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Setting

M

Ω

M: measurement device
Ω: magnetic object

Apply surface currents J on M
(time-harmonic with frequency ω).

 electromagnetic field (Eω, Hω)

(time-harmonic with frequency ω)

Measure field on M
(and try to locate Ω from it).

wavelength ≈ 300 km ≫ size of object ≈ 10 cm

( frequency ω very small)

What happens when ω → 0?
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Maxwell’s equations

time-harmonic Maxwell’s equations

curl Hω + iωǫEω = J in R
3,

− curl Eω + iωµHω = 0 in R
3,

div(ǫEω) = 0 in R
3,

div(µHω) = 0 in R
3,

Silver-Müller radiation condition (RC)
∫

∂Bρ

∣

∣ν ∧√
µHω +

√
ǫEω

∣

∣

2
dσ = o(1), ρ → ∞.

Eω: electric field ǫ: dielectricity (= const. around M)
Hω: magnetic field µ: permeability (magnetic properties)

ω: frequency J : applied currents, div J = 0, supp J ⊆ M

relative parameter values: ǫ = 1, µ = 1 outside some bounded domain
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Formal asymptotic analysis

Solve Maxwell’s equations for Eω:

curl
1

µ
curl Eω − ω2ǫEω = iωJ in R

3,

div(ǫEω) = 0 in R
3 (redundant),

∫

∂Bρ

|ν ∧ curl Eω + iωEω|2 dσ = o(1), ρ → ∞.

real frequency 1 kHz  relative parameter ω ≈ 2 × 10−5 m−1

Asymptotic analysis (formal):

Ansatz: Eω = E0 + ωE1 + ω2E2 + . . .

Rigorous analysis (for fixed incoming waves): Ammari, Nedelec, 2000

(Low Frequency electromagnetic scattering, SIAM J. Math. Anal.)
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Formal asymptotic analysis

Asymptotic analysis: Eω = E0 + ωE1 + ω2E2 + . . ., where E0, E1, E2 solve

curl
1

µ
curlE0 = 0,

}

 E0 = 0
div(ǫE0) = 0,

curl
1

µ
curlE1 = iJ,

div(ǫE1) = 0,

curl
1

µ
curl E2 − ǫE0 = 0,

}

 E2 = 0
div(ǫE2) = 0,

(ignoring additional conditions at x = ∞)

E:=E1

 Eω = ωE + O(ω3), where curl
1

µ
curlE = iJ, div(ǫE) = 0.
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Interpretation

Eω = ωE + O(ω3), where curl
1

µ
curlE = iJ, div(ǫE) = 0

B := 1
i curl E solves

curl 1
µB = J, div B = 0.

 B is the magnetostatic field generated
by a steady current J (Ampère’s Law).

B = 1
i curlE  E is a vector potential of B

(unique up to addition of A with curlA = 0, i. e. up to A = ∇ϕ).

div(ǫE) = 0 determines E uniquely (so-called Coulomb gage).

Figure based on http://de.wikipedia.org/wiki/Bild:RechteHand.png, published
under the GNU Free Documentation License (FDL) by "Frau Holle".
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Mathematical Formulation

Assume that

J ∈ TL2
⋄(M; C3), i. e. J ∈ TL2(M; C3), divM J = 0 and ν · J |∂M = 0.

ǫ, µ ∈ L∞
+ (R3; R) are identical to 1 outside some bounded domain.

ǫ = 1 in some neighborhood of M

We seek a solution Eω ∈ Hloc(curl, R3; C3) of

curl
1

µ
curl Eω − ω2ǫEω = iωJ in R

3, (1)
∫

∂Bρ

|ν ∧ curlEω + iωEω|2 dσ = o(1), ρ → ∞. (2)

(1) makes sense in D′(R3; C3).

Solutions of (1) are smooth where ǫ = 1, µ = 1, J = 0

 (2) makes sense for solutions of (1).
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Existence Theory

We seek a solution Eω ∈ Hloc(curl, R3; C3) of

curl
1

µ
curl Eω − ω2ǫEω = iωJ in R

3, (1)
∫

∂Bρ

|ν ∧ curlEω + iωEω|2 dσ = o(1), ρ → ∞. (2)

Typically (1), (2) lead to a Fredholm equation

 Existence of a solution follows from uniqueness.

Smooth coefficients ǫ, µ uniqueness, and thus existence

(cf. e. g. Monk: Finite Element Methods for Maxwell’s Equations.)

Non-smooth coefficients existence/uniqueness is not guaranteed.

