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Motivation
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Electrical impedance tomography

(Images taken from EIT group at Oxford Brookes University,
published in Wikipedia by William Lionheart)

Apply one or several input currents to a body and measure the
resulting voltages

Goal: Obtain an image of the interior conductivity distribution.

Possible advantages:

EIT may be less harmful than other tomography techniques,

Conductivity contrast is high in many medical applications
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Electrical impedance tomography

Simple mathematical model for EIT:

S

B
B: bounded domain

S ⊆ ∂B: relatively open subset
σ: electrical conductivity in B

g: applied current on S

 Electric potential u that solves

∇ · σ∇u = 0, σ∂νu|∂B =

{

g on S,

0 else.

Direct Problem: (Standard theory of elliptic PDEs):
For all σ ∈ L∞

+ (B), g ∈ L2
⋄(∂B) there exists a unique solution u ∈ H1

⋄ (B).

Inverse Problems of EIT:
How can we reconstruct (properties of) σ from measuring u|S ∈ L2

⋄(S)

for one or several input currents g?
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Identifiability results
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Regularity assumptions onσ

Most general, "natural" assumption: σ ∈ L∞
+ (B).

Slightly less general:

σ ∈ L∞
+ (B) and σ satisfies (UCP) in conn. neighborhoods U of S,

∇ · σ∇u = 0 and

{

u|S = 0, σ∂νu|S = 0 =⇒ u = 0.

u|V = const., V ⊂ U open =⇒ u = const.

For B ⊂ R2, (UCP) is satisfied for all σ ∈ L∞
+ (B).

For B ⊂ Rn, n ≥ 3, (UCP) is satisfied, e.g., for Lipschitz continuous σ.

For σ ∈ C2(B), the EIT equation can be transformed to the
Schrödinger equation

(∆ − q)ũ = 0 with q =
∆
√

σ√
σ

"Strongest" regularity assumption: σ analytic or piecewise analytic
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Identifiability results

Calderon problem with partial data:

Is σ uniquely determined by the (local) current-to-voltage map

Λσ : L2
⋄(S) → L2

⋄(S), g 7→ u|S ?

For measurements on whole boundary S = ∂B:

Identifiability question posed by Calderon 1980.

For smooth σ (essentially σ ∈ C2) answered positively by Sylvester
and Uhlmann 1987 for n ≥ 3 and by Nachmann 1996 for n = 2.

For n = 2 and general σ ∈ L∞
+ answered positively by Astala and

Päivärinta 2006.

Still an open question for σ ∈ L∞
+ (with or without (UCP)) for n ≥ 3.
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Identifiability results

For measurements on only a part of the boundary S ( ∂B:

(Kohn, Vogelius 1984/1985):
Piecewise analytic σ is determined by local voltage-to-current map.

(Kenig, Sjöstrand, Uhlmann 2007):
For n ≥ 3 and with additional condition on boundary parts,

C2-conductivities σ are determined by the voltage-to-current map, .

(Isakov 2007):
If boundary part is part of a plane or sphere:

C2-conductivities σ are determined by the current-to-voltage map, .

Here: A new identifiability result for a large class of L∞-conductivities (with

(UCP)) that is based on comparatively simple monotonicity arguments.
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Virtual Measurements

S

Ω

LΩ

f ∈ (H1
⋄ (Ω))′: applied source on Ω

LΩ : (H1
⋄ (Ω))′ → L2

⋄(S), f 7→ u|S ,

where u ∈ H1
⋄ (B) solves

∫

B

σ∇u · ∇v dx = 〈f, v|Ω〉 for all v ∈ H1
⋄ (B).

If Ω ⊂ B: ∆u = fχΩ, σ∂νu|∂B = 0.

(UCP) yields: If Ω1 ∩ Ω2 = ∅, B \ (Ω1 ∪ Ω2) is connected and its boundary
contains S then R(LΩ1

) ∩R(LΩ2
) = 0.

Dual operator L′
Ω : L2

⋄(S) → H1
⋄ (Ω), g 7→ u|Ω, where u solves

∇ · σ∇u = 0, σ∂νu|∂B =

{

g on S,

0 else.
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A monotonicity argument

Lemma
Let X, Y be two reflexive Banach spaces, A ∈ L(X, Y ), y ∈ Y . Then

y ∈ R(A) iff |〈y′, y〉| ≤ C ‖A′y′‖ ∀y′ ∈ Y ′.

