Detecting magnetic objects using low frequency electromagnetic scattering

Bastian Gebauer

Institut für Mathematik Johannes Gutenberg-Universität Mainz

gebauer@math.uni-mainz.de

presented at the Workgroup on Inverse Problems, Mathematical Institute II, University of Karlsruhe

Karlsruhe, December 14, 2005

Setting

- *M*: measurement device
- Ω : magnetic object
- Apply surface currents J on \mathcal{M} (time-harmonic with frequency ω).
- $\rightarrow \quad \text{electromagnetic field } (E^{\omega}, H^{\omega})$ (time-harmonic with frequency ω)
- Measure field on \mathcal{M} (and try to locate Ω from it).

wavelength $\approx 300 \,\mathrm{km} \gg \mathrm{size}$ of object $\approx 10 \,\mathrm{cm}$ (\rightsquigarrow frequency ω very small)

What happens when $\omega \to 0$?

Maxwell's equations

time-harmonic Maxwell's equations

$$\operatorname{curl} H^{\omega} + \mathrm{i} \,\omega \epsilon E^{\omega} = J \quad \text{in } \mathbb{R}^{3},$$
$$-\operatorname{curl} E^{\omega} + \mathrm{i} \,\omega \mu H^{\omega} = 0 \quad \text{in } \mathbb{R}^{3},$$
$$\operatorname{div}(\epsilon E^{\omega}) = 0 \quad \text{in } \mathbb{R}^{3},$$
$$\operatorname{div}(\mu H^{\omega}) = 0 \quad \text{in } \mathbb{R}^{3},$$

Silver-Müller radiation condition (RC)

$$\int_{\partial B_{\rho}} \left| \nu \wedge \sqrt{\mu} H^{\omega} + \sqrt{\epsilon} E^{\omega} \right|^2 \mathrm{d}\sigma = o(1), \quad \rho \to \infty.$$

- E^{ω} : electric field ϵ :
- H^{ω} : magnetic field
 - ω : frequency

: dielectricity (= const. around \mathcal{M})

- μ : permeability (magnetic properties)
- J: applied currents, $\operatorname{div} J = 0$, $\operatorname{supp} J \subseteq \mathcal{M}$

relative parameter values: $\epsilon = 1$, $\mu = 1$ outside some bounded domain

Formal asymptotic analysis

Solve Maxwell's equations for E^{ω} :

 $\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E^{\omega} - \omega^{2} \epsilon E^{\omega} = \operatorname{i} \omega J \quad \text{in } \mathbb{R}^{3},$ $\operatorname{div}(\epsilon E^{\omega}) = 0 \quad \text{in } \mathbb{R}^{3} \text{ (redundant)},$ $\int_{\partial B_{\rho}} |\nu \wedge \operatorname{curl} E^{\omega} + \operatorname{i} \omega E^{\omega}|^{2} d\sigma = o(1), \quad \rho \to \infty.$ $\text{real frequency } 1 \, \mathrm{kHz} \quad \rightsquigarrow \quad \text{relative parameter } \omega \approx 2 \times 10^{-5} \, \mathrm{m}^{-1}$

Asymptotic analysis (formal):

Ansatz:
$$E^{\omega} = E_0 + \omega E_1 + \omega^2 E_2 + \dots$$

Rigorous analysis (for fixed incoming waves): Ammari, Nedelec, 2000 (Low Frequency electromagnetic scattering, SIAM J. Math. Anal.)

Formal asymptotic analysis

Asymptotic analysis: $E^{\omega} = E_0 + \omega E_1 + \omega^2 E_2 + \ldots$, where E_0 , E_1 , E_2 solve

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E_{0} = 0, \\ \operatorname{div}(\epsilon E_{0}) = 0, \end{array} \right\} \rightsquigarrow E_{0} = 0$$
$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E_{1} = \mathrm{i} J, \\ \operatorname{div}(\epsilon E_{1}) = 0, \\\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E_{2} - \epsilon E_{0} = 0, \\ \operatorname{div}(\epsilon E_{2}) = 0, \end{array} \right\} \rightsquigarrow E_{2} = 0$$

(ignoring additional conditions at $x = \infty$)

$$\underset{\leadsto}{E:=E_1} E^{\omega} = \omega E + O(\omega^3), \text{ where } \operatorname{curl} \frac{1}{\mu} \operatorname{curl} E = \operatorname{i} J, \quad \operatorname{div}(\epsilon E) = 0.$$

Interpretation

$$E^{\omega} = \omega E + O(\omega^3)$$
, where $\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E = \operatorname{i} J$, $\operatorname{div}(\epsilon E) = 0$

$$\operatorname{curl} \frac{1}{\mu}B = J, \quad \operatorname{div} B = 0.$$

 \rightarrow B is the magnetostatic field generated by a steady current J (Ampère's Law).

