Electric potentials with localized divergence properties

Bastian Gebauer

bastian.gebauer@oeaw.ac.at

Johann Radon Institute for Computational and Applied Mathematics (RICAM)

Austrian Academy of Sciences, Linz, Austria

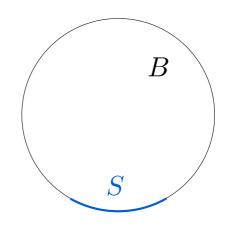
AG Numerische Mathematik, Joh. Gutenberg-Universität Mainz, June 11–15, 2007

Overview

- Motivation and existence of localized potentials
- Construction and numerical examples
- Relation and consequences for the Factorization Method

Motivation and existence

Electrical impedance tomography



B: bounded domain

 $S \subseteq \partial B$: relatively open subset

 $\sigma \in L^{\infty}_{+}(B)$: electrical conductivity in B

 $g \in L^2_{\diamond}(S)$: applied current on S

 \leadsto Electric potential $u \in H^1_{\diamond}(B)$ that solves

$$\nabla \cdot \sigma \nabla u = 0, \qquad \sigma \partial_{\nu} u|_{\partial B} = \begin{cases} g & \text{on } S, \\ 0 & \text{else.} \end{cases}$$

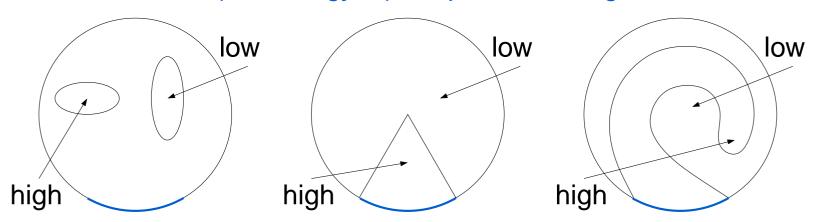
EIT: Measure $u|_S$ for one or several input currents g and reconstruct (properties of) σ from it.

Additional assumption: σ satisfies (UCP), i.e.,

if $u|_T = 0$, $\sigma \partial_{\nu} u|_T = 0$ for some open part T of a surface in \overline{B} then u = 0.

Localized potentials

Can we localize (the energy of) the potentials in given subsets?



Restrictions:

- High energy parts have to be connected to the boundary.
- Because of (UCP) zero energy parts are not possible.
- Goal: sequences (g_n) such that energy of (u_n) diverges on some subset while tending to zero on another.

Energy of a potential
$$u$$
: $\int_{\Omega} \sigma |\nabla u|^2 dx \approx \int_{\Omega} |\nabla u|^2 dx \approx ||u||_{H^1_{\diamond}(\Omega)}^2$

Theoretical motivation

Calderon problem with local data:

Is σ uniquely determined by the full (local) current-to-voltage map

$$\Lambda_{\sigma}: L_{\diamond}^2(S) \to L_{\diamond}^2(S), \quad g \mapsto u|_S$$
 ?

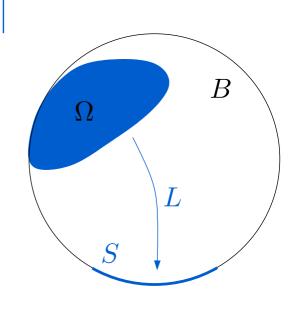
Monotonicity property:

$$\int_{B} (\sigma_1 - \sigma_2) |\nabla u_2|^2 dx \ge \langle (\Lambda_{\sigma_2} - \Lambda_{\sigma_1}) g, g \rangle \ge \int_{B} (\sigma_1 - \sigma_2) |\nabla u_1|^2 dx$$

 \leadsto If $\sigma_1 - \sigma_2 > 0$ in some region where we can localize the electric energy $|\nabla u_1|^2$ then $\Lambda_{\sigma_1} \neq \Lambda_{\sigma_2}$.

"A higher conductivity in such a region can not be balanced out."