Corollary
If ‖L′

Ω1
g‖ ≤ C ‖L′

Ω2
g‖ for all applied currents g, i.e., ‖u|Ω1

‖ ≤ C ‖u|Ω2
‖ for

the corresponding potentials u, then R(LΩ1
) ⊆ R(LΩ2

).

Contraposition
If R(LΩ1

) 6⊆ R(LΩ2
) then there exist currents (gn) such that the

corresponding potentials (un) satisfy

‖un|Ω1
‖H1

⋄
(Ω1) → ∞ and ‖un|Ω2

‖H1
⋄
(Ω2) → 0.

"Localized potentials with high energy in Ω1 and low energy in Ω2".
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Localized potentials

Potentials with high energy around the marked point but low energy in
dashed region
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Another monotonicity argument

Connection between Calderon problem (with S ⊆ ∂B) and localized
potentials:

Monotonicity property:

Let u1, u2 be electric potentials for conductivities σ1, σ2 created by
the same boundary current g ∈ L2

⋄(S). Then

∫

B

(σ1 − σ2)|∇u2|2 dx ≥ ((Λσ2
− Λσ1

)g, g) ≥
∫

B

(σ1 − σ2)|∇u1|2 dx.

 If σ1 − σ2 > 0 in some region where we can localize the electric
energy |∇u1|2 then Λσ1

6= Λσ2
.

"A higher conductivity in such a region can not be balanced out."
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A new identifiability result

Theorem (G, 2008)

Let σ1, σ2 ∈ L∞
+ (B) satisfy (UCP) and Λσ1

, Λσ2
be the corresponding

current-to-voltage-maps.

If σ2 ≥ σ1 in some neighborhood V of S and σ2 − σ1 ∈ L∞
+ (U) for some

open U ⊆ V then there exists (gn) such that

〈(Λσ2
− Λσ1

)gn, gn〉 → ∞,

so in particular Λσ2
6= Λσ1

.
U

V

Two conductivities can be distinguished if one is larger in some part that
can be connected to the boundary without crossing a sign change.
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Remarks

Remarks

Theorem covers the Kohn-Vogelius result:

σ|S and its derivatives on S are uniquely determined by Λσ.

Piecewise analytic conductivities σ are uniquely determined.

Theorem holds for general L∞
+ -conductivities with (UCP).

(In particular, it is not covered by the recent result of Isakov.)

Theorem uses only monotonicity properties of real elliptic PDEs, thus
also holds e.g. for linear elasticity, electro- and magnetostatics.

However,

Theorem needs a neighborhood without sign change. It cannot
distinguish infinitely fast oscillating C∞-conductivities from constant
ones.
The identifiability question for general L∞

+ -conductivities (with or
without (UCP)) for n ≥ 3 or partial boundary data is still open.
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The Factorization Method
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Detecting inclusions in EIT
Special case of EIT: locate inclusions in known background medium.

Ω

S

Current-to-voltage map with inclusion:

Λ1 : g 7→ u1|∂B ,

where u1 solves

∇ · σ∇u1 = 0 ∂νu1|∂B =

{

g on S,

0 else,

with σ = 1 + σ1χΩ, σ1 ∈ L∞
+ (Ω).

S

Current-to-voltage map without inclusion:

Λ0 : g 7→ u0|∂B ,

where u0 solves the analogous equation
with σ = 1.

Goal: Reconstruct Ω from comparing Λ1 with Λ0.
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Virtual measurements again

S

Ω

LΩ

f ∈ (H1
⋄ (Ω))′: applied source on Ω

LΩ : (H1
⋄ (Ω))′ → L2

⋄(S), f 7→ u|S ,

where u ∈ H1
⋄ (B) solves (for Ω ⊂ B)

∇ · σ∇u = fχΩ, σ∂νu|∂B = 0.

For B \ (Ω1 ∪ Ω2) connected with S:

Ω1 ∩ Ω2 = ∅ =⇒ R(LΩ1
) ∩ R(LΩ2

) = 0

More constructive relation (for z 6∈ ∂Ω, B \ Ω connected with S):

z ∈ Ω if and only if Φz|S ∈ R(LΩ)

with dipole potentials Φz, i.e., solutions of

∆Φz = d · ∇δz and ∂νΦz|∂B = 0 (d: arbitrary direction)

 R(LΩ) determines Ω.
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Range characterization

R(LΩ) determines unknown inclusion Ω:

z ∈ Ω if and only if Φz|S ∈ R(LΩ)

In many cases, R(LΩ) can be computed from the measurements Λ1, Λ0:

R(LΩ) = R(|Λ0 − Λ1|1/2)

(Proof uses a factorization of Λ0 −Λ1 in LΩ, L∗
Ω and an auxiliary operator).

