# Monotonicity arguments in electrical impedance tomography

#### **Bastian Gebauer**

gebauer@math.uni-mainz.de

Institut für Mathematik, Joh. Gutenberg-Universität Mainz, Germany

NAM-Kolloquium, Georg-August-Universität Göttingen, 29.04.08



## Overview

- Motivation
- Theoretical identifiability results
- The Factorization Method
- Frequency-difference EIT

### Motivation



### **Electrical impedance tomography**





(Images taken from EIT group at Oxford Brookes University, published in Wikipedia by William Lionheart)

- Apply one or several input currents to a body and measure the resulting voltages
- Goal: Obtain an image of the interior conductivity distribution.
- Possible advantages:
  - EIT may be less harmful than other tomography techniques,
  - Conductivity contrast is high in many medical applications

### **Electrical impedance tomography**

Simple mathematical model for EIT:



- *B*: bounded domain
- $S \subseteq \partial B$ : relatively open subset
  - $\sigma$ : electrical conductivity in B
  - g: applied current on S

 $\rightsquigarrow$  Electric potential u that solves

$$abla \cdot \sigma \nabla u = 0, \qquad \sigma \partial_{\nu} u|_{\partial B} = \begin{cases} g & \text{on } S, \\ 0 & \text{else.} \end{cases}$$

Direct Problem: (Standard theory of elliptic PDEs): For all  $\sigma \in L^{\infty}_{+}(B)$ ,  $g \in L^{2}_{\diamond}(\partial B)$  there exists a unique solution  $u \in H^{1}_{\diamond}(B)$ . Inverse Problems of EIT: How can we reconstruct (properties of)  $\sigma$  from measuring  $u|_{S} \in L^{2}_{\diamond}(S)$ for one or several input currents g?

### **Identifiability results**



#### Regularity assumptions on $\sigma$

- Most general, "natural" assumption:  $\sigma \in L^{\infty}_{+}(B)$ .
- Slightly less general:
  - $\sigma \in L^{\infty}_{+}(B)$  and  $\sigma$  satisfies (UCP) in conn. neighborhoods U of S,

$$\nabla \cdot \sigma \nabla u = 0 \text{ and } \begin{cases} u|_S = 0, \ \sigma \partial_{\nu} u|_S = 0 & \Longrightarrow & u = 0. \\ u|_V = \text{const.}, V \subset U \text{ open } & \Longrightarrow & u = \text{const.} \end{cases}$$

For  $B \subset \mathbb{R}^2$ , (UCP) is satisfied for all  $\sigma \in L^{\infty}_+(B)$ . For  $B \subset \mathbb{R}^n$ ,  $n \ge 3$ , (UCP) is satisfied, e.g., for Lipschitz continuous  $\sigma$ .

■ For  $\sigma \in C^2(\overline{B})$ , the EIT equation can be transformed to the Schrödinger equation

$$(\Delta - q)\tilde{u} = 0$$
 with  $q = \frac{\Delta\sqrt{\sigma}}{\sqrt{\sigma}}$ 



"Strongest" regularity assumption:  $\sigma$  analytic or piecewise analytic

#### **Identifiability results**

Calderon problem with partial data:

Is  $\sigma$  uniquely determined by the (local) current-to-voltage map

$$\Lambda_{\sigma}: L^2_{\diamond}(S) \to L^2_{\diamond}(S), \quad g \mapsto u|_S ?$$

For measurements on whole boundary  $S = \partial B$ :

- Identifiability question posed by Calderon 1980.
- For smooth  $\sigma$  (essentially  $\sigma \in C^2$ ) answered positively by Sylvester and Uhlmann 1987 for  $n \geq 3$  and by Nachmann 1996 for n = 2.
- For n = 2 and general  $\sigma \in L^{\infty}_+$  answered positively by Astala and Päivärinta 2006.
- Still an open question for  $\sigma \in L^{\infty}_+$  (with or without (UCP)) for  $n \geq 3$ .

