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Setting

S

Ω

S: Measurement device
Ω: Magnetic / dielectric object

Apply surface currents J on S
(time-harmonic with frequency ω).

 Electromagnetic field (Eω, Hω)

(time-harmonic with frequency ω)

Measure field on S
(and try to locate Ω from it).

Idealistic assumption:

Measure (tangential component of) Eω|S for all possible J

 Measurement operator: Mω : J 7→ γτE
ω|S

Goal: Locate Ω from the measurements Mω.
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Maxwell’s equations

Time-harmonic Maxwell’s equations

curlHω + iωǫEω = J in R
3,

− curlEω + iωµHω = 0 in R
3.

Silver-Müller radiation condition (RC)
∫

∂Bρ

∣

∣ν ∧√
µHω +

√
ǫEω

∣

∣

2
dσ = o(1), ρ→ ∞.

Eω: electric field ǫ: dielectricity
Hω: magnetic field µ: permeability
ω: frequency J : applied currents, suppJ ⊆ S

More idealistic assumptions: ǫ = 1, µ = 1 outside the object Ω

Typical metal detectors work at very low frequencies:

frequency ≈ 20kHz, wavelength ≈ 15km, ω ≈ 4 × 10−4m−1
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Forward Problem

Eliminate Hω from Maxwell’s equations:

curl
1

µ
curlEω − ω2ǫEω = iωJ in R

3, (1)

+ radiation condition. (RC)

Function space: Eω ∈ Hloc(curl,R3; C3)

 

{

Left side of (1) makes sense (in D′(R3; C3)),
Eω has tangential trace on S: γtE

ω|S ∈ TH−1/2(curl, S).

Under certain conditions (1)+(RC) have a unique solution for all

J ∈ TH−1/2(div, S) = TH−1/2(curl, S)′

and the solution depends continuously on J .

 

Mω : TH−1/2(div, S) → TH−1/2(curl, S), J 7→ γτE
ω|S

is a continuous, linear operator.
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Scattered Field

S

Ω

S

Ω

Mω
t : J 7→ γτE

ω
t , Mω

i : J 7→ γτE
ω
i , Mω

s := Mω
t −Mω

i

Eω
t solution for

ǫ= 1 + ǫ1χΩ(x)

µ= 1 + µ1χΩ(x)

Eω
i solution for
ǫ = 1, µ = 1

"total field" "incoming field" "scattered field"
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Virtual Measurements

S

Ων

L

ψ: (tang. comp. of) a magnetic field on ∂Ω

L :

{

TH−1/2(div, ∂Ω)→TH−1/2(curl, S),

ψ 7→ γτE
ω,

where

curl curlEω − ω2Eω = 0 in R
3,

ν ∧ curlEω|∂Ω =ψ + (RC).

L is part of the measurement operator:

Mω
s = LG,

with G : J 7→ ν ∧ curlEω
s |∂Ω.

Actually Mω
s = LFLT

(cf. G., Hanke, Kirsch, Muniz, Schneider (2005)
for magnetic excitations and perfectly conducting objects).
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Range characterization

S

Ω

L

Electric field of a point current in point z with direction d:

curl curlEω
z,d − ω2Eω

z,d = iωδzd in R
3

+ (RC).

R(L) determines Ω:

For every z below S and every direction d

z ∈ Ω ⇐⇒ γτE
ω
z,d ∈ R(L)

=⇒: If z ∈ Ω then Eω
z,d solves eqs. in definition of L.

⇐=: If z 6∈ Ω then every function that "looks like" Eω
z,d on S must have

a singularity in z because of analytic continuation.
(G., Hanke, Kirsch, Muniz, Schneider, 2005)
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Linear Sampling Method (LSM)

γτE
ω
z,d ∈ R(Mω

s ) = R(LG) ⊆ R(L) =⇒ z ∈ Ω

Linear Sampling Method (Colton, Kirsch 1996):

For every z below S test whether γτE
ω
z,d ∈ R(Mω

s ).

