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Abstract.

A prominent result of Arridge and Lionheart (1998 Opt. Lett. 23 882–4) demonstrates

that it is in general not possible to simultaneously recover both the diffusion (aka

scattering) and the absorption coefficient in steady-state (dc) diffusion-based optical

tomography. In this work we show that it suffices to restrict ourselves to piecewise

constant diffusion and piecewise analytic absorption coefficients to regain uniqueness.

Under this condition both parameters can simultaneously be determined from complete

measurement data on an arbitrarily small part of the boundary.
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1. Introduction

We consider the following inverse problem. Determine simultaneously the real-valued

diffusion (aka scattering) and absorption coefficients, a(x) and c(x), of the elliptic partial

differential equation

−∇ · (a∇u) + cu = 0 in B (1)

from knowledge of all possible pairs of Neumann and Dirichlet boundary values, a∂νu|S
and u|S, on an arbitrarily small open part S of the boundary ∂B of some domain

B ⊂ Rn, n ≥ 2, with outer normal ν.

This problem arises in steady-state (dc) diffusion based optical tomography, where

light propagation is modeled by a diffusion approximation and the excitation frequency

is set to zero. For a full description of optical tomography including the derivation of

(1) we refer the reader to the topical reviews of Arridge [2] and Gibson, Hebden and

Arridge [8].

A prominent result by Arridge and Lionheart [3] demonstrates that this inverse

problem is in general not uniquely solvable, i.e., it is not possible to uniquely determine

both a and c from boundary data of u. The reason is that a diffusion coefficient can be

transformed into an absorption coefficient by setting

v :=
√

au

which transforms (1) into

− ∆v + ηv = 0, η =
∆
√

a√
a

+
c

a
. (2)

If a = 1 in a neighborhood of ∂B then the boundary values remain unchanged. Hence,

boundary measurements can only contain information about η, from which one cannot

extract a and c.

Despite this negative theoretical result, several experimental works succeeded in the

simultaneous reconstruction of diffusion and absorption properties, see the references

in [8, section 3.4.3]. This apparent conflict between theoretical and practical results is

explained by the fact that every reconstruction algorithm incorporates prior information

in some form, e.g. by regularizing the underlying ill-posed problem. It is therefore

desirable to develop a deeper understanding of the degree of non-uniqueness in optical

tomography and to identify (preferably weak) prior information that lead to uniqueness.

In this work we show that uniqueness holds for piecewise constant diffusion and

piecewise analytic absorption coefficients. We prove that under this condition both

parameters are simultaneously uniquely determined by knowledge of all possible pairs

of Neumann and Dirichlet boundary values a∂νu|S, u|S of solutions u of (1), see

theorem 4.2. We also comment on the consequences of our result to the much discussed

question up to what extend dc optical tomography can differentiate between diffusion

and absorption effects, cf section 5.

The main tool for our uniqueness proof is the technique of localized potentials

developed by the author in [6]. Localized potentials are solutions of (1) that are large
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on some specified subset of the domain B while staying small on other subsets. The idea

of using growth properties of special solutions is widely spread in the study of coefficient

determination problems for partial differential equations; cf Kohn and Vogelius [14, 15],

Isakov [12], Alessandrini [1], Nachman [19], and Sylvester and Uhlmann [21], to name

just a few of the seminal works that seeded this idea in the mathematical community.

The specialty of the localized potentials used here is that their construction relies on

abstract, but simple, functional analytic arguments, which makes them quite adaptable

to different situations. Notably, we adapt them in this work to (up to some obvious

limits) independently control the solutions’ H1- and L2-norms on specific subsets. This

enables us to show with a simple monotony argument that the boundary measurements

determine first the diffusion and then also the absorption coefficient.

To the author’s knowledge the present work is the first result on simultaneous

uniqueness for a class of real-valued diffusion and absorption coefficients. A

characterization of the combined support of diffusive and absorbing inclusions can be

found in [7]. Also, if a is real but c has a known, non-zero imaginary part then one can

reconstruct η in (2) and extract c and a from it, cf Grinberg [9]. A recent numerical

study of Hein and Meyer [10] treats the identfication of a and c from interior data

measured everywhere in B. Some results on the simultaneous recovery of convection and

absorption coefficients and results in the context of Maxwell’s and elasticity equations

are summarized in the book of Isakov [13].

The outline of this paper is as follows. We start with a more detailed description of

the considered problem in section 2. Then we derive the existence of localized potentials

for diffuse optical tomography in section 3. In section 4 we formulate and prove our main

result on the simultaneous determinability of diffusion and absorption coefficients. The

consequences of our result are discussed in section 5 which also contains some concluding

remarks.

2. Diffuse optical tomography

We start with a more detailed description of the considered problem. Let B ⊂ Rn, n ≥ 2,

be a bounded domain with piecewise smooth boundary ∂B describing the medium that is

to be imaged (see definition 2.1 below for our definition of a piecewise smooth boundary).

