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Motivation
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Electrical impedance tomography

S

B
B: bounded domain

S ⊆ ∂B: relatively open subset
σ ∈ L∞

+ (B): electrical conductivity in B

g ∈ L2
⋄
(S): applied current on S

 Electric potential u ∈ H1
⋄
(B) that solves

∇ · σ∇u = 0, σ∂νu|∂B =

{

g on S,

0 else.

EIT: Measure u|S for one or several input currents g and reconstruct
(properties of) σ from it.

Regularity assumption:
σ satisfies (UCP) in connected neighbourhoods U of S, i.e.,

∇ · σ∇u = 0 in U ,

{

u|S = 0, σ∂νu|S = 0 =⇒ u = 0.

u|V = const., V ⊂ U open =⇒ u = const.
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Localized potentials

Can we localize (the energy of) the potentials in given subsets?

low

high

low

high

low

high

Restrictions:

High energy parts have to be connected to the boundary.

Because of (UCP) zero energy parts are not possible.

 Goal: sequences (gn) such that energy of (un) diverges on some
subset while tending to zero on another.

Energy of a potential u:
∫

Ω

σ|∇u|2 dx ≈

∫

Ω

|∇u|2 dx ≈ ‖u‖2
H1

⋄
(Ω)
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Theoretical motivation

Calderon problem with partial data:

Is σ uniquely determined by the (local) current-to-voltage map

Λσ : L2
⋄
(S) → L2

⋄
(S), g 7→ u|S ?

For measurements on whole boundary S = ∂B:

Identifiabilty question posed by Calderon 1980.

For smooth σ answered positively by Sylvester and Uhlmann 1987 for
n ≥ 3 and by Nachmann 1996 for n = 2.

For n = 2 and general σ ∈ L∞

+ answered positively by Astala and
Päivärinta 2006.

Still an open question for general σ ∈ L∞

+ (with or without (UCP)) for
n ≥ 3.
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Theoretical motivation

Connection between Calderon problem (with S ⊆ ∂B) and localized
potentials:

Monotonicity property:

Let u1, u2 be electric potentials for conductivities σ1, σ2 created by
the same boundary current g ∈ L2

⋄
(S). Then

∫

B

(σ1 − σ2)|∇u2|
2 dx ≥ ((Λσ2

− Λσ1
)g, g) ≥

∫

B

(σ1 − σ2)|∇u1|
2 dx.

 If σ1 − σ2 > 0 in some region where we can localize the electric
energy |∇u1|

2 then Λσ1
6= Λσ2

.

"A higher conductivity in such a region can not be balanced out."
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Known results on loc. potentials

Potential can be concentrated around z ∈ S if σ ∈ C2 around z.
(Kohn, Vogelius 1984)

 σ|S and its derivatives on S are determined by local
voltage-to-current map.

Using Runge’s approximation property the high energy part can be
"shifted" into the interior of B.
(Kohn, Vogelius 1985)

 Piecewise analytic σ is determined by local voltage-to-current map.

In dimension n ≥ 3, C2-conductivities σ are determined by the local
voltage-to-current map, .
(Kenig, Sjöstrand, Uhlmann 2007,

uses the Kohn-Vogelius result for determining σ|S , ∂νσ|S .)

In this talk:

Localized potentials exist for arbitrary σ ∈ L∞

+ that fulfill (UCP).
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Existence of localized potentials
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Virtual Measurements

S

Ω

LΩ

f ∈ (H1
⋄
(Ω))′: applied source on Ω

LΩ : (H1
⋄
(Ω))′ → L2

⋄
(S), f 7→ u|S ,

where u ∈ H1
⋄
(B) solves

∫

B

σ∇u · ∇v dx = 〈f, v|Ω〉 for all v ∈ H1
⋄
(B).

If Ω ⊂ B: ∇ · σ∇u = f , σ∂νu|∂B = 0.

(UCP) yields: If Ω1 ∩ Ω2 = ∅, B \ (Ω1 ∪ Ω2) is connected and its boundary
contains S then R(LΩ1

) ∩R(LΩ2
) = 0.

