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Low-frequency electromagnetics

Several physically relevant settings for LF-EM imaging.

Charges/currents applied away from conducting medium

 Inverse scattering problems
Electric charges  Electrostatics, Laplace-equation

Current loops  Magnetostatics, curl-curl-equation
Eddy current in conducting objects, parabolic-elliptic equations

Currents applied directly to conducting medium

 Electrical Impedance Tomography

freq. < 1kHz  static currents, real conductivity

1kHz < freq. < 100kHz  phase shifts, complex conductivity

In this talk: EIT with complex conductivity.
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Electrical impedance tomography

(Images taken from EIT group at Oxford Brookes University,
published in Wikipedia by William Lionheart)

Apply one or several input currents to a body and measure the
resulting voltages

Goal: Obtain an image of the interior conductivity distribution.

Possible advantages:

EIT may be less harmful than other tomography techniques,

Conductivity contrast is high in many medical applications
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Electrical impedance tomography

Idealized model for EIT:

Apply all possible currents g on boundary of the body B

 Electric potential u that solves

∇ · γω∇u = 0, γω∂νu|∂B = g

(γω = σ + iωǫ, σ real conductivity, ǫ dielectricity)

Measure corresponding potential u everywhere on ∂B.

 Current-to-voltage map Λ : g 7→ u|∂B.

Direct Problem: (Standard theory for linear, elliptic PDEs):

For σ ∈ L∞
+ (B), ǫ ∈ L∞(B), g ∈ L2

⋄(∂B) := {g̃ ∈ L2 :
∫

g̃ = 0}

there exists a unique solution u ∈ H1
⋄ (B) := H1(B)/C.

Current-to-voltage map Λ : L2
⋄(∂B) → L2

⋄(∂B) is a compact, linear
operator.
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Detecting inclusions in EIT
Special case of EIT: locate inclusions in known background medium.

Ω

B

Current-to-voltage map with inclusion:

Λ1 : g 7→ u1|∂B,

where u1 solves

∇ · γω∇u1 = 0 γω∂νu1|∂B = g

with γω = γω
0 + γω

ΩχΩ,

(γω
0 ∈ C: background conductivity).

B

Current-to-voltage map without inclusion:

Λ0 : g 7→ u0|∂B,

where u0 solves analogous equation with γω = γω
0 .

”Reference measurements”

Goal: Locate Ω from comparing Λ1 with Λ0.
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Factorization Method

Factorization Method:

Φz|∂B ∈ R(|Λ0 − Λ1|
1/2) if and only if z ∈ Ω

where

∇x · γω
0 ∇xΦz(x) = d · ∇xδz(x), γω

0 ∂ν(x)Φz|∂B = 0

(electric potential of dipole in point z with arbitrary direction d).

 Measurements Λ1, Λ0 determine Ω.

Numerical implementation:

Calculate regularized approximation of preimage |Λ0 − Λ1|
−1/2Φz|∂B

Plot norm of this approximation as function of z. (”Indicator function”)
Larger norm preimage does not exist z 6∈ Ω.

Smaller norm preimage exists z ∈ Ω.
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History and known results

FM relies on characterization of Ω via R(|Λ0 − Λ1|
1/2).

originally developed by Kirsch, 1998 for inverse scattering problems,

generalized to real conductivity EIT with inclusions ”with sharp
jumps” and connected complement (Brühl and Hanke, 1999),

extended to electrode models (Hyvönen, Hakula, Pursiainen, Lechleiter),

detects inclusions with complex conductivity in real conductivity
background (Kirsch, 2005),

detects inclusions ”without sharp jumps” (G. and Hyvönen 2007),
”fills up holes” in case of disconn. complements (G. and Hyvönen 2008).

Here: Variant of FM that detects inclusion in complex conductivity case
and works without reference measurements.
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Reference measurements

Factorization method uses difference Λ1 − Λ0 between

actual measurements Λ1

reference measurements Λ0 at an inclusion-free body

Advantage: If reference measurements are available then systematic
errors cancel out, e.g., forward modeling errors about the body
geometry.