We assume that the propagation of light through this medium can be modeled by the

steady-state diffusion approximation

−∇ · (a∇u) + cu = 0 in B, (3)

where u : B → R describes the photon density in the medium, a : B → R is the

isotropic diffusion and c : B → R the absorption coefficient, cf the reviews on optical

tomography cited in the introduction.

We furthermore assume that boundary measurements of inward and outward light

fluxes give us access to the Neumann and Dirichlet boundary values of all solutions of

(3) on an open and smooth piece S of the boundary. For ease of presentation we model
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the rest of the boundary ∂B\S by a homogeneous Neumann boundary condition. Thus,

the boundary measurements determine the local Neumann-to-Dirichlet operator

Λa,c : g 7→ u|S, (4)

where u solves

−∇ · (a∇u) + cu = 0 in B, a∂νu|∂B =

{

g on S,

0 elsewhere.
(5)

If a, c ∈ L∞
+ (B), where the subscript ”+” denotes positive essential infima, then it follows

from the variational formulation of (5), the Lax-Milgram theorem (cf, e.g. Dautray and

Lions [4, VI, §3, Thm. 7]), and Sobolev trace and embedding theorems (cf, e.g. Taylor

[22, Chp. 4, Prop. 4.4, 4.5]), that equation (5) possesses a unique solution u ∈ H1(B)

for all g ∈ L2(S), and that Λa,c is a linear, compact and self-adjoint operator from L2(S)

to L2(S).

Let us note that this a very simplified way of modeling boundary measurements

in diffuse optical tomography. More realistic approaches model light sources as point

sources located at a small depth below the surface ∂B, or by a Robin boundary condition

(cf, e.g. Arridge [2, Sect. 3.5] and Heino and Somersalo [11]). Also, the measured outward

light flux should rather be modeled by a Robin boundary condition, possibly including

the effects of boundary reflection.

However, we believe that our simple boundary model already contains the essential

aspects for the theoretical study of unique simultaneous determinability of a and c. For

S = ∂B it agrees with the setting for which Arridge and Lionheart have derived their

non-uniqueness example. Also, for S = ∂B, knowledge of a Robin-to-Robin mapping is

usually equivalent to knowing the Neumann-to-Dirichlet operator as long as there are no

additional unknown coefficients in the Robin conditions. For S ( ∂B this equivalence

is no longer true due to the homogeneous Neumann boundary condition on ∂B \S, but

we are confident that our arguments can be modified to hold also for other types of

boundary conditions on ∂B \ S.

Our uniqueness result holds for piecewise constant diffusivities a and piecewise

analytic absorption coefficients c. We finish this section by making these assumptions

precise.

Definition 2.1. (a) An open set O is said to have a smooth boundary if ∂O is locally

a C∞ curve, and O lies locally on one side of ∂O.

(b) An open set O is said to have a piecewise smooth boundary if ∂O is a countable

union of C∞ curves, and O lies locally on one side of ∂O.

(c) A function a ∈ L∞(B) is called piecewise constant if there exists finitely many

pairwise disjoint subdomains O1, . . . , Om ⊂ B with piecewise smooth boundaries,

such that B = O1 ∪ . . . ∪ Om and a|Oj
is constant, j = 1, . . . , m.

(d) A function c ∈ L∞(B) is called piecewise analytic if there exists finitely many

pairwise disjoint subdomains O1, . . . , Om ⊂ B with piecewise smooth boundaries,
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such that B = O1 ∪ . . . ∪ Om, and c|Oj
has an extension which is analytic in a

neighborhood of Oj, j = 1, . . . , m.

3. Localized potentials for optical tomography

3.1. Intuitive ideas

The main tool for our uniqueness proof is the technique of localized potentials developed

by the author in [6]. Roughly speaking, localized potentials mean photon densities u

that are large on some specified subset of the domain B while staying small outside this

subset. For the case that c = 0 in equation (5) which then describes electrical impedance

tomography, [6, Thm 2.7] shows that such potentials exist for almost arbitrary subsets

as long as they can be connected to the boundary. Here we do not only extend this result

to equation (5) with c > 0, but also show that (up to some extent) we can independently

control the H1-norm ‖u‖H1 and the L2-norm ‖u‖L2 of solutions of (5).

We begin with a somewhat loose, intuitive description of the general ideas behind

this technique. For rigorous formulations and proofs of the following arguments we refer

the reader to theorem 3.1 and its proof.

The existence of localized potentials is derived from a duality principle between

source terms added to the right hand side of the diffusion equation (3) (with

homogeneous Neumann boundary conditions) and the effect of these source terms on a

source-free solution of (5).