Dual operator L′

Ω : L2
⋄
(S) → H1

⋄
(Ω), g 7→ u|Ω, where u solves

∇ · σ∇u = 0, σ∂νu|∂B =

{

g on S,

0 else.
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Some functional analysis

Lemma
Let X, Y be two reflexive Banach spaces, A ∈ L(X, Y ), y ∈ Y . Then

y ∈ R(A) iff |〈y′, y〉| ≤ C ‖A′y′‖ ∀y′ ∈ Y ′.

Corollary
If ‖L′

Ω1
g‖ ≤ C ‖L′

Ω2
g‖ for all applied currents g, i.e., ‖u|Ω1

‖ ≤ C ‖u|Ω2
‖ for

the corresponding potentials u, then R(LΩ1
) ⊆ R(LΩ2

).

Contraposition
If R(LΩ1

) 6⊆ R(LΩ2
) then there exist currents (gn) such that the

corresponding potentials (un) satisfy

‖un|Ω1
‖H1

⋄
(Ω1) → ∞ and ‖un|Ω2

‖H1
⋄
(Ω2) → 0.
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Existence of localized potentials

Theorem
If Ω1 ∩ Ω2 = ∅, B \ (Ω1 ∪ Ω2) is connected and its boundary contains S,
then there exists currents (gn) such that (the energy of) the corresponding
potentials (un) diverges on Ω1 while tending to zero on Ω2, i.e.,

∫

Ω1

σ|∇un|
2 dx → ∞, and

∫

Ω2

σ|∇un|
2 dx → 0.

Ω1

Ω2

Ω1

Ω2

Ω1

Ω2

Result uses only ellipticity properties, thus also holds e.g. for linear
elasticity, electro- and magnetostatics.
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Theoretical consequence

Corollary

Let σ1, σ2 ∈ L∞

+ (B) satisfy (UCP) and Λσ1
, Λσ2

be the corresponding
current-to-volage-maps.

If σ2 ≥ σ1 in some neighbourhood V of S and σ2 − σ1 ∈ L∞

+ (U) for some
open U ⊆ V then there exists (gn) such that

〈(Λσ2
− Λσ1

)gn, gn〉 → ∞,

so in particular Λσ2
6= Λσ1

.
U

V

Consequences (already known from the Kohn-Vogelius result):

σ|S and its derivatives on S are uniquely determined by Λσ.

Piecewise analytic conductivities σ are uniquely determined by Λσ.
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Construction
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Construction

More constructive version of the functional analysis:

Let h ∈ R(LΩ1
), h 6∈ R(LΩ2

). Define γα ∈ L2
⋄
(S) by

γα = (LΩ2
L∗

Ω2
+ αI)−1h, α > 0.

Then

‖L′

Ω2
γα‖

2 ≤ C ‖L′

Ω1
γα‖ and ‖L′

Ω2
γα‖ → ∞ for α → 0.

So for the currents gα :=
1

‖L′

Ω2
γα‖3/2

γα, the corresponding potentials uα

satisfy

‖L′

Ω1
gα‖

2 ≈

∫

Ω1

σ|∇uα|
2 dx → ∞,

‖L′

Ω2
gα‖

2 ≈

∫

Ω2

σ|∇uα|
2 dx → 0.
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Construction

Even more specific for σ = 1:

hz: boundary data of a electric dipole in z ∈ B, i.e., hz = uz|S , where

∆uz = d · ∇δz, ∂νuz|∂B = 0

(d ∈ R
n, |d| = 1 fixed arbitrary direction).

If B \ Ω is connected and its boundary contains S, then for z 6∈ ∂Ω:

hz ∈ R(LΩ) iff z ∈ Ω.

Define currents gα,z, potentials uα,z as on the last slide, then

∫

Ω1

σ|∇uα,z|
2 dx → ∞,

∫

Ω2

σ|∇uα,z|
2 dx → 0

for every neighbourhood Ω1 of z.
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Implementation

Implementation of LΩL∗

Ω.

LΩL∗

Ω : L2
⋄
(S) → L2

⋄
(S), g 7→ u|S ,

where u ∈ H1
⋄
(B) solves (for Ω ⊂ B)

∇ · σ∇u = ∇ · χΩ∇v and σ∂νu|∂B = 0,

with the solution v ∈ H1
⋄
(B) of

∇ · σ∇v = 0 and σ∂νv|∂B =

{

g on S,
0 on ∂B \ S.

v and u are easily computed using standard solvers for linear elliptic
equations (here: Comsol).
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Numerical examples

z

S
Ω

z

S

Ω

Find a potential with high energy around z and low energy in Ω!
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Numerical examples

Plots of |∇uα,z|, α choosen "by hand", color axis cropped above 2|∇uα,z(z)|.