#### **Identifiability results**

For measurements on only a part of the boundary  $S \subsetneq \partial B$ :

- (Kohn, Vogelius 1984/1985): Piecewise analytic  $\sigma$  is determined by local voltage-to-current map.
- (Kenig, Sjöstrand, Uhlmann 2007):
  For  $n \geq 3$  and with additional condition on boundary parts,  $C^2$ -conductivities  $\sigma$  are determined by the voltage-to-current map, .
- (Isakov 2007):

If boundary part is part of a plane or sphere:

 $C^2$ -conductivities  $\sigma$  are determined by the current-to-voltage map, .

Here: A new identifiability result for a large class of  $L^{\infty}$ -conductivities (with (UCP)) that is based on comparatively simple monotonicity arguments.

#### **Virtual Measurements**



 $f \in (H^1_\diamond(\Omega))'$ : applied source on  $\Omega$  $L_\Omega: (H^1_\diamond(\Omega))' \to L^2_\diamond(S), \quad f \mapsto u|_S,$ where  $u \in H^1_\diamond(B)$  solves

 $\int_{B} \sigma \nabla u \cdot \nabla v \, \mathrm{d}x = \langle f, v |_{\Omega} \rangle \quad \text{ for all } v \in H^{1}_{\diamond}(B).$ 

f 
$$\overline{\Omega} \subset B$$
:  $\Delta u = f \chi_{\Omega}$ ,  $\sigma \partial_{\nu} u |_{\partial B} = 0$ .

(UCP) yields: If  $\overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset$ ,  $B \setminus (\overline{\Omega_1} \cup \overline{\Omega_2})$  is connected and its boundary contains *S* then  $\mathcal{R}(L_{\Omega_1}) \cap \mathcal{R}(L_{\Omega_2}) = 0$ .

Dual operator  $L'_{\Omega}$ :  $L^2_{\diamond}(S) \to H^1_{\diamond}(\Omega), \quad g \mapsto u|_{\Omega}$ , where u solves

 $abla \cdot \sigma \nabla u = 0, \qquad \sigma \partial_{\nu} u|_{\partial B} = \begin{cases} g & \text{on } S, \\ 0 & \text{else.} \end{cases}$ 



#### A monotonicity argument

Lemma

Let X, Y be two reflexive Banach spaces,  $A \in \mathcal{L}(X, Y)$ ,  $y \in Y$ . Then

 $y \in \mathcal{R}(A)$  iff  $|\langle y', y \rangle| \le C ||A'y'|| \quad \forall y' \in Y'.$ 

Corollary If  $||L'_{\Omega_1}g|| \leq C ||L'_{\Omega_2}g||$  for all applied currents g, i.e.,  $||u|_{\Omega_1}|| \leq C ||u|_{\Omega_2}||$  for the corresponding potentials u, then  $\mathcal{R}(L_{\Omega_1}) \subseteq \mathcal{R}(L_{\Omega_2})$ .

Contraposition If  $\mathcal{R}(L_{\Omega_1}) \not\subseteq \mathcal{R}(L_{\Omega_2})$  then there exist currents  $(g_n)$  such that the corresponding potentials  $(u_n)$  satisfy

 $||u_n|_{\Omega_1}||_{H^1_\diamond(\Omega_1)} \to \infty \quad \text{and} \quad ||u_n|_{\Omega_2}||_{H^1_\diamond(\Omega_2)} \to 0.$ 

"Localized potentials with high energy in  $\Omega_1$  and low energy in  $\Omega_2$ ".

#### **Localized potentials**



### Potentials with high energy around the marked point but low energy in dashed region



### Another monotonicity argument

Connection between Calderon problem (with  $S \subseteq \partial B$ ) and localized potentials:

Monotonicity property:

Let  $u_1$ ,  $u_2$  be electric potentials for conductivities  $\sigma_1$ ,  $\sigma_2$  created by the same boundary current  $g \in L^2_{\diamond}(S)$ . Then

$$\int_{B} (\sigma_1 - \sigma_2) |\nabla u_2|^2 \, \mathrm{d}x \ge ((\Lambda_{\sigma_2} - \Lambda_{\sigma_1})g, g) \ge \int_{B} (\sigma_1 - \sigma_2) |\nabla u_1|^2 \, \mathrm{d}x.$$

 $\stackrel{\longrightarrow}{} \quad \text{If } \sigma_1 - \sigma_2 > 0 \text{ in some region where we can localize the electric} \\ \text{energy } |\nabla u_1|^2 \text{ then } \Lambda_{\sigma_1} \neq \Lambda_{\sigma_2}.$ 

"A higher conductivity in such a region can not be balanced out."