To give an idea of this duality, consider a monopol (delta) source δz located in a

point z added to the right hand side of (3). The dual of this source would be the effect

of a delta source on a (source-free) solution u of (5), i.e. the evaluation u(z). Likewise

the dual of a dipole source term d ·∇δz in some direction d ∈ Rn is the evaluation of the

gradient d · ∇u(z). The dual of monopol densities on some subset O is the L2-norm of

u|O restricted to this subset, and the dual of dipol densities on O is the L2-norm of ∇u|O,

i.e. essentially the H1-norm of u on O. Rigorously, these dualities can be formulated in

terms of bounded linear operators between Hilbert spaces, cf the beginning of the proof

of theorem 3.1.

Now a functional analytic principle asserts that if one source is able to generate

some boundary data that another one cannot produce, then the dual quantity of the

first source can not be bounded by that of the other source. In other words, if there exist

boundary values that, e.g., can only be explained by a collection of monopol sources on

some subset O1 but not by monopol sources on some other subset O2, then there exist

solutions of (5) with very large (L2-)norm on O1 but very small (L2-)norm on O2. For

a rigorous formulation of the functional analytic principle we refer again to the proof of

theorem 3.1, or to the therein cited [6, Lemma 2.5].

To apply this principle, consider the situation sketched on the upper left side of

figure 1. Assume that there are dipole sources located on the dark grey complement

B \O of the white neighborhood O of the boundary piece S. Since S has some distance
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from B\O, the effect of these sources on measurements on S will be somewhat smoothed.

Thus, such sources cannot give rise to all the boundary measurements on S that sources

on O can create. Likewise, dipole sources on O can create less smooth measurements on

S than monopole sources can. From the duality principle we therefore obtain that (by

applying the right optical fluxes on S) we can make the H1-norm of the resulting photon

density u arbitrarily large on O while keeping its L2-norm on O as well as its H1-norm

outside O small. Note, that it is essential for these arguments that O is connected with

the boundary part S.

In the situation sketched on the lower left of figure 1, it is due to unique continuation

that (monopole) sources on the white subset O′ of O can give rise to measurements that

(dipole) sources on the dark grey complement B \ O cannot create. Hence, we can

construct a photon density with arbitrarily large L2-norm on the subset O′ of O, and

arbitrarily small H1-norm outside O. Note that this time it is essential for the unique

continuation argument that there exists the light grey domain O \ O′ that connects O′

as well as B \ O with the boundary piece S.

We can also combine unique continuation with smoothness arguments to treat the

situation on the upper right of figure 1. There, we can make the H1-norm of a photon

density blow up in the interior subdomain Ω, without blowing up its L2-norm on Ω or its

H1-norm outside Ω and some domain O that connects it to the boundary S. Again, we

can also make its L2-norm blow up on a subset Ω′ of Ω without blowing up its H1-norm

outside Ω ∪ O, cf the lower right of figure 1.

In section 4, we will use these localized potentials to show that deviations in the

diffusion or absorption coefficients lead to deviations in the measurements. A detailed

description will be given there.

3.2. Existence of localized potentials

We now rigorously state and prove our existence result on localized potentials.

Theorem 3.1. Let a, c ∈ L∞
+ (B) be piecewise analytic. Let O be a subdomain of B, for

which S is a smooth part of the boundary ∂O.

(a) (i) There exists a sequence (gk)k∈N ⊂ L2(S) such that the corresponding solutions

(uk)k∈N ⊂ H1(B) of equation (5) satisfy

‖uk‖H1(O) → ∞, ‖uk‖L2(O) → 0, ‖uk‖H1(B\O) → 0;

cf the upper left picture in figure 1.

(ii) Let O′ be an open subset of O. There exist (gk)k∈N ⊂ L2(S) such that the

corresponding solutions (uk)k∈N ⊂ H1(B) of equation (5) satisfy

‖uk‖L2(O′) → ∞, ‖uk‖H1(B\O) → 0;

cf the lower left picture in figure 1.

(b) Let Ω be another open subset of B, with Ω ∩ O = ∅, and let ∂Ω and ∂O contain a

joint smooth open piece Σ.
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S

O

B
∂B

‖u‖H1(B\O) small

{ ‖u‖H1(O) large

‖u‖L2(O) small
S

O

B
∂B

Ω

Σ

‖u‖H1(B\O∪Ω) small
{ ‖u‖H1(Ω) large

‖u‖L2(Ω) small

S

O

O′

B
∂B

‖u‖H1(B\O) small

‖u‖L2(O′) large

S

O

B
∂B

Ω

Σ

Ω′

‖u‖H1(B\O∪Ω) small

‖u‖L2(Ω′) large

Figure 1. Sketch of the localized potentials constructed in theorem 3.1

(i) There exists a sequence (gk)k∈N ⊂ L2(S) such that the corresponding solutions

(uk)k∈N ⊂ H1(B) of equation (5) satisfy

‖uk‖H1(Ω) → ∞, ‖uk‖L2(Ω) → 0, ‖uk‖H1(B\O∪Ω) → 0;

cf the upper right picture in figure 1.

