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Abstract
For the linearized reconstruction problem in electrical impedance tomography 
with the complete electrode model, Lechleiter and Rieder (2008 Inverse 
Problems 24 065009) have shown that a piecewise polynomial conductivity on 
a fixed partition is uniquely determined if enough electrodes are being used. 
We extend their result to the full non-linear case and show that measurements 
on a sufficiently high number of electrodes uniquely determine a conductivity 
in any finite-dimensional subset of piecewise-analytic functions. We also 
prove Lipschitz stability, and derive analogue results for the continuum model, 
where finitely many measurements determine a finite-dimensional Galerkin 
projection of the Neumann-to-Dirichlet operator on a boundary part.

Keywords: electrical impedance tomography (EIT), complete electrode 
model (CEM), uniqueness, Lipschitz stability, localized potentials, 
monotonicity

1. Introduction

We consider the inverse conductivity problem of determining the coefficient function σ in the 
elliptic partial differential equation

∇ · (σ∇u) = 0 in Ω (1)

from knowledge of boundary measurements of u. The problem arises in electrical impedance 
tomography (EIT), or electrical resistivity tomography, which is a novel technique to image 
the conductivity distribution σ inside a subject Ω from electric voltage and current measure-
ments on the subject’s boundary ∂Ω, see [1, 11, 13, 20, 21, 26, 49, 50, 71, 73, 75, 77, 80, 87,
89], and the references therein for a broad overview on the developments in EIT.
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To model the boundary measurements we consider the continuum model, where we meas-
ure the local Neumann-to-Dirichlet (NtD) operator (on a boundary part Σ ⊆ ∂Ω)

Λ(σ) : g �→ u|Σ, where u solves (1) with σ∂νu|∂Ω =

{
g on Σ,
0 else,

and the more realistic complete electrode model (CEM) with electrodes E1, . . . , EM ⊆ ∂Ω all 
having the same contact impedance z > 0. In the CEM, we measure

RM(σ) : (J1, . . . , JM) �→ (U1, . . . , UM),

where u solves (1) with

σ∂νu = 0 on ∂Ω \
⋃M

m=1
Em,

u + zσ∂νu = const. =: Um on Em, m = 1, . . . , M,∫

Em

σ∂νu|Em ds = Jm on Em, m = 1, . . . , M.

The question whether full or local Neumann–Dirichlet-measurements uniquely determine 
the coefficient function σ has become famous under the name Calderón problem [23, 24], and 
has been intensively studied in the mathematical literature due to its practical relevance for 
EIT and many other related inverse coefficient problems, see [7, 9, 25, 28, 34, 35, 54, 55, 58, 
61–63, 66–68, 76, 84].

In this work we will study the question whether σ can be uniquely and stably reconstructed 
from a finite number of electrode measurements. A natural discretization is to assume that σ 
is piecewise constant (or piecewise polynomial) on a given resolution or partition of Ω, so that 
σ will lie in an a priori known finite-dimensional subset F  of piecewise-analytic functions. 
Moreover, it seems natural to assume that upper and lower bounds on the conductivity are a 
priori known, i.e.

σ ∈ F[a,b] := {σ ∈ F : a � σ(x) � b for all x ∈ Ω}.

Our main result for the continuum model is that a (sufficiently high dimensional) finite-dimen-
sional Galerkin projection PGNΛ(σ)PGN  already uniquely determines σ and that Lipschitz 
stability holds

∃c > 0 : c‖σ1 − σ2‖ � ‖PGN (Λ(σ1)− Λ(σ2))PGN‖

see theorem 2.4.
Under the additional assumption that σ is an a priori known smooth function close to the 

boundary, we then turn to the CEM. We show that a (sufficiently large) finite number of elec-
trodes M suffices to uniquely determine σ with Lipschitz stability

∃c > 0 : c‖σ1 − σ2‖ � ‖RM(σ1)− RM(σ2)‖ ,

see theorem 3.1. This shows that the discretized EIT problem is uniquely and stably solvable 
if enough electrodes are being used, which may be relevant for practical implementations of 
EIT reconstruction algorithms.

Note that our results are non-constructive, we do not have a practically useful estimate of 
the Lipschitz constant or the required number of electrodes yet. Also note, that the necessary 
number of electrodes and the stability constant c > 0 depend on the ansatz set F[a,b]. Due to 
the intrinsic ill-posedness of the non-discretized EIT problem, we can naturally expect that 
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a larger set F[a,b] will lead to worse stability constants and a higher required number of elec-
trodes, with c → 0 and M → ∞ when dim(span F) → ∞.