Virtual Measurements



 $f \in (H^1_{\diamond}(\Omega))'$: applied source on Ω

$$L_{\Omega}: (H^1_{\diamond}(\Omega))' \to L^2_{\diamond}(S), \quad f \mapsto u|_S,$$

where $u \in H^1_{\diamond}(B)$ solves

$$\int_{B} \sigma \nabla u \cdot \nabla v \, \mathrm{d}x = \langle f, v |_{\Omega} \rangle \quad \text{ for all } v \in H^{1}_{\diamond}(B).$$

If
$$\overline{\Omega} \subset B$$
: $\nabla \cdot \sigma \nabla u = f$, $\sigma \partial_{\nu} u|_{\partial B} = 0$.

(UCP) yields: If $\overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset$, $B \setminus (\overline{\Omega}_1 \cup \overline{\Omega}_2)$ is connected and its boundary contains S then $\mathcal{R}(L_{\Omega_1}) \cap \mathcal{R}(L_{\Omega_2}) = 0$.

Dual operator $L'_{\Omega}: L^2_{\diamond}(S) \to H^1_{\diamond}(\Omega), \quad g \mapsto u|_{\Omega}$, where u solves

$$\nabla \cdot \sigma \nabla u = 0, \qquad \sigma \partial_{\nu} u|_{\partial B} = \begin{cases} g & \text{on } S, \\ 0 & \text{else.} \end{cases}$$

Some functional analysis

Lemma

Let X, Y be two reflexive Banach spaces, $A \in \mathcal{L}(X, Y)$, $y \in Y$. Then

$$y \in \mathcal{R}(A)$$
 iff $|\langle y', y \rangle| \le C ||A'y'|| \quad \forall y' \in Y'$.

Corollary

If $||L'_{\Omega_1}g|| \leq C ||L'_{\Omega_2}g||$ for all applied currents g, i.e., $||u|_{\Omega_1}|| \leq C ||u|_{\Omega_2}||$ for the corresponding potentials u, then $\mathcal{R}(L_{\Omega_1}) \subseteq \mathcal{R}(L_{\Omega_2})$.

Contraposition

If $\mathcal{R}(L_{\Omega_1}) \not\subseteq \mathcal{R}(L_{\Omega_2})$ then there exist currents (g_n) such that the corresponding potentials (u_n) satisfy

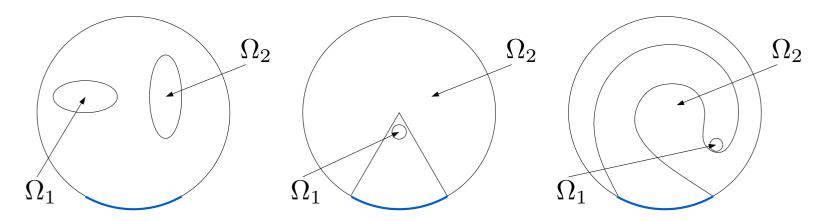
$$\|u_n|_{\Omega_1}\|_{H^1_{\diamond}(\Omega_1)} \to \infty$$
 and $\|u_n|_{\Omega_2}\|_{H^1_{\diamond}(\Omega_2)} \to 0$.

Existence of localized potentials

Theorem

If $\overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset$, $B \setminus (\overline{\Omega_1} \cup \overline{\Omega_2})$ is connected and its boundary contains S, then there exists currents (g_n) such that (the energy of) the corresponding potentials (u_n) diverges on Ω_1 while tending to zero on Ω_2 , i.e.,

$$\int_{\Omega_1} \sigma |\nabla u_n|^2 dx \to \infty, \quad \text{and} \quad \int_{\Omega_2} \sigma |\nabla u_n|^2 dx \to 0.$$



Result uses only ellipticity properties, thus also holds e.g. for linear elasticity, electro- and magnetostatics.

Theoretical consequence

Corollary

Let $\sigma_1, \sigma_2 \in L^\infty_+(B)$ satisfy (UCP) and Λ_{σ_1} , Λ_{σ_2} be the corresponding current-to-volage-maps.