(ii) Let Ω′ be an open subset of Ω. There exist (gk)k∈N ⊂ L2(S) such that the

corresponding solutions (uk)k∈N ⊂ H1(B) of equation (5) satisfy

‖uk‖L2(Ω′) → ∞, ‖uk‖H1(B\O∪Ω) → 0;

cf the lower right picture in figure 1.

3.3. Proof of theorem 3.1

We first note the following unique continuation property. For every open connected

subset U ⊆ B only the trivial solution of

−∇ · (a∇u) + cu = 0 in U,

vanishes on an open subset of U or possesses zero Cauchy data on a smooth, open part

of ∂U . For Lipschitz continuous a and bounded c, this property is proven in Miranda

[18, Thm. 19, II]. It can be extended to our case of piecewise analytic a and c by

sequentially solving Cauchy problems (see also Druskin [5] for this argument).

Now we apply the ideas of [6] and rewrite the assertion using a functional analytic

relation between the norm of an operator and the range of its adjoint. To this end we

introduce the solution operator

G : H1(B)′ → L2(S), f 7→ u|S,
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where u ∈ H1(B) solves
∫

B

(a∇u · ∇v + cuv) dx = 〈f, v〉B for all v ∈ H1(B). (6)

Here and in the following 〈·, ·〉U denotes the dual pairing on H1(U)′ × H1(U) for an

open set U ⊆ B, and if U is also smoothly bounded then 〈·, ·〉∂U is the dual pairing on

H−1/2(∂U) × H1/2(∂U).

It is easily checked that the dual operator of G is given by

G′ : L2(S) → H1(B), g 7→ u,

where u ∈ H1(B) solves
∫

B

(a∇u · ∇v + cuv) dx =

∫

S

gv|S ds for all v ∈ H1(B),

i.e., G′ maps a given Neumann datum g to the solution u ∈ H1(B) of equation (5).

For open subsets U of B we will also use the restriction operator

rU : H1(B) → H1(U), u 7→ u|U ,

and the compact injection ιU : H1(U) →֒ L2(U). Their duals are the canonical

injections

r′U : H1(U)′ → H1(B)′, 〈r′Uf, v〉B = 〈f, v|U〉U
for all f ∈ H1(U)′, v ∈ H1(B) and

ι′U : L2(U) → H1(U)′, 〈ι′Uf, v〉U =

∫

U

fv dx.

for all f ∈ L2(U), v ∈ H1(U).

Using these operators the assertion can be written as

(a) (i) There exist (gk)k∈N ⊂ L2(S), such that

‖rOG′gk‖ → ∞, ‖ιOrOG′gk‖ → 0, ‖rB\OG′gk‖ → 0.

(ii) There exist (gk)k∈N ⊂ L2(S), such that

‖ιO′rO′G′gk‖ → ∞, ‖rB\OG′gk‖ → 0.

(b) (i) There exist (gk)k∈N ⊂ L2(S), such that

‖rΩG′gk‖ → ∞, ‖ιΩrΩG′gk‖ → 0, ‖rB\O∪ΩG′gk‖ → 0.

(ii) There exist (gk)k∈N ⊂ L2(S), such that

‖ιΩ′rΩ′G′gk‖ → ∞, ‖rB\O∪ΩG′gk‖ → 0.

For bounded linear operators Aj : Hj → H , j = 1, 2, between Hilbert spaces H , H1

and H2 it holds that

R(A1) ⊆ R(A2), if and only if ∃C > 0 : ‖A′
1g‖ ≤ C ‖A′

2g‖ ∀g ∈ H ′;

cf, e.g. [6, Lemma 2.5]. We apply this equivalence using

A′
1 := rOG′ : L2(S) → H1(O), and

A′
2 :=

(

ιOrOG′

rB\OG′

)

: L2(S) → L2(O) × H1(B \ O),
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for the first part of (a), and analogous expressions for the other part of (a) and the two

parts of (b). Thus, we obtain that the assertion follows from

(a) (i) There exist h ∈ L2(S) such that h ∈ Gr′O (H1(O)′), but

h 6∈ Gr′Oι′O
(

L2(O)
)

+ Gr′
B\O

(

H1(B \ O)′
)

.

(ii) There exist h ∈ L2(S) such that h ∈ Gr′O′ι′O′ (L2(O′)) , but

h 6∈ Gr′
B\O

(

H1(B \ O)′
)

.

(b) (i) There exist h ∈ L2(S) such that h ∈ Gr′Ω (H1(Ω)′) , but

h 6∈ Gr′Ωι′Ω
(

L2(Ω)
)

+ Gr′
B\O∪Ω

(

H1(B \ O ∪ Ω)′
)

.