Let us give some more references on related results and the origins of our approach. A 
recent preprint of Alberti and Santacesaria [2] uses complex geometrical optics solutions to 
show that (in the continuuum model) there exists a finite number of boundary voltages, so that 
the knowledge of the corresponding boundary currents uniquely determines the conductivity 
σ and that Lipschitz stability holds. Their result holds in dimension d � 3 with measurements 
on the full boundary ∂Ω, σ is assumed to be identically one close to ∂Ω, bounded by a priori 

known constants, and ∆
√
σ√
σ

 has to belong to an a priori known finite-dimensional subspace of 

L∞. Our result in this work requires less restrictive assumptions as we can treat any dimension 
d � 2, partial boundary data, and the CEM. But, on the other hand, we require the assumption 
of piecewise-analyticity which is more restrictive than the assumptions in [2].

For the linearized EIT problem (both, in the continuum model, and with the CEM), 
Lechleiter and Rieder [70] have shown that a piecewise polynomial conductivity on a fixed 
partition is uniquely determined if enough electrodes are being used. The main tool in [70] is 
the theory of localized potentials devoloped by the author [32] and the convergence of CEM-
solutions to solutions of the continuum model shown by Hyvönen, Lechleiter and Hakula 
[51, 69]. Our result uses similar tools and first treats the non-linear EIT problem with the 
continuum model using localized potentials [32, 46] and monotonicity estimates between the 
non-linearized and the linearized problem from Ikehata, Kang, Seo and Sheen [53, 59]. Then 
we extend the results to the CEM using recent results on the approximation of the continuum 
model by the CEM from Hyvönen, Garde and Staboulis [30, 52].

The idea of using monotonicity estimates and localized potentials techniques has lead to a 
number of results for inverse coefficient problems [8, 12, 22, 33, 36, 37, 39, 40, 44–46, 48], 
and several recent works build practical reconstruction methods on monotonicity properties 
[29–31, 38, 42, 43, 47, 72, 83, 85, 86, 88, 92]. Together with the recent preprints [41, 79], 
the present work shows that this idea can also be used to obtain Lipschitz stability estimates, 
which are usually derived from technically more challenging approaches involving Carleman 
estimates or quantitative unique continuation, see [3–6, 10, 14–19, 27, 56, 57, 60, 64, 65, 74, 
78, 81, 90, 91].

The work is organized as follows. In section 2 we treat the continuum model, and show that 
the NtD operator or a (sufficiently high dimensional) finite-dimensional Galerkin projection 
uniquely determine the conductivity with Lipschitz stability. We formulate our main results 
for the continuum model in theorems 2.3 and 2.4 in section  2.1, summarize some known 
results from the literature in section 2.2, and the prove the theorems in section 2.3. In section 3 
we then treat the CEM. Again we first formulate a uniqueness and Lipschitz stability result in 
theorem 3.1 in section 3.1, then summarize known results from the literature in section 3.2, 
and finally prove the theorem in section 3.3.

2. Uniqueness and Lipschitz stability from continuous data

2.1. Setting and main results

Let Ω ⊂ d, d � 2 be a bounded domain with smooth boundary ∂Ω and outer normal vector 
ν . L∞

+ (Ω) denotes the subspace of L∞(Ω)-functions with positive essential infima. H1
�(Ω) 

and L2
�(∂Ω) denote the spaces of H1- and L2-functions with vanishing integral mean on ∂Ω.

For σ ∈ L∞
+ (Ω), and a relatively open boundary part Σ ⊆ ∂Ω, the local NtD operator Λ(σ) 

is defined by
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Λ(σ) : L2
�(Σ) → L2

�(Σ), g �→ ug
σ|Σ,

where ug
σ ∈ H1

�(Ω) is the unique solution of

∇ · (σ∇ug
σ) = 0 in Ω, σ∂νug

σ|∂Ω =

{
g on Σ,
0 else. (2)

This is equivalent to the variational formulation that ug
σ ∈ H1

�(Ω) solves
∫

Ω

σ∇ug
σ · ∇w dx =

∫

Σ

gw|Σ ds for all w ∈ H1
�(Ω). (3)

It is well known and easily shown that Λ(σ) is compact and self-adjoint.
We will consider conductivities that are a priori known to belong to a finite dimensional 

set of piecewise-analytic functions and that are bounded from above and below by a priori 
known constants. To that end, we first define piecewise-analyticity as in [46, definition 2.1]:

Definition 2.1. 

 (a)  A subset Γ ⊆ ∂O of the boundary of an open set O ⊆ n is called a smooth boundary 
piece if it is a C∞-surface and O lies on one side of it, i.e. if for each z ∈ Γ there exists a 
ball Bε(z) and a function γ ∈ C∞( n−1, ) such that upon relabeling and reorienting

Γ = ∂O ∩ Bε(z) = {x ∈ Bε(z) | xn = γ(x1, . . . , xn−1)},
O ∩ Bε(z) = {x ∈ Bε(z) | xn > γ(x1, . . . , xn−1)}.