#### A new identifiability result

Theorem (G, 2008)

Let  $\sigma_1, \sigma_2 \in L^{\infty}_+(B)$  satisfy (UCP) and  $\Lambda_{\sigma_1}$ ,  $\Lambda_{\sigma_2}$  be the corresponding current-to-voltage-maps.

If  $\sigma_2 \ge \sigma_1$  in some neighborhood V of S and  $\sigma_2 - \sigma_1 \in L^{\infty}_+(U)$  for some open  $U \subseteq V$  then there exists  $(g_n)$  such that

$$\langle (\Lambda_{\sigma_2} - \Lambda_{\sigma_1}) g_n, g_n \rangle \to \infty,$$

so in particular  $\Lambda_{\sigma_2} \neq \Lambda_{\sigma_1}$ .



Two conductivities can be distinguished if one is larger in some part that can be connected to the boundary without crossing a sign change.



#### Remarks

#### Remarks

- Theorem covers the Kohn-Vogelius result:
  - $\sigma|_S$  and its derivatives on S are uniquely determined by  $\Lambda_{\sigma}$ .
  - Piecewise analytic conductivities  $\sigma$  are uniquely determined.
- Theorem holds for general  $L^{\infty}_+$ -conductivities with (UCP).
  (In particular, it is not covered by the recent result of Isakov.)
- Theorem uses only monotonicity properties of real elliptic PDEs, thus also holds e.g. for linear elasticity, electro- and magnetostatics.

#### However,

Theorem needs a neighborhood without sign change. It cannot distinguish infinitely fast oscillating  $C^{\infty}$ -conductivities from constant ones.

The identifiability question for general  $L^{\infty}_+$ -conductivities (with or without (UCP)) for  $n \ge 3$  or partial boundary data is still open.

### **The Factorization Method**



#### **Detecting inclusions in EIT**

Special case of EIT: locate inclusions in known background medium.



 $\begin{array}{l} & \Lambda_1: \ g \mapsto u_1|_{\partial B}, \\ \text{where } u_1 \text{ solves} \\ & \nabla \cdot \sigma \nabla u_1 = 0 \quad \partial_{\nu} u_1|_{\partial B} = \left\{ \begin{array}{l} g & \text{on } S, \\ 0 & \text{else}, \end{array} \right. \\ & \text{with } \sigma = 1 + \sigma_1 \chi_{\Omega}, \ \sigma_1 \in L^\infty_+(\Omega). \end{array} \right. \end{array}$ 



Current-to-voltage map without inclusion:

 $\Lambda_0: g \mapsto u_0|_{\partial B},$ 

where  $u_0$  solves the analogous equation with  $\sigma = 1$ .

**Goal:** Reconstruct  $\Omega$  from comparing  $\Lambda_1$  with  $\Lambda_0$ .

#### Virtual measurements again



 $f \in (H^1_{\diamond}(\Omega))': \text{ applied source on } \Omega$  $L_{\Omega}: (H^1_{\diamond}(\Omega))' \to L^2_{\diamond}(S), \quad f \mapsto u|_S,$ where  $u \in H^1_{\diamond}(B)$  solves (for  $\overline{\Omega} \subset B$ ) $\nabla \cdot \sigma \nabla u = f \chi_{\Omega}, \quad \sigma \partial_{\nu} u|_{\partial B} = 0.$ 

For  $B \setminus (\overline{\Omega}_1 \cup \overline{\Omega}_2)$  connected with *S*:  $\overline{\Omega}_1 \cap \overline{\Omega}_2 = \emptyset \implies \mathcal{R}(L_{\Omega_1}) \cap \mathcal{R}(L_{\Omega_2}) = 0$ 

