Detecting objects by low-frequency electromagnetic imaging

Bastian Gebauer

Institut für Mathematik Johannes Gutenberg-Universität Mainz

gebauer@math.uni-mainz.de

presented at the

77th Annual Meeting of the Gesellschaft für Angewandte Mathematik und Mechanik e. V.

March, 27th - 31st, 2006

Technische Universität Berlin

Setting

- \mathcal{M} : measurement device
 - Ω : magnetic object
- Apply surface currents J on \mathcal{M} (time-harmonic with frequency ω).
- $\rightarrow \quad \text{electromagnetic field } (E^{\omega}, H^{\omega})$ (time-harmonic with frequency ω)
- Measure field on \mathcal{M} (and try to locate Ω from it).

wavelength $\approx 15 \,\mathrm{km} \gg \mathrm{size}$ of object $\approx 10 \,\mathrm{cm}$ (\rightsquigarrow frequency ω very small)

What happens when $\omega \rightarrow 0$?

Maxwell's equations

Time-harmonic Maxwell's equations

$$\operatorname{curl} H^{\omega} + \mathrm{i} \,\omega \epsilon E^{\omega} = J \quad \text{in } \mathbb{R}^{3},$$
$$-\operatorname{curl} E^{\omega} + \mathrm{i} \,\omega \mu H^{\omega} = 0 \quad \text{in } \mathbb{R}^{3},$$
$$\operatorname{div}(\epsilon E^{\omega}) = 0 \quad \text{in } \mathbb{R}^{3},$$
$$\operatorname{div}(\mu H^{\omega}) = 0 \quad \text{in } \mathbb{R}^{3},$$

Silver-Müller radiation condition (RC)

$$\int_{\partial B_{\rho}} \left| \nu \wedge \sqrt{\mu} H^{\omega} + \sqrt{\epsilon} E^{\omega} \right|^2 \mathrm{d}\sigma = o(1), \quad \rho \to \infty.$$

- E^{ω} : electric field
- H^{ω} : magnetic field
 - ω : frequency

 ϵ : dielectricity (= const. around \mathcal{M})

- μ : permeability (magnetic properties)
- J: applied currents, $\operatorname{div} J = 0$, $\operatorname{supp} J \subseteq \mathcal{M}$

relative parameter values: $\epsilon = 1$, $\mu = 1$ outside some bounded domain

Formal asymptotic analysis

Solve Maxwell's equations for E^{ω} :

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E^{\omega} - \omega^2 \epsilon E^{\omega} = \operatorname{i} \omega J \quad \text{in } \mathbb{R}^3,$$
$$\operatorname{div}(\epsilon E^{\omega}) = 0 \quad \text{in } \mathbb{R}^3 \quad \text{(redundant)},$$

Real frequency $20 \,\mathrm{kHz} \quad \rightsquigarrow \quad \text{relative parameter } \omega \approx 4 \times 10^{-4} \,\mathrm{m^{-1}}$

Neglecting terms in ω^2 suggests that $E^{\omega} \approx i \,\omega E$, with $\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E = J$ $\operatorname{div}(\epsilon E) = 0$ (not redundant anymore)

Rigorous asymptotic analysis (for fixed incoming waves):

Ammari, Nedelec: Low Frequency electromagnetic scattering, SIAM J. Math. Anal., 2000.

Interpretation

$$E^{\omega} \approx i \,\omega E$$
, where $\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E = J$, $\operatorname{div}(\epsilon E) = 0$

$$\operatorname{curl} \frac{1}{\mu}B = J, \quad \operatorname{div} B = 0.$$

 \rightarrow B is the magnetostatic field generated by a steady current J (Ampère's Law).

- B = curl E → E is a vector potential of B
 (unique up to addition of A with curl A = 0, i.e. up to A = $\nabla \varphi$).
- $\operatorname{div}(\epsilon E) = 0$ determines *E* uniquely (so-called *Coulomb gage*).

$$\rightsquigarrow$$
 curl $\frac{1}{\mu}$ curl $E = J$, div $(\epsilon E) = 0$ describe magnetostatics.

Figure based on http://de.wikipedia.org/wiki/Bild:RechteHand.png, published under the GNU Free Documentation License (FDL) by "Frau Holle".

Rigorous mathematical results

Assume that

- $J \in TL^2_{\diamond}(\mathcal{M}; \mathbb{C}^3)$, i. e. $J \in TL^2(\mathcal{M}; \mathbb{C}^3)$, $\operatorname{div}_{\mathcal{M}} J = 0$ and $\nu \cdot J|_{\partial M} = 0$.
- $\epsilon, \mu \in L^{\infty}_{+}(\mathbb{R}^{3}; \mathbb{R})$ are identical to 1 outside some bounded domain.
- ϵ is constant in some neighborhood of \mathcal{M}

Theorem

- There exists a unique solution E of the magnetostatic equations.
- For every bounded domain D, there exists C > 0, $\omega_0 > 0$, such that for every $0 < \omega < \omega_0$ and every $J \in TL^2_{\diamond}(\mathcal{M})$ there is a unique solution E^{ω} of Maxwell's equations and

$$\|E^{\omega} - \mathrm{i}\,\omega E\|_{H(\mathrm{curl},D)} \le C\omega^3 \|J\|_{TL^2_{\diamond}(\mathcal{M})}.$$