 (b)  O is said to have smooth boundary if ∂O is a union of smooth boundary pieces. O is said 
to have piecewise smooth boundary if ∂O is a countable union of the closures of smooth 
boundary pieces.

 (c)  A function κ ∈ L∞(Ω) is called piecewise analytic if there exist finitely many pairwise 
disjoint subdomains O1, . . . , OM ⊂ Ω with piecewise smooth boundaries, such that 
Ω = O1 ∪ . . . ∪ OM , and κ|Om  has an extension which is (real-)analytic in a neighborhood 
of Om, m = 1, . . . , M.

Note that (to the knowledge of the author), it is not clear whether the sum of two piece-
wise-analytic functions is always piecewise-analytic, i.e. whether the set of piecewise-analytic 
functions is a vector space. However, this can be guaranteed with a slightly stronger definition 
of piecewise analyticity (see [67, lemma 1]). Moreover, finite-dimensional vector spaces of 
piecewise-analytic functions (or subsets thereof) naturally arise as parameter spaces for the 
inverse conductivity problem, e.g. when we fix a partition of the imaging domain Ω into a 
finite number of subdomains (e.g. triangles, pixels, or voxels) and the conductivity is assumed 
to be a polynomial of fixed maximal order on each of these subdomains. Therefore, we make 
the following definition:

Definition 2.2. A set F ⊆ L∞(Ω) is called a finite-dimensional subset of piecewise-ana-
lytic functions if its linear span

spanF =




k∑
j=1

λj fj : k ∈ , λj ∈ , fj ∈ F


 ⊆ L∞(Ω)

contains only piecewise-analytic functions and dim(span F) < ∞.

Given a finite-dimensional subset F  of piecewise analytic functions and two numbers 
b > a > 0, we denote the set
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F[a,b] := {σ ∈ F : a � σ(x) � b for all x ∈ Ω}.

Throughout this paper, the domain Ω, the finite-dimensional subset F  and the bounds 
b > a > 0 are fixed, and the constants in the Lipschitz stability results will depend on them.

Our first result shows Lipschitz stability for the inverse conductivity problem in F[a,b] when 
the complete infinite-dimensional NtD-operator is measured.

Theorem 2.3. There exists c > 0 such that

‖Λ(σ1)− Λ(σ2)‖L(L2
�(Σ)) � c‖σ1 − σ2‖L∞(Ω) for all σ1,σ2 ∈ F[a,b].

Proof. Theorem 2.3 will be proven in section 2.3. □ 

We then turn to the question whether σ ∈ F[a,b] is already uniquely determined by finitely 
many boundary measurements in the continuum model. For a (finite- or infinite-dimensional) 
subspace G ⊆ L2

�(Σ) we denote by

PG : L2
�(Σ) → G, PGg =

{
g if g ∈ G,
0 if g ∈ G⊥,

the orthogonal projection operator on G  with respect to the L2-scalar product

〈g, h〉 :=
∫

Σ

gh ds for all g, h ∈ L2(Σ). (4)

Clearly, PG = P∗
G , and if G  is finite dimensional with a basis G = span (g1, . . . , gn) then mea-

surements of

〈gj,Λ(σ)gk〉 j, k = 1, . . . , n

determine the Galerkin projection of the NtD operator PGΛ(σ)PG, so that this can be regarded 
as a model for finitely many voltage/current measurements in the continuum model.

Our next result shows that this uniquely determines σ ∈ F[a,b] (with Lipschitz stability) if 
the space G  is large enough.

Theorem 2.4. For each sequence of subspaces

G1 ⊆ G2 ⊆ . . . L2
�(Σ) with

⋃
n∈

Gn = L2
�(Σ)

there exists N ∈ , and c > 0 such that

‖PGn (Λ(σ1)− Λ(σ2))PGn‖L(L2
�(Σ)) � c‖σ1 − σ2‖L∞(Ω)

for all σ1,σ2 ∈ F[a,b], and all n � N .
In particular, this implies that for all σ1,σ2 ∈ F[a,b] and all n � N

PGnΛ(σ1)PGn = PGnΛ(σ2)PGn if and only if σ1 = σ2.

Proof. Theorem 2.4 will be proven in section 2.3. □ 
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2.2. Differentiability, monotonicity and localized potentials

In this subsection, we summarize some known results from the literature, that we will use to 
prove theorem 2.3 and 2.4. As defined in (4), 〈·, ·〉 always denotes the L2(Σ)-scalar product, 
and ug

σ ∈ H1
�(Ω) denotes the solution of (2) with conductivity σ ∈ L∞

+ (Ω) and Neumann data 
g ∈ L2

�(Σ) in the following.
Our first tool is that the NtD operator is continuously Fréchet differentiable with respect to 

the conductivity.

Lemma 2.5. 