Resonances may occur.
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Magnetostatic equations

We seek a solution E ∈ Hloc(curl, R3; C3) of

curl
1

µ
curlE = iJ in R

3, (3)

div(ǫE) = 0 in R
3. (4)

For ǫ = 1, there exists a unique solution in

W 1(R3; C3) :=
{

u : (1 + |x|2)−1/2u ∈ L2(R3; C3), ∇u ∈ L2(R3; C3,3)
}

,

(cf. e. g. Dautray, Lions: Math. Analysis and Numerical Methods for Science and Technology.)

This motivates (with suff. large ball Br)

E|
R3\Br

∈ W 1(R3 \ Br; C
3) (5)

Lemma

There exists a unique solution E ∈ Hloc(curl, R3) of (3), (4), (5).

Proof: Add appropriate ∇ϕ.
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Reduction to a bounded domain

ǫ, µ = 1 outside a large ball Br  Introduce artificial boundary ∂Br.

Replace Maxwell’s equation by

curl 1
µ curl Eω − ω2ǫEω = iωJ in Br,

Tω(Eω
τ |∂Br

) = ν ∧ curlEω|∂Br
,

Nω(Eω
τ |∂Br

) = ν · Eω|∂Br
,

and the magnetostatic equations by

curl 1
µ curlE = iJ in Br,

div(ǫE) = 0 in Br,

T (Eτ |∂Br
) = ν ∧ curlE|∂Br

,

N(Eτ |∂Br
) = ν · E|∂Br

.

M

Ω

Br

∂Br

ν
ǫ, µ = 1

T , Tω, N , Nω artificial (non-local) boundary conditions on ∂Br, such that
these equations become equivalent to those on R

3.
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Exterior calderon operators

Exterior calderon operators for Maxwell’s equation:

Tω : g 7→ ν ∧ curlEω|∂Br
, Nω : g 7→ ν · Eω|∂Br

,

where Eω ∈ Hloc(curl, R3 \ Br; C
3) solves

curl curlEω − ω2Eω = 0 in R
3 \ Br

Eω
τ |∂Br

= g on ∂Br

+ (R.C.)

Exterior calderon operators for the magnetostatic equations:

T : g 7→ ν ∧ curlE|∂Br
, N : g 7→ ν · E|∂Br

,

where E ∈ W 1(R3 \ Br; C
3) solves

curl curlE = 0 in R
3 \ Br

div E = 0 in R
3 \ Br

Eτ |∂Br
= g on ∂Br,

 Then the reduced problems on Br are equivalent to those on R
3.
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Low frequency analysis

Lemma

For ω → 0 we have

Tω − T =O(ω2) in L(TH−1/2(curl, ∂Br; C
3), TH−1/2(div, ∂Br; C

3))

Nω − N =O(ω2) in L(TH−1/2(curl, ∂Br; C
3), H1/2(div, ∂Br))

Proof:

Use explicit representations for T , Tω, N , Nω in terms of spherical
harmonics and vector spherical harmonics.
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Low frequency analysis

Theorem

There exist C > 0, ω0 > 0, such that for every 0 < ω < ω0 and
every J ∈ TL2

⋄(M) there is a unique solution Eω of Maxwell’s
equations and

‖Eω − ωE‖H(curl,Br) ≤ Cω3 ‖J‖TL2
⋄
(M). (6)

Proof

Reduce both problems to bounded domain Br.

Standard variational formulation (equivalent to Maxwell’s equations)
 Fredholm equation

 Existence of solution is equivalent to uniqueness.

New variational formulation (not equivalent!)

 If there is a solution, then it is unique and satisfies (6).
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Measurements

M

Ω

Apply surface currents J on M
 electromagnetic field (Eω, Hω)

Measure field on M

"Full set of measurements" corresponds to measurement operator

Λω :

{

TL2
⋄(M; C3) → TL2(M; C3),

J 7→ Eω
τ |M,

where Eω solves Maxwell’s equations.

Magnetostatic measurements would be

Λ :

{

TL2
⋄(M; C3) → TL2(M; C3),

J 7→ Eτ |M,

where E solves the magnetostatic equations.
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Measurements

"We measure the magnetostatic potential of steady currents."

Λ =
1

iω
Λω + O(ω2) in L(TL2

⋄(M; C3), TL2(M; C3))

Magnetostatic equations are real differential equations.

 Consider Λ to be an operator between real Hilbert spaces of
real-valued functions.