If $\sigma_2 \geq \sigma_1$ in some neighbourhood V of S and $\sigma_2 - \sigma_1 \in L^{\infty}_+(U)$ for some open $U \subseteq V$ then there exists (g_n) such that

$$\langle (\Lambda_{\sigma_2} - \Lambda_{\sigma_1}) g_n, g_n \rangle \to \infty,$$

so in particular $\Lambda_{\sigma_2} \neq \Lambda_{\sigma_1}$.

Consequence:

Piecewise constant conductivities σ are uniquely determined by Λ_{σ} (cf. e.g. Druskin, 1998, for local boundary data for of a halfspace)

Construction

Construction

More constructive version of the functional analysis:

Let $h \in \mathcal{R}(L_{\Omega_1})$, $h \notin \mathcal{R}(L_{\Omega_2})$. Define $\gamma_{\alpha} \in L^2_{\diamond}(S)$ by

$$\gamma_{\alpha} = (L_{\Omega_2} L_{\Omega_2}^* + \alpha I)^{-1} h, \qquad \alpha > 0.$$

Then

$$\|L'_{\Omega_2}\gamma_{\alpha}\|^2 \leq C\|L'_{\Omega_1}\gamma_{\alpha}\|$$
 and $\|L'_{\Omega_2}\gamma_{\alpha}\| \to \infty$ for $\alpha \to 0$.

So for the currents $g_\alpha:=\frac{1}{\|L'_{\Omega_2}\gamma_\alpha\|^{3/2}}\gamma_\alpha$, the corresponding potentials u_α satisfy

$$||L'_{\Omega_1} g_{\alpha}||^2 \approx \int_{\Omega_1} \sigma |\nabla u_{\alpha}|^2 dx \to \infty,$$
$$||L'_{\Omega_2} g_{\alpha}||^2 \approx \int_{\Omega_2} \sigma |\nabla u_{\alpha}|^2 dx \to 0.$$

Construction

Even more specific for $\sigma = 1$:

▶ h_z : boundary data of a electric dipole in $z \in B$, i.e., $h_z = u_z|_S$, where

$$\Delta u_z = d \cdot \nabla \delta_z, \qquad \partial_{\nu} u_z |_{\partial B} = 0$$

 $(d \in \mathbb{R}^n, |d| = 1 \text{ fixed arbitrary direction}).$

• If $B \setminus \overline{\Omega}$ is connected and its boundary contains S, then for $z \notin \partial \Omega$:

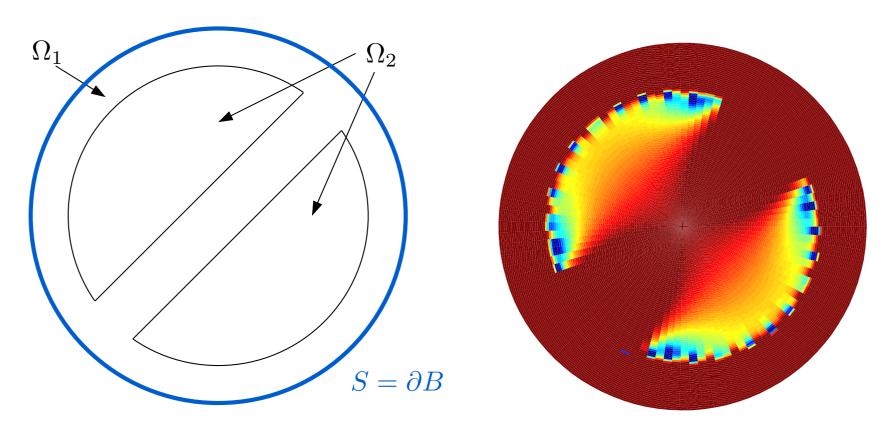
$$h_z \in \mathcal{R}(L_\Omega)$$
 iff $z \in \Omega$.

lacksquare Define currents $g_{\alpha,z}$, potentials $u_{\alpha,z}$ as on the last slide, then

$$\int_{\Omega_1} \sigma |\nabla u_{\alpha,z}|^2 dx \to \infty, \qquad \int_{\Omega_2} \sigma |\nabla u_{\alpha,z}|^2 dx \to 0$$

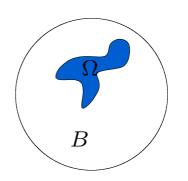
for every neighbourhood Ω_1 of z.