(ii) There exist h ∈ L2(S) such that h ∈ Gr′Ω′ι′Ω′ (L2(Ω′)), but

h 6∈ Gr′
B\O∪Ω

(

H1(B \ O ∪ Ω)′
)

.

This is what we will show now.

(a) (i) Let U ⊆ O be a smoothly bounded open set on which a and c are analytic,

and ∂U ∩ S contain an open smooth piece S ′ with S ′ ⊂ ∂U ∩ S.

For every g ∈ Gr′Oι′O (L2(O)) + Gr′
B\O

(H1(B \ O)′), we have that g|S′ is the

Dirichlet boundary value u|S′ of a solution u ∈ H1(U) of

−∇ · (a∇u) + cu = f in U, a∂νu|S∩∂U = 0

with f ∈ L2(U). Multiplying u with a smooth cutoff function that is 1 in a

neighourhood of S ′, vanishes outside U and has vanishing Neumann-boundary

values on ∂U , we obtain from standard regularity results (cf, e.g. Dautray and

Lions [4, VII, §3, Thm. 2]) that u ∈ H2(U). Hence g|S′ = u|S′ ∈ H3/2(S ′), so

that we have shown that (the restrictions to S ′ of) functions in

Gr′Oι′O
(

L2(O)
)

+ Gr′
B\O

(

H1(B \ O)′
)

belong to H3/2(S ′).

Now choose a h ∈ H1/2(S) that is compactly supported in S ′ and that fulfills

h|S′ 6∈ H3/2(S ′). From the above arguments we know that

h 6∈ Gr′Oι′O
(

L2(O)
)

+ Gr′
B\O

(

H1(B \ O)′
)

.

However, there exists u ∈ H1(B) with u|S = h and u vanishes outside O. We

define f ∈ H1(O)′ by setting

〈f, v〉O :=

∫

O

(a∇u · ∇v + cuv) dx for all v ∈ H1(O).

Then we obtain for all v ∈ H1(B)

〈r′Of, v〉B = 〈f, v|O〉O =

∫

O

(a∇u · ∇v + cuv) dx

=

∫

B

(a∇u · ∇v + cuv) dx,

so that u solves (6) in the definition of Gr′Of .

Hence, h = Gr′Of ∈ Gr′O(H1(O)′) and the first part of (a) is proven.
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(ii) The second part of (a) follows from similar arguments as in [6]. Without loss of

generality we can choose O′ so small that O\O′ is connected. Then a standard

application of unique continuation, cf, e.g. [6, Lemma 2.3] shows that

Gr′O′ι
′
O′

(

L2(O′)
)

∩ Gr′
B\O

(

H1(B \ O)′
)

= {0}.
Also, by unique continuation, ιO′rO′G′ is injective. Hence, Gr′O′ι′O′(L2(O′)) is

dense in L2(S), and thus, a fortiori, Gr′O′ι′O′(L2(O′)) 6= {0}.
Any 0 6= h ∈ Gr′O′ι′O′(L2(O′)) fulfills h 6∈ Gr′

B\O

(

H1(B \ O)′
)

, so (a)(ii) is

proven.

(b) (i) To show (b)(i), let U be a smoothly bounded open set, so that U ⊂ O∪Ω∪Σ,

UΩ := U ∩ Ω has a smooth boundary, a and c are analytic on UO := U ∩ O

and UΩ, and so that U contains a smooth open piece Σ′ with Σ′ ⊂ Σ.

We first introduce the operator Γ which is defined in the same way as G but

takes the trace of u on Σ′ rather than on S, i.e.,

Γ : H1(B)′ → L2(Σ′), f 7→ u|Σ′

where u ∈ H1(B) solves (6).

If

Gr′Ω(H1(Ω)′) ⊆ Gr′Ωι′Ω
(

L2(Ω)
)

+ Gr′
B\O∪Ω

(

H1(B \ O ∪ Ω)′
)

was true, then by unique continuation on O, we would obtain that

Γr′Ω
(

H1(Ω)′
)

⊆ Γr′Ωι′Ω
(

L2(Ω)
)

+ Γr′
B\O∪Ω

(

H1(B \ O ∪ Ω)′
)

.

Thus, for the first assertion of (b), it suffices to show that this is not the case.

The space Γr′Ωι′Ω(L2(Ω)) + Γr′
B\O∪Ω

(H1(B \O ∪ Ω)′) consists only of Dirichlet

boundary values u|Σ′ of solutions of the diffraction problem

−∇ · (a∇u) + cu = f in U, and [a∂νu]Σ∩U = 0,

with f ∈ L2(U). We orient the normal ν to point inside UΩ, and denote

by [a∂νu]Σ∩U := a∂νu
+|Σ∩U − a∂νu

−|Σ∩U the difference of the Neumann trace

taken from UΩ (denoted by the superscript ”+”) and the one taken from UO

(denoted by the superscript ”−”).