More constructive relation (for  $z \notin \partial \Omega$ ,  $B \setminus \overline{\Omega}$  connected with S):

 $z \in \Omega$  if and only if  $\Phi_z|_S \in \mathcal{R}(L_\Omega)$ 

with dipole potentials  $\Phi_z$ , i.e., solutions of

 $\Delta \Phi_z = d \cdot \nabla \delta_z$  and  $\partial_{\nu} \Phi_z |_{\partial B} = 0$  (d: arbitrary direction)  $\rightsquigarrow \quad \mathcal{R}(L_{\Omega}) \text{ determines } \Omega.$ 

#### **Range characterization**

 $\mathcal{R}(L_{\Omega})$  determines unknown inclusion  $\Omega$ :

 $z \in \Omega$  if and only if  $\Phi_z|_S \in \mathcal{R}(L_\Omega)$ 

In many cases,  $\mathcal{R}(L_{\Omega})$  can be computed from the measurements  $\Lambda_1$ ,  $\Lambda_0$ :

$$\mathcal{R}(L_{\Omega}) = \mathcal{R}(|\Lambda_0 - \Lambda_1|^{1/2})$$

(Proof uses a factorization of  $\Lambda_0 - \Lambda_1$  in  $L_\Omega$ ,  $L_\Omega^*$  and an auxiliary operator). Factorization Method (FM):

Locate  $\Omega$  from measurements  $\Lambda_1$  and reference measurements  $\Lambda_0$  by

- computing dipole potentials  $\Phi_z$  for all points  $z \in B$
- find all points z where  $\Phi_z \in \mathcal{R}(|\Lambda_0 \Lambda_1|^{1/2})$ , e.g., by plotting the norm of regularized approximations to

$$|\Lambda_0 - \Lambda_1|^{-1/2} \Phi_z.$$

#### History and known results

FM relies on range identity like  $\mathcal{R}(L_{\Omega}) = \mathcal{R}(|\Lambda_0 - \Lambda_1|^{1/2}).$ 

- FM originally developed by Kirsch for inverse scattering problems and extended to different settings and boundary conditions (with Arens, Grinberg)
- FM generalized to EIT (Brühl/Hanke, 1999)
- FM extended to many applications including electrostatics (Hähner), EIT with electrode models (Hyvönen, Hakula, Pursiainen, Lechleiter), EIT in half-space (Schappel), harmonic vector fields (Kress), Stokes equations (Tsiporin), optical tomography (Hyvönen, Bal, G), linear elasticity (Kirsch), general real elliptic problems (G), parabolic-elliptic problems (Frühauf, G, Scherzer)

All these results rely on a parameter jump. Can FM also detect smooth transitions from background to inclusion?

#### **Monotonicity arguments**

 $\Lambda_1: \text{NtD for } \sigma = 1 + \sigma_1 \chi_{\Omega_1}, \quad \Lambda_2: \text{NtD for } \sigma = 1 + \sigma_2 \chi_{\Omega_2}, \quad \sigma_1, \sigma_2 \ge 0$ 

Monotony between conductivity and measurements (NtDs):

 $\sigma_1 \chi_{\Omega_1} \le \sigma_2 \chi_{\Omega_2} \implies (\Lambda_1 g, g) \ge (\Lambda_2 g, g) \text{ for all } g \in L^2_{\diamond}(S)$ 

Together with range monotony:

 $\sigma_1 \chi_{\Omega_1} \le \sigma_2 \chi_{\Omega_2} \implies \mathcal{R}((\Lambda_0 - \Lambda_1)^{1/2}) \subseteq \mathcal{R}((\Lambda_0 - \Lambda_2)^{1/2})$ 

- → Result of range tests  $\Phi_z \in \mathcal{R}((\Lambda_0 \Lambda_1)^{1/2})$  is monotonous w.r.t. the inclusions size and contrast.
- FM-theory can be extended to irregular inclusions (e.g. with smooth transitions) by estimating them from above and below by regular inclusions with sharp jumps.

#### FM with irregular inclusions

 $\Lambda_1$ : NtD for  $\sigma = 1 + \sigma_1 \chi_{\Omega_1}$ ,  $\Lambda_0$ : NtD for  $\sigma = 1$ .