- $B = \frac{1}{i} \operatorname{curl} E \quad \rightsquigarrow \quad E \text{ is a vector potential of } B$ (unique up to addition of A with $\operatorname{curl} A = 0$, i. e. up to $A = \nabla \varphi$).
- $div(\epsilon E) = 0$ determines E uniquely (so-called *Coulomb gage).*

Figure based on http://de.wikipedia.org/wiki/Bild:RechteHand.png, published under the GNU Free Documentation License (FDL) by "Frau Holle".

Mathematical Formulation

Assume that

- $\epsilon, \mu \in L^{\infty}_{+}(\mathbb{R}^{3}; \mathbb{R})$ are identical to 1 outside some bounded domain.
- $\bullet \quad \epsilon = 1 \text{ in some neighborhood of } \mathcal{M}$

We seek a solution $E^{\omega} \in H_{\text{loc}}(\text{curl}, \mathbb{R}^3; \mathbb{C}^3)$ of

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E^{\omega} - \omega^{2} \epsilon E^{\omega} = \operatorname{i} \omega J \quad \text{in } \mathbb{R}^{3}, \quad (1)$$
$$\int_{\partial B_{\rho}} |\nu \wedge \operatorname{curl} E^{\omega} + \operatorname{i} \omega E^{\omega}|^{2} \, \mathrm{d}\sigma = o(1), \quad \rho \to \infty. \quad (2)$$

(1) makes sense in $\mathcal{D}'(\mathbb{R}^3; \mathbb{C}^3)$.

Solutions of (1) are smooth where $\epsilon = 1$, $\mu = 1$, J = 0 \rightsquigarrow (2) makes sense for solutions of (1).

Existence Theory

We seek a solution $E^{\omega} \in H_{\text{loc}}(\text{curl}, \mathbb{R}^3; \mathbb{C}^3)$ of $\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E^{\omega} - \omega^2 \epsilon E^{\omega} = i \, \omega J \quad \text{in } \mathbb{R}^3, \quad (1)$ $\int_{\partial B_{\rho}} |\nu \wedge \operatorname{curl} E^{\omega} + i \, \omega E^{\omega}|^2 \, \mathrm{d}\sigma = o(1), \quad \rho \to \infty. \quad (2)$

- Typically (1), (2) lead to a Fredholm equation

 Existence of a solution follows from uniqueness.
- Smooth coefficients ϵ , $\mu \rightsquigarrow$ uniqueness, and thus existence (cf. e. g. Monk: *Finite Element Methods for Maxwell's Equations*.)
- Non-smooth coefficients ~> existence/uniqueness is not guaranteed.
 Resonances may occur.

Magnetostatic equations

We seek a solution $E \in H_{\text{loc}}(\text{curl}, \mathbb{R}^3; \mathbb{C}^3)$ of

$$\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E = \operatorname{i} J \quad \operatorname{in} \mathbb{R}^3, \quad (3)$$
$$\operatorname{div}(\epsilon E) = 0 \quad \operatorname{in} \mathbb{R}^3. \quad (4)$$

For $\epsilon=1,$ there exists a unique solution in

 $W^{1}(\mathbb{R}^{3};\mathbb{C}^{3}) := \left\{ u : (1+|x|^{2})^{-1/2} u \in L^{2}(\mathbb{R}^{3};\mathbb{C}^{3}), \ \nabla u \in L^{2}(\mathbb{R}^{3};\mathbb{C}^{3,3}) \right\},\$

(cf. e.g. Dautray, Lions: Math. Analysis and Numerical Methods for Science and Technology.)