Again, we can multiply u with a C∞-cutoff function that is equal to one in a

neighourhood of Σ′, vanishes outside U and has vanishing Neumann boundary

values on Σ∩U . Thus, we can apply regularity results for diffraction problems

(cf, e.g., the proof of theorem 16.1 in Ladyzhenskaya and Ural’tseva [16]) to

obtain that u|UΩ
∈ H2(UΩ). It follows that u|Σ′ ∈ H3/2(Σ′), and thus

Γr′Ωι′Ω
(

L2(Ω)
)

+ Γr′
B\O∪Ω

(

H1(B \ O ∪ Ω)′
)

⊆ H3/2(Σ′).

Now let h ∈ H1/2(Σ′) \ H3/2(Σ′) be compactly supported in Σ′. Then there

exists u ∈ H1(UΩ) with u|Σ′ = h. We then solve the exterior Dirichlet problem

on B \ UΩ with Dirichlet data u|∂UΩ
on ∂UΩ and zero Neumann condition on

∂B to extend u to a function on B with

−∇ · (a∇u) + cu = 0 in B \ UΩ (7)

and a∂νu|∂B = 0. The extended function u fulfills

u|UΩ
∈ H1(UΩ), u|B\UΩ

∈ H1(B \ UΩ),
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and u+|∂UΩ
= u−|∂UΩ

, where the superscripts ”+”, resp ”−”, denote that

the trace is taken from UΩ, resp. from B \ UΩ. Hence, u ∈ H1(B).

Furthermore, since u solves (7), it has a well defined Neumann trace

a∂νu
−|∂UΩ

∈ H−1/2(∂UΩ), taken from B \ UΩ.

We define f ∈ H1(Ω)′ by setting for all v ∈ H1(Ω)

〈f, v〉Ω :=

∫

UΩ

(a∇u · ∇v + cuv) dx + 〈a∂νu
−|∂UΩ

, v|∂UΩ
〉∂UΩ

.

Then,

〈r′Ωf, v〉B = 〈f, v|Ω〉Ω
=

∫

UΩ

(a∇u · ∇v + cuv) dx + 〈a∂νu
−|∂UΩ

, v|∂UΩ
〉∂UΩ

=

∫

B

(a∇u · ∇v + cuv) dx,

so that u solves (6) in the definition of Γr′Ωf .

Hence, h = u|Σ′ = Γr′Ωf ∈ Γr′Ω(H1(O)′) and (b)(i) is proven.

(ii) The second part of (b) follows from the same arguments that we used for the

second part of (a). �

4. Simultaneous recovery of diffusion and absorption

4.1. The main result

We will now apply the localized potentials from the last section to show that both the

diffusion coefficient a, and the absorption coefficient c, can simultaneously be determined

by complete boundary measurements, i.e., the local Neumann-to-Dirichlet operator Λa,c,

on an arbitrarily small, smooth and open part S of the boundary, cf section 2 for

the definition of Λa,c. The connection between localized potentials and the uniqueness

question comes from the following simple monotony relation.

Lemma 4.1. Let a1, a2, c1, c2 ∈ L∞
+ (B). Then

∫

B

(

(a2 − a1)|∇u1|2 + (c2 − c1)|u1|2
)

dx (8)

≥ 〈(Λa1,c1 − Λa2,c2)g, g〉 ≥
∫

B

(

(a2 − a1)|∇u2|2 + (c2 − c1)|u2|2
)

dx,

for all g ∈ L2(S) where u1, u2 ∈ H1(B) are the solutions of (5) with Neumann boundary

data g on S, and coefficients (a1, c1), resp., (a2, c2).

Proof. This can be shown analogously to e.g. [6, Lemma 3.1]. Since the order of the

terms is easily mixed up, we also give a proof in the appendix.

The consequence of Lemma 4.1 is that we can control the quadratic form

〈(Λa1,c1 − Λa2,c2) g, g〉 (9)
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by controlling either |∇u2|2 or |u2|2 on subdomains of B. To explain this argument more

precisely, let us first assume that a2 > a1 in some neighborhood of S. Then let g be a

Neumann datum creating a localized potential u2 with large |∇u2|2 but small |u2|2 in

this neighborhood and also small |∇u2|2 outside this neighborhood. This will make the

right hand side of (8), and thus the quadratic form (9) very large, so that in particular

Λa1,c1 6= Λa2,c2.

On the other hand, if a1 = a2 but c2 > c1 in a neighborhood of S then a localized

potential with large |u2|2 in this neighborhood and small |∇u2|2 outside, will make the

quadratic form large. The same kind of arguments can be used for the case that a2 > a1

or c2 > c1 somewhere in the interior of B by using the localized potentials from part (b)

of theorem 3.1, and, of course, also after interchanging (a2, c2) and (a1, c1).

Thus, we can make the absolute value of the quadratic form |〈(Λa1,c1 −Λa2,c2)g, g〉|
large, whenever (a1, c1) and (a2, c2) are different pairs of piecewise constant coefficients.

