Detecting Interfaces in a Parabolic-Elliptic Problem from Surface Measurements

Bastian Gebauer

gebauer@math.uni-mainz.de

Johannes Gutenberg-Universität Mainz, Germany

Joint work with Florian Fruehauf & Otmar Scherzer, University of Innsbruck

SIAM Conference on Imaging Science,

Minneapolis, Minnesota, May 15–17, 2006

B. Gebauer: "Detecting Interfaces in a Parabolic-Elliptic Problem from Surface Measurements"

A parabolic-elliptic problem

- Domain with inclusions of much higher heat capacity
- Electrically conducting objects in a non-conducting background illuminated by low-freqency electromagnetic waves

Direct problem / Inverse Problem

Direct Problem: For every heat flux g there is a unique solution u_1 of

$$\partial_t(\chi_\Omega u_1) - \nabla \cdot (\kappa \nabla u_1) = 0, \qquad (1)$$

$$\partial_t u_1|_{\Omega D} = a \qquad (2)$$

$$|u_1(x,0)|_{\Omega} = 0.$$
 (3)

(can be proven in appropriate Sobolev spaces using Lions Projection Lemma.)

Inverse Problem: Given a complete set of measurements $\Lambda_1: g \mapsto u_1|_{\partial B}, \quad u_1 \text{ solves (1)-(3),}$

reconstruct the interface $\partial \Omega$ resp. the inclusion Ω .

To solve the inverse problem we compare Λ_1 to reference measurements

 $\Lambda_0: g \mapsto u_0|_{\partial B}, \quad u_0 \text{ solves } \Delta u_0 = 0, \quad \partial_{\nu} u_0|_{\partial B} = g,$

i. e. measurements without an inclusion Ω .

Goal: Reconstruct Ω from given Λ_0 and Λ_1 .

Virtual Measurements

 ψ : given boundary flux on $\partial \Omega$

 $L: \psi \mapsto v|_{\partial B}, \text{ where}$ $\Delta v(x,t) = 0 \quad \text{in } Q \times]0, T[, \qquad (4)$ $\partial_{\nu} v|_{\partial B} = 0 \quad \text{on } \partial B, \qquad (5)$ $\partial_{\nu} v|_{\partial \Omega} = \psi \quad \text{on } \partial \Omega. \qquad (6)$

 $\mathcal{R}(L)$ determines Ω :

 $v_z|_{\partial B} \in \mathcal{R}(L)$ if and only if $z \in \Omega$

where v_z solves (4) in $B \setminus \{z\}$, v_z solves (5), v_z suff. singular in $z \in B$,

(e.g. a partial derivative of the Green's function for the Laplacian)

Factorization Method

Key identity of the so-called Factorization Method (for other problems!):

$$\mathcal{R}(L) = \mathcal{R}((\Lambda_0 - \Lambda_1)^{1/2}).$$

 $\rightsquigarrow \mathcal{R}(L)$ (and thus Ω) can be computed from the measurements.

Such a range identity

- was originally developed by Kirsch for Inverse Scattering
- is known (under suitable conditions on the inclusion) for
 - Electrostatics (Hähner)
 - EIT (Brühl, Hanke), also with different electrode models (Brühl, Hanke, Hyvönen) and in the half space (Schappel)
 - Diffusion tomography (Kirsch), also with Robin B.C. (Hyvönen)
 - general real elliptic problems (G.)

Does a similar identity hold in this parabolic-elliptic case?

B. Gebauer: "Detecting Interfaces in a Parabolic-Elliptic Problem from Surface Measurements"

Main Result

Range inclusions:

$$\mathcal{R}(\tilde{\Lambda}^{1/2}) \subseteq \mathcal{R}(L),$$

 $\mathcal{R}(\tilde{\Lambda}^{1/2}) \supseteq \mathcal{R}(L|_V),$

- $\tilde{\Lambda}$: symmetric part of $\Lambda_1 \Lambda_0$,
- *V*: space of boundary fluxes with certain temporal smoothness
- Existence of singular functions v_z with

 $v_z|_{\partial B} \in \mathcal{R}(L)$ if and only if $z \in \Omega$,

and $\partial_{\nu}v_{z}|_{\partial\Omega} \in V$.

 $\sim \rightarrow$

$$z \in \Omega$$
 if and only if $v_z|_{\partial B} \in \mathcal{R}(\tilde{\Lambda}^{1/2}).$

B. Gebauer: "Detecting Interfaces in a Parabolic-Elliptic Problem from Surface Measurements"

Sketch of the proof

$$\mathcal{R}(\tilde{\Lambda}^{1/2}) \subseteq \mathcal{R}(L),$$

 $\mathcal{R}(\tilde{\Lambda}^{1/2}) \supseteq \mathcal{R}(L|_V),$

Factorization:

 $\tilde{\Lambda} = LFL^*$

• If $||Ax|| \le ||Bx||$ for all x then $\mathcal{R}(A^*) \subseteq \mathcal{R}(B^*)$.

$$\rightsquigarrow \quad \mathcal{R}(\tilde{\Lambda}^{1/2}) = \mathcal{R}(LF^{1/2}) \subseteq \mathcal{R}(L).$$

 \checkmark Coercivity condition for F

$$\longrightarrow \quad \mathcal{R}(F^{1/2}) \supseteq H^{\frac{1}{4}}(0, T, H^{-\frac{1}{2}}_{\diamond}(\partial\Omega)) =: V.$$

Consequences / Remarks

Theoretical result:

 $\partial \Omega$ is uniquely determined by Λ_1 ,

i. e. the interface is uniquely determined by measuring all pairs of heat flux and temperature on ∂B .

- Solution Range test $v_z|_{\partial B} \in \mathcal{R}(\tilde{\Lambda}^{1/2})$ can be implemented numerically
 - → practical reconstruction algorithm.
- Ω does not have to be connected. No apriori information about the number of connected components is needed.
- Usual numerical implementation of range test leads to the problem of determining the convergence of a series from finitely many summands.
 - \rightsquigarrow treshold problem.

Numerical results

Reconstruction of single and multiple inclusions.

Main7

Numerical results

Reconstruction of a nonconvex inclusion (left: no noise, right: 0.1% noise)