Disadvantage: If reference measurements have to be simulated (or
calculated analytically) then forward modeling errors have a large
impact on the reconstructions.

In medical application, reference measurements at an inclusion-free
body are usually not available.
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Example

Λ1: circle Λ1: ellipse Λ1: ellipse
Λ0: circle Λ0: circle Λ0: ellipse

FM for circle FM for circle FM for circle
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Possible solution

Replace reference measurements by meas. at another frequency:

Given two frequ. ω, τ > 0, conductivities γω, γτ and NtDs Λω, Λτ

Assume that for all x outside the inclusion Ω

γω(x) = γω
0 ∈ C and γτ (x) = γτ

0 ∈ C

Using γω
0 Λω and γτ

0 Λτ scales down conductivity outside Ω to 1.

 Difference γω
0 Λω − γτ

0 Λτ should have similar properties to Λ1 − Λ0.

FM should also work with γω
0 Λω − γτ

0 Λτ instead of Λ1 − Λ0.

For non-zero frequencies, γω
0 Λω is not self-adjoint, so we will have to

use its real or imaginary part

ℑ(A) := 1
2i (A − A∗), ℜ(A) := 1

2 (A + A∗)

for an operator A : L2
⋄(S) → L2

⋄(S).
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fdEIT

Theorem (G, Seo 2008)

Let Ω have a connected complement,

γω(x) = γω
0 + γω

Ω(x)χΩ(x), and γτ (x) = γτ
0 + γτ

Ω(x)χΩ(x).

If ℑ
(

γω

Ω

γω

0

)

∈ L∞
+ (Ω) or −ℑ

(

γω

Ω

γω

0

)

∈ L∞
+ (Ω), then

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℑ (σω
0 Λω)|1/2

)

,

If ℜ
(

στ

Ω

στ

0

)

− ℜ
(

σω

Ω

σω

0

)

−
ℑ

„

σ
ω

Ω

σ
ω

0

«

2

ℜ

“

σ
ω

σ
ω

0

” ∈ L∞
+ (Ω), then

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℜ (σω
0 Λω − στ

0Λτ )|1/2
)

.

(τ = 0 possible and same assertion also holds with interchanged ω and τ ).

FM can be used on single non-zero frequency data or on
frequency-difference data.
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Interpretation

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℑ (σω
0 Λω)|1/2

)

,

Using ℑ (. . .) compares Λω to its own adjoint (”phase information”).

 Inclusion can be found from measurements at a single non-zero
frequency without any reference measurements.

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℜ (σω
0 Λω − στ

0Λτ )|1/2
)

.

ℜ (. . .) compares two different frequencies.

 Reference measurements can be replaced by measurements at a
different frequency, e.g. by comparing static with non-zero frequency
measurements.

ω = 0 (”static measurements”): freq. < 1khz

ω > 0, but still low frequency: 1khz < freq. < 500khz
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Numerical example

FM with FM with FM with

|Λ0 − Λ1|
1/2 |ℑ (σω

0 Λω)|
1/2

|ℜ (σω
0 Λω − Λ1)|

1/2

(Conductivities: σ = 0.3 − 0.2χΩ(x), σω(x) = 0.3 + 0.1i − 0.2χΩ(x).)
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Numerical example

|Λcirc
0 − Λ1|

1

2 |Λellipse
0 − Λ1|

1

2 |ℜ (σω
0 Λω − Λ1)|

1

2 |ℑ (σω
0 Λω)|

1

2

Reconstructions of an ellipse-shaped body that is wrongly assumed to be a circle.
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Conclusions

Conclusions:

Simulating reference data makes Factorization Method vulnerable to
forward modeling errors.

Using frequency-difference measurements instead strongly improves
FMs robustness. Results are comparable to those with correct
reference data.

Open problems:

Scaling the conductivity by simple multiplication only works for
constant background conductivity.

Unsolved problems in the theory of FM: convergent threshold choice,
definiteness properties.
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