 (LSM) finds a subset of Ω.

More common formulation:

Mω
s has dense range.

 For all ǫ > 0 there exists Jz,ǫ with ‖Mω
s Jz,ǫ − γτE

ω
z,d‖ < ǫ.

Mω
s compact

 If z 6∈ Ω then γτE
ω
z,d 6∈ R(Mω

s ) and thus ‖Jz,ǫ‖ → ∞ for ǫ→ 0.

 For every ǫ > 0 Jz,ǫ can be chosen such that lim
z→∂Ω

‖Jz,ǫ‖ = ∞.
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Numerical result (by C. Schneider)

Size of S: 32cm × 32cm

ω = 4× 10−4, i. e. frequency ≈ 20kHz

Neumann-boundary condition
ν ∧ curlE|∂Ω = 0

("infinite permeability in Ω")

Currents imposed / electric fields
measured on a 6 × 6 grid on S

Ω: ball with r = 4cm, 15cm below S

Forward solver:
BEM from Erhard / Potthast, Göttin-
gen

Theory: LSM finds a (possibly empty) subset of Ω

Numerics: LSM finds Ω

Why are the results so good?
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Factorization Method

γτE
ω
z,d ∈ R(L) ⇐⇒ z ∈ Ω

LSM: R(Mω
s ) ⊆ R(L)

 Testing whether γτE
ω
z,d ∈ R(Mω

s ) finds subset of Ω.

For similar problems it was shown that

R(L) = R(|Mω
s |1/2). (2)

 Testing whether γτE
ω
z,d ∈ R(|Mω

s |1/2) finds Ω.
(so-called Factorization Method, Kirsch 1998).

Numerical examples show almost no difference between testing

Eω
z,d ∈ R(Mω

s ) or Eω
z,d ∈ R(|Mω

s |1/2).

Possible explanation for the good performance: maybe (2) holds.
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R(Mω
s ) vs. R(|Mω

s |1/2)

Eω
z,d ∈ R(Mω

s ) Eω
z,d ∈ R(|Mω

s |1/2)
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Range identity

Range identity: R(L) = R(|Mω
s |1/2). (2)

originally developed by Kirsch (1998) for far field measurements for
the Helmholtz equation,

generalized to EIT (Brühl/Hanke, 1999), electrostatics (Hähner, 1999)

holds for harmonic vector fields (Kress, 2002),

holds for far-field measurements for Maxwell’s equations (Kirsch,
2004)

was shown for several other situations
(Arens, Bal, Frühauf, Grinberg, Hyvönen, Schappel, Scherzer)

holds for general real elliptic problems (G., 2006).

No result is known for this near-field measurements for Maxwell’s eqs.
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Low-frequency asymptotics

Maxwell’s equations

curl
1

µ
curlEω − ω2ǫEω = iωJ in R

3

+ radiation condition (RC)
also imply

div (ǫEω) =
1

iω
div J in R

3

(Time-harmonic formulation of conservation of surface charges ρ
div J = −∂tρ, div (ǫEω) = ρ.)

Formal asymptotic analysis for div J 6= 0:

Eω =
1

ω
E−1 +E0 +O(ω),

Rigorous analysis (for fixed incoming waves): Ammari, Nédélec, 2000
(Low frequency electromagnetic scattering, SIAM J. Math. Anal.)
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Formal asymptotic analysis

Asymptotic analysis: Eω =
1

ω
E−1 + E0 +O(ω), where E−1, E0 solve

curl
1

µ
curlE−1 = 0,

}

 curlE−1 = 0 E−1 = ∇ϕ
div(ǫE−1) = −i div J,

curl
1

µ
curlE0 = 0,

}

 E0 = 0
div(ǫE0) = 0,

(ignoring radiation conditions)

 Eω =
1

iω
∇ϕ+O(ω), where div (ǫ∇ϕ) = div J.