Factor out functions of the form ∇φ:

TL2(M; R3) = TL2
⋄(M; R3) ⊥ ∇MH1(M; R)

 Λ ∈ L(TL2
⋄(M; R3), TL2

⋄(M; R3)) independent from ǫ

(as long as ǫ = 1 around M and ǫ = 1 outside some Br).
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The inverse problem

M

Ω

Suppose there is a magnetic object Ω

 Permeability:

µ(x) = 1 + µ1 χΩ(x), µ1 > 0

Goal: Reconstruct Ω from Λ

Factorization Method:

Find Ω by comparing Λ with reference measurements Λ0

(reference = without object Ω).

M

Ω

Λ0 :

{

TL2
⋄(M; R3) → TL2

⋄(M; R3),

J 7→ (E0)τ |M,

E0 solves the magnetostatic equations with

µ0(x) = 1.
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Factorization Method

Factorization Method

originally developed by Kirsch (1998) for far-field measurements in
inverse scattering (Helmholtz equation).

generalized to EIT by Brühl and Hanke (1999).

works for far-field measurements for Maxwell’s equations
(Kirsch, 2004)

works for harmonic vector fields (Kress, 2002)

works for general real elliptic equations (G, 2005)

Linear Sampling Method (similar, but with less theoretical justification)

works for this near-field problem for Maxwell’s equations
(G, Hanke, Kirsch, Muniz, Schneider, 2005).
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Factorization Method

Factorization Method relies on two facts:

Range identity:

R((Λ − Λ0)
1/2) = R(L),

with some auxiliary operator L.

M

Ω

L

 R(L) is determined by the measurements Λ, Λ0.

Test functions:

z ∈ Ω if and only if (vz)τ |M ∈ R(L)

with some functions vz having a singularity in z.

 Object Ω can be located from R(L).
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Range identity

Auxiliary operator L : g 7→ Eτ |M, where E solves M

Ω

L
magnetostatic equations in R

3 \ Ω

ν ∧ curlE|∂Ω = g on ∂Ω,

 L contains information about R
3 \ Ω and thus about Ω.

Obviously (Λ − Λ0)J = L(ν ∧ curl(E − E0)|∂Ω) R(Λ1 − Λ0) ⊆ R(L).

Factorization Method for real elliptic problems:

If ”curl curl− curl 1
1+µ1

curl is coercive on Ω”, then
(more precisely: if the corresponding bilinear form is coercive on a space of functions on Ω)

R((Λ − Λ0)
1/2) = R(L).

(holds for µ1 > 0 or even µ1 = µ1(x) ∈ L∞
+ (Ω))
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Test functions

Test functions vz(x) := grad div(Φz(x)p),

Φz(x) = 1
x−z : fundamental solution of Laplace equation,

p ∈ R
3, |p| = 1: arbitrary direction

 vz solves magnetostatic equations in R
3 \ {z}.

 If z ∈ Ω then (vz)τ |M = L(ν ∧ curl vz|∂Ω) ∈ R(L).

For points below M the converse can be shown by analytic continuation.

For every point z below M and every direction p

z ∈ Ω if and only if (vz)τ |M ∈ R(L) = R((Λ − Λ0)
1/2).

Detection algorithm: For every point z on a sampling grid:

Test whether (vz)τ |M ∈ R((Λ − Λ0)
1/2).

If yes, mark point as ”inside object Ω”.
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Numerical results - setup

Christoph Schneider tested this method with his code from the

BMBF project "HuMin/MD – Metal detectors for humanitarian demining".

Measurement device M
32cm × 32cm

Scatterer ("the mine")

6cm–8cm (diameter)

10cm–15cm below M

Wavelength 300km

Permeability "µ = ∞” in Ω

Currents imposed / electric fields measured on a 6 × 6 grid on M
Simulated data (BEM) using code from K. Erhard, Göttingen
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Numerical results - asymptotics

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

ω
1

ω
2

ω
3

ω

Numerical test for convergence

ω 7→ ‖ 1
iω Λ̃ω − Λ̃‖/‖Λ̃‖ ,

where

Λ̃ω ≈ Λω − Λω
0

Λ̃ ≈ Λ10−7 − Λ10−7

0

are calculated with the forward sol-
ver from Göttingen.

 Λ = 1
iω Λ̃ω + O(ω2)

light blue: estimated error of solver
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Numerical results - reconstruction

−4 −2 0 2 4
−4

−2

0

2

4

Ball with radius r = 4cm located 15cm below M
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Numerical results - reconstruction

−4 −2 0 2 4
−4

−2

0

2

4

Torus with inner radius r = 1cm, outer radius r = 3cm, 10cm below M
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