Factorization Method (FM):

Locate Ω from measurements Λ1 and reference measurements Λ0 by

computing dipole potentials Φz for all points z ∈ B

find all points z where Φz ∈ R(|Λ0 − Λ1|1/2),

e.g., by plotting the norm of regularized approximations to

|Λ0 − Λ1|−1/2Φz.
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History and known results

FM relies on range identity like R(LΩ) = R(|Λ0 − Λ1|1/2).

FM originally developed by Kirsch for inverse scattering problems
and extended to different settings and boundary conditions
(with Arens, Grinberg)

FM generalized to EIT (Brühl/Hanke, 1999)

FM extended to many applications including electrostatics (Hähner),
EIT with electrode models (Hyvönen, Hakula, Pursiainen, Lechleiter),
EIT in half-space (Schappel),
harmonic vector fields (Kress), Stokes equations (Tsiporin),
optical tomography (Hyvönen, Bal, G), linear elasticity (Kirsch),
general real elliptic problems (G),
parabolic-elliptic problems (Frühauf, G, Scherzer)

All these results rely on a parameter jump.
Can FM also detect smooth transitions from background to inclusion?

Bastian Gebauer: ’Monotonicity arguments in electrical impedance tomography”



Monotonicity arguments

Λ1: NtD for σ = 1 + σ1χΩ1
, Λ2: NtD for σ = 1 + σ2χΩ2

, σ1, σ2 ≥ 0

Monotony between conductivity and measurements (NtDs):

σ1χΩ1
≤ σ2χΩ2

=⇒ (Λ1g, g) ≥ (Λ2g, g) for all g ∈ L2
⋄(S)

Together with range monotony:

σ1χΩ1
≤ σ2χΩ2

=⇒ R((Λ0 − Λ1)
1/2) ⊆ R((Λ0 − Λ2)

1/2)

 Result of range tests Φz ∈ R((Λ0 − Λ1)
1/2) is monotonous w.r.t. the

inclusions size and contrast.

 FM-theory can be extended to irregular inclusions (e.g. with smooth
transitions) by estimating them from above and below by regular
inclusions with sharp jumps.
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FM with irregular inclusions

Λ1: NtD for σ = 1 + σ1χΩ1
, Λ0: NtD for σ = 1.

Theorem (G, Hyvönen 2007)

Let σ1 ≥ 0 and Ω have a connected complement.

Φz ∈ R((Λ0 − Λ1)
1/2) for every z ∈ Ω for which σ1 is locally in L∞

+ .

Φz 6∈ R((Λ0 − Λ1)
1/2) for every z 6∈ Ω.

(and an analogous results holds for σ1 ≤ 0.)

FM does not only find inclusions where a parameter “jumps”,
but also where it merely “differs” from a known background value.
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Numerical example

real conductivity “‖|Λ0 − Λ1|−1/2Φz‖ ” contour lines

Numerical results for inclusions with smooth transitions in EIT
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Numerical example

real conductivity “‖|Λ0 − Λ1|−1/2Φz‖ ” contour lines

Numerical results with 0.1% noise
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Remarks

Remarks

Using monotonicity arguments the assumptions of the Factorization
Method can be reduced to local properties.

FM also works for inclusions that are not sharply separated from the
background.

With the same technique one can eliminate boundary regularity
assumptions, or simultaneously treat inclusions of different types
(e.g. absorbing and conducting, G and Hyvönen 2008).

However,

The result still needs a global definiteness property (σ1 ≥ 0 or σ1 ≤ 0
in all inclusions). FM for indefinite problems is still an open problem.
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Frequency-difference EIT
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Reference measurements

Factorization method uses difference Λ1 − Λ0 between

actual measurements Λ1

reference measurements Λ0 at an inclusion-free body

Advantage: If reference measurements are available then systematic
errors cancel out, e.g., forward modeling errors about the body
geometry.

Disadvantage: If reference measurements have to be simulated (or
calculated analytically) then forward modeling errors have a large
impact on the reconstructions.

In medical application, reference measurements at an inclusion-free
body are usually not available.
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Example

Λ1: circle Λ1: ellipse Λ1: ellipse
Λ0: circle Λ0: circle Λ0: ellipse

FM for circle FM for circle FM for circle
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Possible solution

Possible solution: Replace reference measurements by
measurements at another frequency.

