ν(x)Φz|∂B = 0

(electric potential of dipole in point z with arbitrary direction d).
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Virtual Measurements

B \ Ω

∂Ω
∂B

ψ: given boundary flux on ∂Ω

L : ψ 7→ v|∂B , where

∇ · γω
0 ∇v = 0 in B \ Ω, (1)

γω
0 ∂νv|∂B = 0 on ∂B, (2)

γω
0 ∂νv|∂Ω = ψ on ∂Ω. (3)

R(L) determines Ω:

Φz|∂B ∈ R(L) if and only if z ∈ Ω

Proof:

If z ∈ Ω, then the dipole function Φz|B\Ω solves (1)–(3).

If Φz|∂B ∈ R(L), then Φz has no singularity outside Ω due to unique
continuation principle.

Bastian Gebauer: ’Detecting inclusions without reference measurements”



Factorization Method

Φz|∂B ∈ R(L) if and only if z ∈ Ω

 R(L) determines Ω.

Key identity of the Factorization Method:

R(L) = R(|Λ0 − Λ1|
1/2).

 R(L) (and thus Ω) can be computed from the measurements.

Numerical implementation:

Calculate regularized approximation of preimage |Λ0 − Λ1|
−1/2Φz|∂B

Plot norm of this approximation as function of z. (”Indicator function”)

Larger norm preimage does not exist z 6∈ Ω.

Smaller norm preimage exists z ∈ Ω.
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Typical reconstruction

Typical reconstruction for FM:

indicator function level sets

Background: real, constant conductivity γω
0 = 1

Inclusions: two demicircles,
real conductivity raises from 1 on circular parts to 2 on line segment
(smooth deviation at circular part, jump on lines).
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History and known results

FM relies on range identity like R(L) = R(|Λ0 − Λ1|
1/2).

originally developed by Kirsch, 1998 for inverse scattering problems,

generalized to real conductivity EIT with inclusions ”with sharp
jumps” and connected complement (Brühl and Hanke, 1999),

extended to electrode models (Hyvönen, Hakula, Pursiainen, Lechleiter),

detects inclusions with complex conductivity in real conductivity
background (Kirsch, 2005),

detects inclusions ”without sharp jumps” (G. and Hyvönen 2007),
”fills up holes” in case of disconn. complements (G. and Hyvönen 2008).

Here: Variant of FM that detects inclusion in complex conductivity case
and works without reference measurements.
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Reference measurements

Factorization method uses difference Λ1 − Λ0 between

actual measurements Λ1

reference measurements Λ0 at an inclusion-free body

Advantage: If reference measurements are available then systematic
errors cancel out, e.g., forward modeling errors about the body
geometry.

Disadvantage: If reference measurements have to be simulated (or
calculated analytically) then forward modeling errors have a large
impact on the reconstructions.

In medical application, reference measurements at an inclusion-free
body are usually not available.
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Example

Λ1: circle Λ1: ellipse Λ1: ellipse
Λ0: circle Λ0: circle Λ0: ellipse

FM for circle FM for circle FM for circle
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Possible solution

Replace reference measurements by meas. at another frequency:

Given two frequ. ω, τ > 0, conductivities γω, γτ and NtDs Λω, Λτ

Assume that for all x outside the inclusion Ω

γω(x) = γω
0 ∈ C and γτ (x) = γτ

0 ∈ C

Using γω
0 Λω and γτ

0 Λτ scales down conductivity outside Ω to 1.

 Difference γω
0 Λω − γτ

0 Λτ should have similar properties to Λ1 − Λ0.

FM should also work with γω
0 Λω − γτ

0 Λτ instead of Λ1 − Λ0.

For non-zero frequencies, γω
0 Λω is not self-adjoint, so we will have to

use its real or imaginary part

ℑ(A) := 1
2i (A−A∗), ℜ(A) := 1

2 (A+A∗)

for an operator A : L2
⋄(S) → L2

⋄(S).
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fdEIT

Theorem (G, Seo 2008)

Let Ω have a connected complement,

γω(x) = γω
0 + γω

Ω(x)χΩ(x), and γτ (x) = γτ
0 + γτ

Ω(x)χΩ(x).

If ℑ
(

γω

Ω

γω

0

)

∈ L∞
+ (Ω) or −ℑ

(

γω

Ω

γω

0

)

∈ L∞
+ (Ω), then

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℑ (σω
0 Λω)|1/2

)

,

If ℜ
(

στ

Ω

στ

0

)

− ℜ
(

σω

Ω

σω

0

)

−
ℑ

„

σ
ω

Ω

σ
ω

0

«

2

ℜ
“

σ
ω

σ
ω

0

” ∈ L∞
+ (Ω), then

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℜ (σω
0 Λω − στ

0Λτ )|1/2
)

.

(τ = 0 possible and same assertion also holds with interchanged ω and τ ).

FM can be used on single non-zero frequency data or on
frequency-difference data.
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Interpretation

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℑ (σω
0 Λω)|1/2

)

,

Using ℑ (. . .) compares Λω to its own adjoint (”phase information”).

 Inclusion can be found from measurements at a single non-zero
frequency without any reference measurements.

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℜ (σω
0 Λω − στ

0Λτ )|1/2
)

.

ℜ (. . .) compares two different frequencies.

 Reference measurements can be replaced by measurements at a
different frequency, e.g. by comparing static with non-zero frequency
measurements.

ω = 0 (”static measurements”): freq. < 1khz

ω > 0, but still low frequency: 1khz < freq. < 500khz
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Numerical example

FM with FM with FM with

|Λ0 − Λ1|
1/2 |ℑ (σω

0 Λω)|
1/2

|ℜ (σω
0 Λω − Λ1)|

1/2

(Conductivities: σ = 0.3 − 0.2χΩ(x), σω(x) = 0.3 + 0.1i − 0.2χΩ(x).)
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Numerical example

|Λcirc
0 − Λ1|

1

2 |Λellipse
0 − Λ1|

1

2 |ℜ (σω
0 Λω − Λ1)|

1

2 |ℑ (σω
0 Λω)|

1

2

Reconstructions of an ellipse-shaped body that is wrongly assumed to be a circle.
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Unknown background

FM for frequency-difference EIT requires no reference data but still
needs to know the constant background conductivity

Heuristic method to estimate this from the data:
Eigenvectors for low eigenvalues should belong to highly
oscillating potentials that do not penetrate deeply.

Most of the quotients of eigenvalues of Λω and Λτ should behave
like γτ

0 /γ
ω
0 .

For zero-frequency data Λτ = Λ1 we use |ℜ (αΛω − Λ1)|
1

2 with
the median α of quotients of eigenvalues of Λω and Λ1.

Analogously, the phase of γω
0 can be estimated from quotients of

real and imaginary part of the eigenvalues of Λω.
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Unknown background

no noise 0.1% noise

Reconstructions for unknown background conductivity without and with noise.
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Conclusions

Conclusions:

Simulating reference data makes Factorization Method vulnerable to
forward modeling errors.

Using frequency-difference measurements instead strongly improves
FMs robustness. Results are comparable to those with correct
reference data.

Unknown background conductivities can be estimated from the data.

Open problems:

Scaling the conductivity by simple multiplication only works for
constant background conductivity.

Unsolved problems in the theory of FM: convergent threshold choice,
definiteness properties.
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