Theorem (G, Hyvönen 2007)

Let  $\sigma_1 \ge 0$  and  $\Omega$  have a connected complement.

•  $\Phi_z \in \mathcal{R}((\Lambda_0 - \Lambda_1)^{1/2})$  for every  $z \in \Omega$  for which  $\sigma_1$  is locally in  $L^{\infty}_+$ .

• 
$$\Phi_z \notin \mathcal{R}((\Lambda_0 - \Lambda_1)^{1/2})$$
 for every  $z \notin \Omega$ .

(and an analogous results holds for  $\sigma_1 \leq 0$ .)

FM does not only find inclusions where a parameter "jumps", but also where it merely "differs" from a known background value.



#### **Numerical example**



#### **Numerical example**



#### Remarks

#### Remarks

- Using monotonicity arguments the assumptions of the Factorization Method can be reduced to local properties.
- FM also works for inclusions that are not sharply separated from the background.
- With the same technique one can eliminate boundary regularity assumptions, or simultaneously treat inclusions of different types (e.g. absorbing and conducting, G and Hyvönen 2008).

#### However,

■ The result still needs a global definiteness property ( $\sigma_1 \ge 0$  or  $\sigma_1 \le 0$  in all inclusions). FM for indefinite problems is still an open problem.



### **Frequency-difference EIT**



#### **Reference measurements**

- Factorization method uses difference  $\Lambda_1 \Lambda_0$  between
  - actual measurements  $\Lambda_1$
  - reference measurements  $\Lambda_0$  at an inclusion-free body
- Advantage: If reference measurements are available then systematic errors cancel out, e.g., forward modeling errors about the body geometry.
- Disadvantage: If reference measurements have to be simulated (or calculated analytically) then forward modeling errors have a large impact on the reconstructions.
- In medical application, reference measurements at an inclusion-free body are usually not available.



#### Example



mainz

#### **Possible solution**

- Possible solution: Replace reference measurements by measurements at another frequency.
- Frequency-dependent EIT:
  - $\bullet$  g: applied current, time-harmonic with frequency  $\omega$
  - $\rightsquigarrow$  electric potential  $u^{\omega}$  that solves

$$\nabla \cdot \gamma^{\omega} \nabla u^{\omega} = 0, \qquad \gamma^{\omega} \partial_{\nu} u^{\omega}|_{\partial B} = \begin{cases} g & \text{on } S, \\ 0 & \text{else.} \end{cases}$$

with complex conductivity  $\gamma^{\omega}=\sigma+\mathrm{i}\epsilon\omega$  ,  $\epsilon\text{:}$  dielectricity.

Measurements at frequency  $\omega \rightsquigarrow \text{Current-to-voltage (NtD) map}$   $\Lambda^{\omega}: \ g \mapsto u^{\omega}|_{S}$ 



#### **Sketch of the idea**

How to use frequency-difference measurements:

- Solution  $\Omega$  Assume that for all x outside the inclusion  $\Omega$

 $\gamma^{\omega}(x) = \gamma_{0}^{\omega} \in \mathbb{C} \quad \text{ and } \quad \gamma^{\tau}(x) = \gamma_{0}^{\tau} \in \mathbb{C}$ 

- $\square$  Using  $\gamma_0^{\omega} \Lambda_{\omega}$  and  $\gamma_0^{\tau} \Lambda_{\tau}$  scales down conductivity outside  $\Omega$  to 1.
- $\rightarrow$  Difference  $\gamma_0^{\omega} \Lambda_{\omega} \gamma_0^{\tau} \Lambda_{\tau}$  should have similar properties to  $\Lambda_1 \Lambda_0$ .

*FM* should also work with  $\gamma_0^{\omega}\Lambda_{\omega} - \gamma_0^{\tau}\Lambda_{\tau}$  instead of  $\Lambda_1 - \Lambda_0$ .