Using the fact that we can make the L2-norm of the localized potentials large in every

subset of the considered neighborhoods, the arguments extend to piecewise analytic

absorption coefficients. In all cases, it follows that Λa1,c1 6= Λa2,c2.

From these intuitive arguments we obtain our main result.

Theorem 4.2. Let a1, a2 ∈ L∞
+ (B) be piecewise constant and c1, c2 ∈ L∞

+ (B) be

piecewise analytic. If Λa1,c1 = Λa2,c2 then

a1 = a2 and c1 = c2.

4.2. Proof of theorem 4.2

Let (a1, c1) 6= (a2, c2). We will show that there exists (gk)k∈N ⊂ L2(S) with

|〈(Λa1,c1 − Λa2,c2) gk, gk〉| → ∞, (10)

from which the assertion follows.

To this end, we apply the intuitive arguments explained in the beginning of

section 4.1 in a rigorous manner. We start by noting that the measurements on S

determine measurements on every open subset of S, so that w.l.o.g. we can assume that

S is so small that there exists a connected neighborhood O of S, such that a1, a2, c1,

and c2 are constant, resp., analytic, on O.

We now distinguish the following three cases

(a) a1 6= a2 on O,

(b) a1 = a2, but c1 6= c2 on O,

(c) a1 = a2, and c1 = c2 on O.

Consider first case (a) and assume w.l.o.g. that a2 > a1. We apply theorem 3.1(a)(i)

to obtain a sequence (gk)k∈N such that the corresponding solutions (uk)k∈N of (5) with

coefficients (a2, c2) fulfill

‖uk‖H1(O) → ∞, ‖uk‖L2(O) → 0, and ‖uk‖H1(B\O) → 0.
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Then it follows from lemma 4.1 that

〈(Λa1,c1 − Λa2,c2)gk, gk〉 → ∞.

In case (b) we use an argument of Kohn and Vogelius [14]. There must be a

smallest number l ∈ N0 such that ∂l
ν(c1 − c2)|S does not vanish everywhere on S,

because otherwise all derivatives of c2 − c1 would vanish on S which contradicts c1 6= c2.

(Note that we used here that c1, c2 have an analytic extension to a neighborhood of O.)

Thus, there must be a connected neighborhood of an open subset of S, in which

c1 ≥ c2, or c1 ≤ c2. (11)

W.l.o.g. we assume that S and O are already so small that (11) holds on the connected

neighborhood O of S, and that c2 ≥ c1. Also by analyticity, c1 6= c2 on O, so there

exists an open subset O′, O′ ⊂ O with (c2 − c1)|O′ ∈ L∞
+ (O′). From theorem 3.1(a)(ii)

we obtain a sequence (gk)k∈N such that the corresponding solutions (uk)k∈N of (5) with

coefficients (a2, c2) fulfill

‖uk‖L2(O′) → ∞, and ‖uk‖H1(B\O) → 0,

and again it follows from lemma 4.1 that

〈(Λa1,c1 − Λa2,c2)gk, gk〉 → ∞.

Now we turn to case (c). We enlarge O to be a maximal connected component of

the set where a1 = a2 and c1 = c2 that is a neighborhood of S. The boundary ∂O is a

subset of the union of ∂B and the boundaries of the sets on which a1, a2, c1, and c2 are

piecewise constant, resp., analytic. Hence, ∂O is piecewise smooth. Also, there must

be a smooth piece Σ of ∂O that does not intersect ∂B because otherwise O ⊃ B and

thus (a1, c1) = (a2, c2) on B. It follows that Σ lies in the interior of B and there exists

a subset Ω, Ω ∩ O = ∅, for which Σ ⊂ ∂Ω. Possibly replacing Σ and Ω by smaller sets

we can assume that Ω is connected, c1, c2 are analytic on Ω and a1, a2 are constant on

Ω. From the maximality of O, we obtain that (a1, c1) 6= (a2, c2) on Ω, so that one of the

following two cases holds true.

(c1) a1 6= a2 on Ω,

(c2) a1 = a2, but c1 6= c2 on Ω.

In the case of (c1) we assume again w.l.o.g. that a2 > a1 and apply theorem 3.1(b)(i)

to obtain (gk)k∈N such that the corresponding solutions (uk)k∈N of (5) with coefficients

(a2, c2) fulfill

‖uk‖H1(Ω) → ∞, ‖uk‖L2(Ω) → 0, and ‖uk‖H1(B\O∪Ω) → 0.

Then, as above, lemma 4.1 yields (10) and thus the assertion.