This motivates (with suff. large ball B_r)

 $E|_{\mathbb{R}^3 \setminus \overline{B_r}} \in W^1(\mathbb{R}^3 \setminus \overline{B_r}; \mathbb{C}^3) \qquad (5)$

Lemma

There exists a unique solution $E \in H_{loc}(\operatorname{curl}, \mathbb{R}^3)$ of (3), (4), (5).

Proof: Add appropriate $\nabla \varphi$.

Reduction to a bounded domain

 $\epsilon, \mu = 1$ outside a large ball $B_r \rightsquigarrow$ Introduce artificial boundary ∂B_r .

Replace Maxwell's equation by

 $\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E^{\omega} - \omega^{2} \epsilon E^{\omega} = \operatorname{i} \omega J \quad \operatorname{in} B_{r},$ $T^{\omega}(E^{\omega}_{\tau}|_{\partial B_{r}}) = \nu \wedge \operatorname{curl} E^{\omega}|_{\partial B_{r}},$ $N^{\omega}(E^{\omega}_{\tau}|_{\partial B_{r}}) = \nu \cdot E^{\omega}|_{\partial B_{r}},$

and the magnetostatic equations by

 $\operatorname{curl} \frac{1}{\mu} \operatorname{curl} E = \operatorname{i} J \quad \operatorname{in} B_r,$ $\operatorname{div}(\epsilon E) = 0 \quad \operatorname{in} B_r,$ $T(E_{\tau}|_{\partial B_r}) = \nu \wedge \operatorname{curl} E|_{\partial B_r},$ $N(E_{\tau}|_{\partial B_r}) = \nu \cdot E|_{\partial B_r}.$

 $T, T^{\omega}, N, N^{\omega}$ artificial (non-local) boundary conditions on ∂B_r , such that these equations become equivalent to those on \mathbb{R}^3 .

Exterior calderon operators

Exterior calderon operators for Maxwell's equation:

 $T^{\omega}: g \mapsto \nu \wedge \operatorname{curl} E^{\omega}|_{\partial B_r}, \qquad N^{\omega}: g \mapsto \nu \cdot E^{\omega}|_{\partial B_r},$ where $E^{\omega} \in H_{\operatorname{loc}}(\operatorname{curl}, \mathbb{R}^3 \setminus B_r; \mathbb{C}^3)$ solves $\operatorname{curl} \operatorname{curl} E^{\omega} - \omega^2 E^{\omega} = 0 \quad \operatorname{in} \mathbb{R}^3 \setminus \overline{B}_r + (\mathsf{R.C.})$ $E_{\tau}^{\omega}|_{\partial B_r} = g \quad \operatorname{on} \partial B_r$

Exterior calderon operators for the magnetostatic equations:

 $T: g \mapsto \nu \wedge \operatorname{curl} E|_{\partial B_r}, \qquad N: g \mapsto \nu \cdot E|_{\partial B_r},$

where $E \in W^1(\mathbb{R}^3 \setminus \overline{B_r}; \mathbb{C}^3)$ solves

$$\operatorname{curl}\operatorname{curl} E = 0 \quad \operatorname{in} \mathbb{R}^3 \setminus \overline{B}_r$$
$$\operatorname{div} E = 0 \quad \operatorname{in} \mathbb{R}^3 \setminus \overline{B}_r$$
$$E_\tau|_{\partial B_r} = g \quad \operatorname{on} \partial B_r,$$

Then the reduced problems on B_r are equivalent to those on \mathbb{R}^3 .

Low frequency analysis

Lemma For $\omega \to 0$ we have $T^{\omega} - T = O(\omega^2)$ in $\mathcal{L}(TH^{-1/2}(\operatorname{curl}, \partial B_r; \mathbb{C}^3), TH^{-1/2}(\operatorname{div}, \partial B_r; \mathbb{C}^3))$ $N^{\omega} - N = O(\omega^2)$ in $\mathcal{L}(TH^{-1/2}(\operatorname{curl}, \partial B_r; \mathbb{C}^3), H^{1/2}(\operatorname{div}, \partial B_r))$

Proof:

Use explicit representations for T, T^{ω} , N, N^{ω} in terms of spherical harmonics and vector spherical harmonics.