 Electric potentials can be localized in very general domains but the
problem is very ill-posed.
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Detecting inclusions in EIT
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Detecting inclusions in EIT
Special case of EIT: locate inclusions in known background medium.

Ω

S

Current-to-voltage map with inclusion:

Λ1 : g 7→ u1|∂B,

where u1 solves

∇ · σ∇u1 = 0 ∂νu1|∂B =

{

g on S,

0 else,

with σ = 1 + σ1χΩ, σ1 > 0.

S

Current-to-voltage map without inclusion:

Λ0 : g 7→ u0|∂B,

where u0 solves the analogous equation
with σ = 1.

Goal: Reconstruct Ω from comparing Λ1 with Λ0.
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Detecting inclusions in EIT

"Straight-forward" detection algorithm using localized potentials:

Construct current g leading to localized potential that is large on
some test domain U and small outside.

Monotonicity property

 ((Λ0 − Λ1)g, g) large if U intersects Ω.

 Ω can be found by ”slowly enlarging appropriately chosen U ”.

However,

This needs a large number of localized potentials.

Analogous idea can be realized much easier using other special
singular potentials (Ikehata’s probe method, Potthast’s point
source/singular sources method).

Last few slides: ”less straight-forward” (yet very simple) detection algo.
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Virtual measurements again

Connection between Λ0 − Λ1 and virtual measurements LΩ:

Lemma

There exist c, C > 0 such that

c‖L∗

Ωg‖2 ≤ ((Λ0 − Λ1)g, g) ≤ C ‖L∗

Ωg‖2 for all g ∈ L2
⋄
(S),

so, roughly speaking, LΩL∗

Ω ≈ Λ0 − Λ1.

Only LΩL∗

Ω is needed to construct a localized po-
tential that is large in some z 6∈ Ω and small in Ω.

 Simple reconstruction algorithm:

Given a z 6∈ Ω (must be known!), use Λ := Λ0 −Λ1

to create such a potential and locate Ω from it.
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Reconstruction algorithm

Theorem

z 6∈ Ω, hz: electric dipole in z, gα
z := Λ∗(ΛΛ∗ + αI)−1hz ≈ Λ−1hz,

uα
z hom. potential for currents gα

z /(Λgα
z , gα

z )3/2. Then

|∇uα
z (z)| → ∞ and |∇uα

z (x)| → 0 for x ∈ Ω.

Connection to the Factorization Method (slightly simplified):

Factorization Method (Kirsch, Hanke, Brühl,... ):

z 6∈ Ω if and only if ‖Λ−1/2hz‖ → ∞.

EIT-analogue of Arens’ variant of this criterion:

z 6∈ Ω if and only if |∇vα
z (z)| → ∞,

where vα
z hom. potential for currents gα

z ≈ Λ−1hz.

Here: z 6∈ Ω fixed. |∇uα
z (x)| → 0 if x ∈ Ω
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Properties

Reconstruction algorithm: Given Λ = Λ0 − Λ1, z 6∈ Ω,
calculate potential uα

z and ”mark all points x where |∇uα
z (x)| is small.”

Needs to invert measurement matrix Λ for only one right hand side.
(Can be done iteratively so that only few measurements are needed.)

Needs to solve only one homogeneous forward problem.

Independent of number of inclusions or jump amplitude.

|∇uα
z | may be small outside Ω. In theory, method finds only a

superset!

In practice, how can small values be distinguished from large values?

Method delivers a very quick, rough reconstruction of the inlusions.
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Numerical example

S

Ω

Ω
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Summary

In theory, localized electric potentials exist for almost arbitrary
conductivities and on almost arbitrary regions as long as they are
connected to the boundary.

Consequence for the Calderon problem for partial data:

Two conductivities can be distinguished if one is larger in some part
that is connected to the boundary.

In practice, localized potentials can be calculated by solving ill-posed
equations.

For detecting inclusions in EIT, a quick rough reconstruction can be
obtained by calculating a localized potential.
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