In the finally remaining case of (c2) we obtain from the same arguments as above

that, after possibly shrinking Σ and Ω again, either

c1 ≥ c2, c1 6= c2, or c1 ≤ c2, c1 6= c2,
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on Ω. Assuming w.l.o.g. that the latter holds true, there exists an open subset Ω′,

Ω′ ⊂ Ω with (c2 − c1)|Ω′ ∈ L∞
+ (Ω′). We then apply theorem 3.1(b)(ii) to obtain (gk)k∈N

such that the corresponding solutions (uk)k∈N of (5) with coefficients (a2, c2) fulfill

‖uk‖L2(Ω′) → ∞, and ‖uk‖H1(B\O∪Ω) → 0.

So, also in this last case, lemma 4.1 yields (10) and thus the assertion. �

5. Discussion and conclusions

The inherent non-uniqueness described in Arridge and Lionheart [3] makes it impossible

to recover both an unknown diffusion and an unknown absorption distribution in

dc diffuse optical tomography. Even the most idealized, complete and error-free

measurements do not hold enough information for this task. Instead, there always

exists an infinite number of combinations of diffusion and absorption profiles that is

compatible with the measurements.

Every reconstruction algorithm (that uses the dc diffusion approximation) must

choose one of these combinations and it can only do so by using additional information.

This additional information may be implemented explicitly by a constraint (e.g.

take the one which is piecewise constant), a preference (e.g. take the one with the

smallest L2-norm), or by possibly hidden constraints and preferences resulting from the

implementation details (e.g. the discretization).

Given the arguments of [3] that smooth diffusion and absorption coefficients can

be combined in one effective absorption parameter, cf (2), one may suspect that the

needed additional information is essentially one of the two parameters, so that there is

no hope in determining both coefficients. This interpretation is contradicted by succesful

simultaneous reconstructions of both parameters from phantom experiment data using

the dc diffusion approximation model, cf e.g. Pei, Graber and Barbour [20] and Xu, Gu,

Khan and Jiang [23].

Our result reconciles these seemingly contradictional theoretical and practical

results. Though there is an infinite number of diffusion/absorption pairs leading to

the same measurements, Theorem 4.2 shows that at most one of them consists of a

piecewise constant diffusion and piecewise analytic absorption. If the true medium

has these properties (as in the experimental works cited above) then a reconstruction

algorithm favoring these properties will pick the right combination of profiles.

Hence, dc-measurements hold considerably more information about separately the

diffusivity and the absorptivity of a domain than one would initially expect from the

interchangeability of these coefficients. However, our assumptions (in particular the

piecewise-constant diffusivity) may be too strong for many realistic cases. A precise

characterization of the amount of information that dc measurements contain about

more general coefficients still remains an important theoretical challenge.

In this work, a jump in the diffusivity could be distinguished from absorption effects,

so that this may belong to the identifiable properties. Between the jumps we prevented
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a cross-talk between diffusivity and absorptivity by assuming that the diffusivity a is

constant, which in particular means that ∆
√

a = 0 in equation (2), which governs the

interplay. This suggests another open question: Does uniqueness still hold true in the

class of diffusivities that are piecewise smooth with harmonic square roots?

Finally, let us stress again that our result is derived in the context of an infinite-

dimensional set of error-free measurements. In practice, one only has access to finitely

many, noisy measurements, and reconstruction algorithms usually work with linearized,

discrete settings. For electrical impedance tomography, Lechleiter and Rieder [17] have

just derived convergence of a Newton-like regularization method from local injectivity

results for a discrete setting. Using the localized potentials of theorem 3.1, one might

be able to extend their results also to reconstruction algorithms in optical tomography.
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Appendix

Proof of lemma 4.1. From the Lax-Milgram-Theorem (cf, e.g., Dautray and Lions [4,

VII, §1, Rem. 3]) it follows that u2 minimizes the functional

w 7→
∫

B

(a2|∇w|2 + c2|w|2) dx − 2

∫

S

g w|S ds

in H1(B), so that

−
∫

B

(a2|∇u2|2 + c2|u2|2) dx

=

∫

B

(a2|∇u2|2 + c2|u2|2) dx − 2

∫

S

g u2|S ds

≤
∫

B

(a2|∇u1|2 + c2|u1|2) dx − 2

∫

S

g u1|S ds

=

∫

B

(a2|∇u1|2 + c2|u1|2) dx − 2

∫

B

(a1|∇u1|2 + c1|u1|2) dx,

and thus

〈(Λa1,c1 − Λa2,c2)g, g〉

=

∫

B

(a1|∇u1|2 + c1|u1|2) dx −
∫

B

(a2|∇u2|2 + c2|u2|2) dx

≤
∫

B

(a1|∇u1|2 + c1|u1|2) dx +

∫

B

(a2|∇u1|2 + c2|u1|2) dx

− 2

∫

B

(a1|∇u1|2 + c1|u1|2) dx
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=

∫

B

((a2 − a1)|∇u1|2 + (c2 − c1)|u1|2) dx.

This yields the first inequality in (8). The second one follows from interchanging (a1, c1)

and (a2, c2). �
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