Low frequency analysis

Theorem

There exist C > 0, $\omega_0 > 0$, such that for every $0 < \omega < \omega_0$ and every $J \in TL^2_{\diamond}(\mathcal{M})$ there is a unique solution E^{ω} of Maxwell's equations and

$$\|E^{\omega} - \omega E\|_{H(\operatorname{curl},B_r)} \le C\omega^3 \|J\|_{TL^2_{\diamond}(\mathcal{M})}.$$
 (6)

Proof

- Reduce both problems to bounded domain B_r .
- Standard variational formulation (equivalent to Maxwell's equations)
 - → Fredholm equation

 - New variational formulation (not equivalent!)
 - \rightarrow If there is a solution, then it is unique and satisfies (6).

Measurements

- Apply surface currents J on \mathcal{M}
- \rightarrow electromagnetic field (E^{ω}, H^{ω})
- Measure field on \mathcal{M}

"Full set of measurements" corresponds to measurement operator

$$\Lambda^{\omega}: \begin{cases} TL^{2}_{\diamond}(\mathcal{M};\mathbb{C}^{3}) & \to \quad TL^{2}(\mathcal{M};\mathbb{C}^{3}), \\ J & \mapsto \quad E^{\omega}_{\tau}|_{\mathcal{M}}, \end{cases}$$

where E^{ω} solves Maxwell's equations.

Magnetostatic measurements would be

$$\Lambda: \left\{ \begin{array}{ccc} TL^2_{\diamond}(\mathcal{M};\mathbb{C}^3) & \to & TL^2(\mathcal{M};\mathbb{C}^3), \\ J & \mapsto & E_{\tau}|_{\mathcal{M}}, \end{array} \right.$$

where E solves the magnetostatic equations.

Measurements

"We measure the magnetostatic potential of steady currents."

$$\Lambda = \frac{1}{i\omega}\Lambda^{\omega} + O(\omega^2) \quad \text{in } \mathcal{L}(TL^2_{\diamond}(\mathcal{M}; \mathbb{C}^3), TL^2(\mathcal{M}; \mathbb{C}^3))$$

Magnetostatic equations are real differential equations.

- \rightsquigarrow Consider Λ to be an operator between real Hilbert spaces of real-valued functions.
- **Factor out functions of the form** $\nabla \phi$:

1

 $TL^{2}(\mathcal{M};\mathbb{R}^{3}) = TL^{2}_{\diamond}(\mathcal{M};\mathbb{R}^{3}) \perp \nabla_{\mathcal{M}}H^{1}(\mathcal{M};\mathbb{R})$

 $\rightarrow \Lambda \in \mathcal{L}(TL^2_{\diamond}(\mathcal{M}; \mathbb{R}^3), TL^2_{\diamond}(\mathcal{M}; \mathbb{R}^3))$ independent from ϵ (as long as $\epsilon = 1$ around \mathcal{M} and $\epsilon = 1$ outside some B_r).

The inverse problem

- Suppose there is a magnetic object Ω
- Permeability:

$$\blacksquare_{\Omega}$$

- $\mu(x) = 1 + \mu_1 \,\chi_{\Omega}(x), \qquad \mu_1 > 0$
- Goal: Reconstruct Ω from Λ

Factorization Method:

Find Ω by comparing Λ with reference measurements Λ_0 (reference = without object Ω).

Factorization Method

Factorization Method

- originally developed by Kirsch (1998) for far-field measurements in inverse scattering (Helmholtz equation).
- generalized to EIT by Brühl and Hanke (1999).
- works for far-field measurements for Maxwell's equations (Kirsch, 2004)
- works for harmonic vector fields (Kress, 2002)
- works for general real elliptic equations (G, 2005)

Linear Sampling Method (similar, but with less theoretical justification)

works for this near-field problem for Maxwell's equations (G, Hanke, Kirsch, Muniz, Schneider, 2005).

Factorization Method

Factorization Method relies on two facts:

Range identity:

$$\mathcal{R}((\Lambda - \Lambda_0)^{1/2}) = \mathcal{R}(L),$$

 \mathcal{M}

with some auxiliary operator L.

 $\rightsquigarrow \mathcal{R}(L)$ is determined by the measurements Λ , Λ_0 .