Numerical example



z=(0,0), color axis scaled logarithmically and cropped.

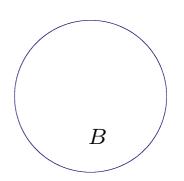
Special case of EIT: locate inclusions in known background medium.



Current-to-voltage map with inclusion:

$$\Lambda_1: g \mapsto u_1|_{\partial B},$$

where
$$u_1$$
 solves $\nabla \cdot \sigma \nabla u_1 = 0$, $\partial_{\nu} u_1|_{\partial B} = g$ with $\sigma = 1 + \sigma_1 \chi_{\Omega}$, $\sigma_1 > 0$.



Current-to-voltage map without inclusion:

$$\Lambda_0: g \mapsto u_0|_{\partial B},$$

where u_0 solves $\Delta u_0 = 0$, $\partial_{\nu} u_0|_{\partial B} = g$ with $\sigma = 1$.

Factorization method reconstructs Ω from $\Lambda:=\Lambda_0-\Lambda_1$ by using that for $z\notin\partial\Omega$:

$$h_z \in \mathcal{R}(\Lambda^{1/2})$$
 iff $z \in \Omega$.

Factorization Method: for $z \notin \partial \Omega$

$$z \in \Omega$$
 iff $h_z \in \mathcal{R}(\Lambda^{1/2})$.

Numerical implementations usually calculate regularized preimage

$$\psi_{z,\alpha} \approx \Lambda^{-1/2} h_z$$

and use that (for $z \notin \partial \Omega$)

$$z \in \Omega$$
 iff $\|\psi_{z,\alpha}\|$ bounded.

 $\psi_{z,\alpha} pprox \Lambda^{-1/2} h_z$ has no physical interpretation.

Similar criterion (for $z \notin \partial \Omega$) uses $g_{z,\alpha} := \Lambda^* (\Lambda \Lambda^* + \alpha I)^{-1} h_z \approx \Lambda^{-1} h_z$

$$z \in \Omega$$
 iff $||L'_{\Omega}g_{z,\alpha}||$ bounded.

Physical interpretation: $L'_{\Omega}g_{z,\alpha}=u_{z,\alpha}|_{\Omega}$ with electric potential $u_{z,\alpha}$ generated by $g_{z,\alpha}$ (in homogeneous body).

Lemma

There exist C, C' > 0:

$$|\nabla u_{z,\alpha}(z)| \le C \|L_{\Omega}g_{z,\alpha}\|$$
 for $z \in \Omega$,

$$|\nabla u_{z,\alpha}(z)| \ge C' ||L_{\Omega} g_{z,\alpha}||^2$$
 for $z \notin \Omega$.

Variant of the Factorization Method (for $z \notin \partial \Omega$):

$$z \in \Omega$$
 iff $|\nabla u_{z,\alpha}(z)|$ bounded.

(EIT-analogue of Arens' variant of the FM / LSM for inverse scattering).

Interpretation in context of localized potentials:

For fixed $z \notin \Omega$ (and after appropriate scaling) $u_{z,\alpha}(\cdot)$ are potentials with

- ightharpoonup energy tending to zero on Ω ,
- ullet energy tending to infinity on every neighbourhood of z.

Summary

- In theory, electric potentials can be localized on quite arbitrary regions as long as they are connected to the boundary.
- In practice, such potentials can be calculated by solving ill-posed equations.
- The approximated preimages of the Factorization Method (after appropriate scaling) can be interpreted as potentials that localize outside the unknown inclusions.