Interpretation:
1

iω
ϕ : electrostatic potential created by surface charges ρ =

1

iω
div J .
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Electrostatic measurements

Consequence: The measurements

Mω
s : J 7→ γτE

ω
s

are essentially electrostatic measurements:

Mω
s ≈ − 1

iω
∇SΛs∇∗

S , J
∇∗

S7−→ div J = ρ
Λs7−→ ϕ|S ∇S7−→ γτ∇ϕ,

with the electrostatic measurement operator Λs = Λt − Λi,

Λt :

{

H−1/2(S)→H1/2(S),

ρ 7→ϕt|S ,
Λi :

{

H−1/2(S)→H1/2(S),

ρ 7→ϕi|S ,
div (ǫt∇ϕt) = ρ div (ǫi∇ϕi) = 0

ǫt = 1 + ǫ1χΩ ǫi = 1

"electrostatic measurements "electrostatic measurements
with object" "without object"
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Factorization method for ES

For electrostatic measurements the range identity holds:

R(|Λs|1/2) = R(LES)

with "virtual electrostatic measurements" LES : H−1/2(∂Ω) → H1/2(S).
(Hähner 1999: grounded objects, G. 2006: general theory)

 R(|∇SΛs∇∗
S |1/2) = R(∇SLES)

Ez,d: electrostatic field of a dipole in z with direction d
( = low-frequency limit of Eω

z,d )

For every z below S and every direction d

z ∈ Ω ⇐⇒ γτEz,d ∈ R(∇SLES) = R(|∇SΛs∇∗
S |1/2)

 Factorization Method works for the low-frequency asymptotics.
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Consequences / Numerical result

Good performance of LSM can be explained by the fact that the
measurements are (up to an error that is below measurement accuracy)
electrostatic measurements for which the Factorization Method works.

 Treat data as electrostatic data and use Factorization Method.

Numerical example

Same forward data as in the
previous example.

Reconstruction used
Ez,d instead of Eω

z,d

Boundary condition:
ν ∧ curlEω|∂Ω = 0 =⇒ ν · Eω|∂Ω = 0

("zero dielectricity in Ω")
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Current loops

In practice: currents will be applied along closed loops.

 div J = 0, no electrostatic effects

Also the electric field can only be measured along closed loops.

 More realistic model for the measurements:

j∗Mωj,

where j : TL2
⋄(S) = {v ∈ TL2(S), div v = 0} →֒ TH−1/2(div, S).

j∗ "factors out gradient fields", in particular

j∗(γτEz,d) = 0 and j∗(γτE
ω
z,d) ≈ 0.

The presented sampling method relies on electrostatic effects that do not
appear in practice.
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Asymptotics again

Maxwell’s equations

curl
1

µ
curlEω − ω2ǫEω = iωJ, div (ǫEω) = 0.

+ radiation condition (RC)

Asymptotic analysis: E−1 = E0 = 0, Eω = ωE1 + ω2E2 + . . ., with

curl
1

µ
curlE1 = iJ,

div(ǫE1) = 0,

curl
1

µ
curlE2 − ǫE0 = 0,

}

 E2 = 0
div(ǫE2) = 0,

(still ignoring additional conditions at x = ∞)

E:=−iE1

 Eω = iωE +O(ω3), where curl
1

µ
curlE = J, div(ǫE) = 0.

Bastian Gebauer: ”Sampling methods for low-frequency electromagnetic imaging”



Interpretation

Eω = iωE +O(ω3), where curl
1

µ
curlE = J, div(ǫE) = 0.

B := curlE solves

curl 1
µB = J, divB = 0.

 B is the magnetostatic field generated
by a steady current J (Ampère’s Law).

B = 1
i curlE  E is a vector potential of B

(unique up to addition of A with curlA = 0, i. e. up to A = ∇ϕ).

div(ǫE) = 0 determines E uniquely (so-called Coulomb gage).

 E is (a potential of) the magnetostatic field induced by J .