Test functions:

 $z \in \Omega$ if and only if $(v_z)_\tau |_{\mathcal{M}} \in \mathcal{R}(L)$

with some functions v_z having a singularity in z.

 \rightsquigarrow Object Ω can be located from $\mathcal{R}(L)$.

Range identity

Auxiliary operator $L: g \mapsto E_{\tau}|_{\mathcal{M}}$, where E solves

magnetostatic equations in $\mathbb{R}^3 \setminus \overline{\Omega}$ $\nu \wedge \operatorname{curl} E|_{\partial\Omega} = g$ on $\partial\Omega$, \mathcal{M}

 $\rightsquigarrow L$ contains information about $\mathbb{R}^3 \setminus \overline{\Omega}$ and thus about Ω .

Obviously $(\Lambda - \Lambda_0)J = L(\nu \wedge \operatorname{curl}(E - E_0)|_{\partial\Omega}) \rightsquigarrow \mathcal{R}(\Lambda_1 - \Lambda_0) \subseteq \mathcal{R}(L).$

Factorization Method for real elliptic problems: If "curl curl - curl $\frac{1}{1+\mu_1}$ curl is coercive on Ω ", then (more precisely: if the corresponding bilinear form is coercive on a space of functions on Ω) $\mathcal{R}((\Lambda - \Lambda_0)^{1/2}) = \mathcal{R}(L).$

(holds for $\mu_1 > 0$ or even $\mu_1 = \mu_1(x) \in L^{\infty}_+(\Omega)$)

Test functions

Test functions $v_z(x) := \operatorname{grad} \operatorname{div}(\Phi_z(x)p)$,

 $\Phi_z(x) = \frac{1}{x-z}$: fundamental solution of Laplace equation, $p \in \mathbb{R}^3$, |p| = 1: arbitrary direction

 $\rightsquigarrow v_z$ solves magnetostatic equations in $\mathbb{R}^3 \setminus \{z\}$.

 \rightsquigarrow If $z \in \Omega$ then $(v_z)_{\tau}|_{\mathcal{M}} = L(\nu \wedge \operatorname{curl} v_z|_{\partial \Omega}) \in \mathcal{R}(L)$.

For points below \mathcal{M} the converse can be shown by analytic continuation.

For every point z below \mathcal{M} and every direction p

 $z \in \Omega$ if and only if $(v_z)_{\tau}|_{\mathcal{M}} \in \mathcal{R}(L) = \mathcal{R}((\Lambda - \Lambda_0)^{1/2}).$

Detection algorithm: For every point z on a sampling grid:

- Test whether $(v_z)_{\tau}|_{\mathcal{M}} \in \mathcal{R}((\Lambda \Lambda_0)^{1/2}).$
- If yes, mark point as "inside object Ω ".

Numerical results - setup

Christoph Schneider tested this method with his code from the BMBF project "HuMin/MD – Metal detectors for humanitarian demining".

Measurement device $\ensuremath{\mathcal{M}}$

 $32cm \times 32cm$ Scatterer ("the mine") 6cm-8cm (diameter) 10cm-15cm below \mathcal{M}

Wavelength 300kmPermeability " $\mu = \infty$ " in Ω

- Currents imposed / electric fields measured on a 6×6 grid on \mathcal{M}
- Simulated data (BEM) using code from K. Erhard, Göttingen

Numerical results - asymptotics

Numerical test for convergence $\omega \mapsto \|\frac{1}{i\omega}\tilde{\Lambda}^{\omega} - \tilde{\Lambda}\| / \|\tilde{\Lambda}\|,$ where $\tilde{\Lambda}^{\omega} \approx \Lambda^{\omega} - \Lambda^{\omega}_{0}$

$$\tilde{\Lambda} ~\approx~ \Lambda^{10^{-7}} - \Lambda_0^{10^{-7}}$$

are calculated with the forward solver from Göttingen.

$$\rightsquigarrow \quad \Lambda = \frac{1}{i\omega} \tilde{\Lambda}^{\omega} + O(\omega^2)$$

light blue: estimated error of solver

Numerical results - reconstruction

Ball with radius r = 4cm located 15cm below \mathcal{M}

Numerical results - reconstruction

Torus with inner radius r = 1cm, outer radius r = 3cm, 10cm below \mathcal{M}