Measurements

- Apply surface currents J on \mathcal{M}
- \rightarrow electromagnetic field (E^{ω}, H^{ω})
- Measure field on \mathcal{M}

"Full set of measurements" corresponds to measurement operator

$$\Lambda^{\omega}: \begin{cases} TL^{2}_{\diamond}(\mathcal{M};\mathbb{C}^{3}) & \to & TL^{2}_{\diamond}(\mathcal{M};\mathbb{C}^{3}), \\ J & \mapsto & E^{\omega}_{\tau}|_{\mathcal{M}}, \end{cases} \qquad E^{\omega} \text{ solves Maxwell's eq.} \end{cases}$$

Magnetostatic measurements would be

-

$$\Lambda: \begin{cases} TL^2_{\diamond}(\mathcal{M}; \mathbb{C}^3) \to TL^2_{\diamond}(\mathcal{M}; \mathbb{C}^3), \\ J \mapsto E_{\tau}|_{\mathcal{M}}, \end{cases} \qquad E \text{ solves magnetostatic eq.} \end{cases}$$

$$\Lambda = \frac{1}{i\omega}\Lambda^{\omega} + O(\omega^2) \quad \text{in } \mathcal{L}(TL^2_{\diamond}(\mathcal{M};\mathbb{C}^3), TL^2_{\diamond}(\mathcal{M};\mathbb{C}^3))$$

Inverse Problem

To reconstruct Ω we apply the so-called Factorization Method:

- Method was originally developed by Kirsch (1998) for far-field measurements in inverse scattering (Helmholtz equation)
- Method was generalized to EIT by Brühl and Hanke (1999).
- Method works for harmonic vector fields (Kress, 2002) and for far-field measurements for Maxwell's equations (Kirsch, 2004)
- Method works for general real elliptic equations (G, 2005)

Here:

Magnetostatic equations are real elliptic differential equation.

 \rightsquigarrow Ω can be reconstructed from magnetostatic measurements Λ

$$\qquad \ \, {\bf I}= {\textstyle \frac{1}{i\omega}}\Lambda^\omega + O(\omega^2)$$

Factorization Method

Factorization Method compares Λ with reference measurements Λ_0 (reference = without object Ω)

Range identity:

$$\mathcal{R}((\Lambda - \Lambda_0)^{1/2}) = \mathcal{R}(L),$$

with some auxiliary operator L.

 $\rightsquigarrow \mathcal{R}(L)$ is determined by the measurements Λ , Λ_0 .

D Test functions: For points z below \mathcal{M}

 $z \in \Omega$ if and only if $(v_z)_{\tau}|_{\mathcal{M}} \in \mathcal{R}(L)$

with certain functions v_z having a singularity in z.

 \rightsquigarrow Object Ω can be located from $\mathcal{R}(L)$.

 \mathcal{M}

Numerical results

Detection algorithm: For every point z on a sampling grid below \mathcal{M} :

- Test whether $(v_z)_{\tau}|_{\mathcal{M}} \in \mathcal{R}((\Lambda \Lambda_0)^{1/2}).$
- If yes, mark point as "inside object Ω ".

Christoph Schneider tested this method with his code from the BMBF project "HuMin/MD – Metal detectors for humanitarian demining".

- $\blacksquare \qquad \textbf{Measurement device } \mathcal{M}: 40 \, \mathrm{cm} \times 40 \, \mathrm{cm}$
- Scatterer ("the mine"): Ball, 8 cm diameter, 15 cm 20 cm below \mathcal{M}
- **Frequency** 19,2 kHz $\rightsquigarrow \omega \approx 4 \times 10^{-4} \,\mathrm{m}^{-1}$
- Currents imposed / electric fields measured on 100 "loops" on \mathcal{M}
- Simulated data (BEM) using code from K. Erhard, Göttingen

Numerical results - asymptotics

Numerical test for convergence

$$\omega \mapsto \left\| \frac{1}{\mathrm{i}\,\omega} \tilde{\Lambda}^{\omega} - \tilde{\Lambda} \right\| / \|\tilde{\Lambda}\|,$$

where

$$\tilde{\Lambda}^{\omega} \approx \Lambda^{\omega} - \Lambda_0^{\omega}$$

 $\tilde{\Lambda} := \tilde{\Lambda}^{10^{-7}} \approx \Lambda - \Lambda_0$

are calculated with the forward solver from Göttingen.

$$\rightsquigarrow \quad \Lambda = \frac{1}{\mathrm{i}\,\omega}\tilde{\Lambda}^{\omega} + O(\omega^2)$$

Numerical results - reconstruction

Ball with radius r = 4cm located 15cm below \mathcal{M}

Bastian Gebauer: "D

Numerical results - reconstruction

Ball with radius r = 4cm located 20cm below \mathcal{M}

VERSITÄT Bastian Gebauer: "D