Figure based on http://de.wikipedia.org/wiki/Bild:RechteHand.png, published under

the GNU Free Documentation License (FDL) by ”Frau Holle”.
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Rigorous analysis

Theorem

For suff. small ω there exists a unique Eω of Maxwell’s
equations and for every ball Br there exists Cr > 0 such that

‖Eω − iωE‖H(curl,Br) ≤ Crω
3 ‖J‖TL2

⋄
(S).

Proof

Reduce Maxwell’s equation and magnetostatic equations both to a
bounded domain Br with non-local exact boundary conditions.

For low frequencies the reduced problems are equivalent to new
variational formulations containing also the normal component of the
field.

These new variational formulations satisfy a uniform coerciveness
condition from which the unique solvability of Maxwell’s equations
and the asserted asymptotics follow.
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Magnetostatic measurements

Analogously to the electrostatic case, the measurements

j∗Mω
s j : J 7→ γτE

ω
s

are now essentially magnetostatic measurements:

j∗Mω
s j ≈ −iωMs,

with the magnetostatic measurement operator Ms = Mt −Mi,

Mt :

{

TL2
⋄(S)→TL2

⋄(S)′,

J 7→ γτEt|S ,
Mi :

{

TL2
⋄(S)→TL2

⋄(S)′,

J 7→ γτEi|S ,

curl 1
µt

curlEt = J

div Et = 0

µt = 1 + µ1χΩ

curl 1
µi

curlEi = J

div Ei = 0

µi = 1

"magnetostatic measurements "magnetostatic measurements
with object" "without object"

(Note that replacing div ǫE = 0 with divE = 0 changesE only by a gradient field.)
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Factorization Method for MS

For magnetostatic measurements the range identity holds:

R(|Ms|1/2) = R(LMS)

with "virtual magnetostatic measurements"

LMS : TH−1/2(∂Ω)/N → TL2
⋄(S)′.

(Kress, 2002: similar situation with harmonic vector fields, G. 2006: general theory)

Gz,d = curl d
|x−z| : vector potential of the magnetostatic field of a magnetic

dipole in z with direction d

For every z below S and every direction d

z ∈ Ω ⇐⇒ γτGz,d ∈ R(LMS) = R(|Ms|1/2)

Factorization Method also works for (the low-frequency asymptotics of)
current loops but a different singular function has to be used.
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Numerical result
Same setting as in the previous two
examples.

Simulated divergence-free currents
(current loops) using normal
magnetic dipole excitation on a
12 × 12 grid.

Dirichlet boundary condition
ν ∧ E|∂Ω = 0

("perfectly conducting object")

Reconstruction using γτGz,d, i. e.
with the Factorization Method for
magnetostatic data.
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Eddy currents

What happens if the object has a finite conductivity σ > 0?

curl
1

µ
curlEω − ω2ǫEω = iω(J+σEω)

Low frequency asymptotics in the time domain lead to

∂t(σE) − curl
1

µ
curlE = −∂tJ,

which is parabolic in the object (σ > 0) and elliptic outside (σ = 0).
(Ammari, Buffa, Nédélec, 2000, SIAM J. Math. Anal.)

For the scalar model problem

∂t(χΩu) − gradκ div u = 0

the Factorization Method works for κ = 1 + κ1χΩ with κ1 > 0.
(Frühauf, G., Scherzer, to appear in SIAM J. Numer. Anal.)

We expect that the method also works for conducting diamagnetic objects
(e. g. copper).
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Summary / Conclusions

For low-frequency electromagnetic imaging we obtained

"Afterward explanation:"

Good performance of the LSM for near-field Maxwell’s equations can
be explained by the fact that the measurements (essentially) agree
with electrostatic measurements for which the Factorization Method
works.

"Practical consequence:"

For the practically relevant case of current loops the test function for
sampling methods should be replaced by Gz,d = curl d

|x−z| .

In other words, one should consider the measurements as
magnetostatic measurements and apply the Factorization Method.

"Optimistic outlook:"

Analysis of a scalar model problem suggests that the method also
works for conducting diamagnetic objects (e. g. copper).
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