Frequency-dependent EIT:

g: applied current, time-harmonic with frequency ω

 electric potential uω that solves

∇ · γω∇uω = 0, γω∂νuω|∂B =

{

g on S,

0 else.

with complex conductivity γω = σ + iǫω , ǫ: dielectricity.

Measurements at frequency ω  Current-to-voltage (NtD) map

Λω : g 7→ uω|S
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Sketch of the idea

How to use frequency-difference measurements:

Given two frequ. ω, τ > 0, conductivities γω, γτ and NtDs Λω, Λτ

Assume that for all x outside the inclusion Ω

γω(x) = γω
0 ∈ C and γτ (x) = γτ

0 ∈ C

Using γω
0 Λω and γτ

0 Λτ scales down conductivity outside Ω to 1.

 Difference γω
0 Λω − γτ

0 Λτ should have similar properties to Λ1 − Λ0.

FM should also work with γω
0 Λω − γτ

0 Λτ instead of Λ1 − Λ0.

For non-zero frequencies, γω
0 Λω is not self-adjoint, so we will have to

use its real or imaginary part

ℑ(A) := 1
2i (A − A∗), ℜ(A) := 1

2 (A + A∗)

for an operator A : L2
⋄(S) → L2

⋄(S).
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fdEIT

Theorem (G, Seo 2008)

Let Ω have a connected complement,

γω(x) = γω
0 + γω

Ω(x)χΩ(x), and γτ (x) = γτ
0 + γτ

Ω(x)χΩ(x).

If ℑ
(

γω

Ω

γω

0

)

∈ L∞
+ (Ω) or − ℑ

(

γω

Ω

γω

0

)

∈ L∞
+ (Ω), then

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℑ (σω
0 Λω)|1/2

)

,

If ℜ
(

στ

Ω

στ

0

)

−ℜ
(

σω

Ω

σω

0

)

−
ℑ

„

σ
ω

Ω

σ
ω

0

«

2

ℜ

“

σ
ω

σ
ω

0

” ∈ L∞
+ (Ω), then

z ∈ Ω if and only if Φz|∂B ∈ R
(

|ℜ (σω
0 Λω − στ

0Λτ )|1/2
)

.

(τ = 0 possible and same assertion also holds with interchanged ω and τ ).

FM can be used on single non-zero frequency data or on
frequency-difference data.
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Numerical example

FM with FM with FM with

|Λ0 − Λ1|1/2 |ℑ (σω
0 Λω)|1/2 |ℜ (σω

0 Λω − Λ1)|1/2

(Conductivities: σ = 0.3 − 0.2χΩ(x), σω(x) = 0.3 + 0.1i − 0.2χΩ(x).)
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Numerical example

|Λcirc
0 − Λ1|

1

2 |Λellipse
0 − Λ1|

1

2 |ℜ (σω
0 Λω − Λ1)|

1

2 |ℑ (σω
0 Λω)| 12

Reconstructions of an ellipse-shaped body that is wrongly assumed to be a circle.
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Unknown background

FM for frequency-difference EIT requires no reference data but still
needs to know the constant background conductivity

Heuristic method to estimate this from the data:
Eigenvectors for low eigenvalues should belong to highly
oscillating potentials that do not penetrate deeply.

Most of the quotients of eigenvalues of Λω and Λτ should behave
like γτ

0 /γω
0 .

For zero-frequency data Λτ = Λ1 we use |ℜ (αΛω − Λ1)|
1

2 with
the median α of quotients of eigenvalues of Λω and Λ1.

Analogously, the phase of γω
0 can be estimated from quotients of

real and imaginary part of the eigenvalues of Λω.
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Unknown background

no noise 0.1% noise

Reconstructions for unknown background conductivity without and with noise.
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Remarks

Remarks

Simulating reference data makes Factorization Method vulnerable to
forward modeling errors.

Using frequency-difference measurements strongly improves FMs
robustness. Results are comparable to those with correct reference
data.

Unknown background conductivities can be estimated from the data.

However,

Scaling the conductivity by simple multiplication only works for
constant background conductivity.

Theory needs contrast conditions in the inclusions with global
definiteness properties.
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Conclusions

Comparatively simple monotony arguments yield :

New theoretical identifiability result for the Calderon-problem

Two conductivities can be distinguished if one is larger in some
part that can be connected to the boundary without crossing a
sign change.

Improvements for the Factorization Method:

FM does not only find inclusions where a parameter “jumps”, but
also where it merely “differs” from a known background value.

Reference data can be replaced by frequency-difference data,
thus strongly improving the methods robustness.

However,

There are important open problems connected with definiteness
properties.
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