For non-zero frequencies,  $\gamma_0^{\omega} \Lambda_{\omega}$  is not self-adjoint, so we will have to use its real or imaginary part

$$\Im(A) := \frac{1}{2i}(A - A^*), \qquad \Re(A) := \frac{1}{2}(A + A^*)$$

for an operator  $A: L^2_{\diamond}(S) \to L^2_{\diamond}(S)$ .

#### **fdEIT**

Theorem (G, Seo 2008)

Let  $\Omega$  have a connected complement,

 $\gamma^{\omega}(x) = \gamma_0^{\omega} + \gamma_{\Omega}^{\omega}(x)\chi_{\Omega}(x), \quad \text{and} \quad \gamma^{\tau}(x) = \gamma_0^{\tau} + \gamma_{\Omega}^{\tau}(x)\chi_{\Omega}(x).$ 

$$If \Im\left(\frac{\gamma_{\Omega}^{\omega}}{\gamma_{0}^{\omega}}\right) \in L^{\infty}_{+}(\Omega) \quad \text{or} \quad -\Im\left(\frac{\gamma_{\Omega}^{\omega}}{\gamma_{0}^{\omega}}\right) \in L^{\infty}_{+}(\Omega), \text{ then} \\ z \in \Omega \quad \text{if and only if} \quad \Phi_{z}|_{\partial B} \in \mathcal{R}\left(|\Im\left(\sigma_{0}^{\omega}\Lambda_{\omega}\right)|^{1/2}\right),$$

 $z \in \Omega$  if and only if  $\Phi_z|_{\partial B} \in \mathcal{R}\left(|\Re\left(\sigma_0^{\omega}\Lambda_{\omega} - \sigma_0^{\tau}\Lambda_{\tau}\right)|^{1/2}\right)$ .

( $\tau=0$  possible and same assertion also holds with interchanged  $\omega$  and  $\tau$ ).

FM can be used on single non-zero frequency data or on frequency-difference data.

#### **Numerical example**



(Conductivities:  $\sigma = 0.3 - 0.2\chi_{\Omega}(x), \quad \sigma_{\omega}(x) = 0.3 + 0.1i - 0.2\chi_{\Omega}(x).$ )

Mainz



#### Numerical example



Reconstructions of an ellipse-shaped body that is wrongly assumed to be a circle.



### **Unknown background**

- FM for frequency-difference EIT requires no reference data but still needs to know the constant background conductivity
- Heuristic method to estimate this from the data:
  - Eigenvectors for low eigenvalues should belong to highly oscillating potentials that do not penetrate deeply.
  - Most of the quotients of eigenvalues of  $\Lambda^{\omega}$  and  $\Lambda^{\tau}$  should behave like  $\gamma_0^{\tau}/\gamma_0^{\omega}$ .
  - For zero-frequency data  $\Lambda^{\tau} = \Lambda_1$  we use  $|\Re (\alpha \Lambda_{\omega} \Lambda_1)|^{\frac{1}{2}}$  with the median  $\alpha$  of quotients of eigenvalues of  $\Lambda^{\omega}$  and  $\Lambda_1$ .
  - Analogously, the phase of  $\gamma_0^{\omega}$  can be estimated from quotients of real and imaginary part of the eigenvalues of  $\Lambda^{\omega}$ .

#### **Unknown background**



Reconstructions for unknown background conductivity without and with noise.



#### Remarks

#### Remarks

- Simulating reference data makes Factorization Method vulnerable to forward modeling errors.
- Using frequency-difference measurements strongly improves FMs robustness. Results are comparable to those with correct reference data.
- Unknown background conductivities can be estimated from the data. However,
- Scaling the conductivity by simple multiplication only works for constant background conductivity.
- Theory needs contrast conditions in the inclusions with global definiteness properties.

#### Conclusions

Comparatively simple monotony arguments yield :

- New theoretical identifiability result for the Calderon-problem
  - Two conductivities can be distinguished if one is larger in some part that can be connected to the boundary without crossing a sign change.
- Improvements for the Factorization Method:
  - FM does not only find inclusions where a parameter "jumps", but also where it merely "differs" from a known background value.
  - Reference data can be replaced by frequency-difference data, thus strongly improving the methods robustness.
- However,
- There are important open problems connected with definiteness properties.