 (a)  The mapping

Λ : L∞
+ (Ω) → L(L2

�(Σ)), σ �→ Λ(σ)

  is Fréchet differentiable. Its derivative is given by

Λ′(σ) ∈ L(L∞(Ω),L(L2
�(Σ))), (Λ′(σ)κ) g = v|Σ, (5)

  where v ∈ H1
�(Ω) solves

∫

Ω

σ∇v · ∇w dx = −
∫

Ω

κ∇ug
σ · ∇w dx for all w ∈ H1

�(Ω).

 (b)  For all σ ∈ L∞
+ (Ω) and κ ∈ L∞(Ω) the operator Λ′(σ)κ ∈ L(L2

�(Σ)) is self-adjoint and 
compact, and it fulfills

〈(Λ′(σ)κ) g, h〉=
∫

Ω

σ∇uh
σ · ∇v dx = −

∫

Ω

κ∇ug
σ · ∇uh

σ dx,

  for all g, h ∈ L2
�(Σ).

 (c)  The mapping

Λ′ : L∞
+ (Ω) → L(L∞(Ω),L(L2

�(Σ))), σ �→ Λ′(σ)

  is continuous.

Proof. This follows from the variational formulation of the conductivity equation (3), see 
e.g. [70, section 2] or [30, appendix B]. □ 

Our next tool is a monotonicity relation between the NtD-operator and its derivative that 
goes back to Ikehata, Kang, Seo, and Sheen [53, 59], and has been used in several other works, 
see the list of works on monotonicity-based methods cited in the introduction.

Lemma 2.6. For all σ1,σ2 ∈ L∞
+ (Ω) and g ∈ L2

�(Σ), it holds that

〈(Λ′(σ2)(σ1 − σ2)) g, g〉 =
∫

Ω

(σ2 − σ1)|∇ug
σ2
|2 dx

� 〈g, (Λ(σ1)− Λ(σ2)) g〉 .
 (6)

Proof. See, e.g. [45, lemma 2.1]. □ 

The energy terms |∇ug
σ|2 in the monotonicity estimate can be controlled using the technique 

of localized potentials [32]. Roughly speaking, the energy |∇ug
σ|2 can be made arbitrarily 
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large in a subset D1 ⊆ Ω without making it large in another subset D2 ⊆ Ω whenever D1 can 
be reached from the boundary without passing D2.

To formulate this rigorously, we adopt the notation from [46, definitions 2.2 and 2.3] and 
denote by int D the topological interior of a subset D ⊆ Ω, and by outΣ D its outer hull, i.e.

outΣ D := Ω \
⋃{

U ⊆ Ω : U rel. open, U ∩ Ω connected, U ∩ Σ �= ∅
}

.

With this notation, we have the following localized potentials result:

Lemma 2.7. Let σ ∈ L∞
+ (Ω) be piecewise analytic and let D1, D2 ⊆ Ω  be two measurable 

sets with

int D1 � outΣ D2.

Then there exists a sequence of currents (gm)m∈ ⊂ L2
�(Σ) such that the corresponding 

solutions (ugm
σ )m∈ ⊂ H1

�(Ω) fulfill

lim
m→∞

∫

D1

|∇ugm
σ |2 dx = ∞ and lim

m→∞

∫

D2

|∇ugm
σ |2 dx = 0.

Proof. ([46], theorem 3.6 and section 4.3). □ 

We will also need the following definiteness property of piecewise-analytic functions from 
[46]:

Lemma 2.8. Let 0 �≡ κ ∈ L∞(Ω) be piecewise-analytic. Then there exist two sets

D1 = int D1 and D2 = outΣ D2

with

D1 = int D1 � outΣ D2 = D2

and either

 (i)  κ|Ω\D2 � 0 and κ|D1 ∈ L∞
+ (D1), or

 (ii)  κ|Ω\D2 � 0 and −κ|D1 ∈ L∞
+ (D1).

Proof. ([46], theorem A.1, corollary A.2, and section 4.3). □ 

2.3. Proof of theorems 2.3 and 2.4

We can now prove theorems 2.3 and 2.4. For the sake of brevity, we write ‖ · ‖ for ‖ · ‖L(L2
�(Σ)), 

‖ · ‖L∞(Ω) and ‖ · ‖L2
�(Σ) throughout this subsection.

We follow the approach in [41] and first use the monotonicity relation in lemma 2.6 to 
bound the difference of the non-linear NtD operators by an expression containing their lin-
earized counterparts.

Lemma 2.9. For all σ1,σ2 ∈ F[a,b] with σ1 �≡ σ2,

‖Λ(σ1)− Λ(σ2)‖
‖σ1 − σ2‖

� inf
(τ1,τ2,κ)

∈F[a,b]×F[a,b]×K

sup
g∈L2

�(Σ),‖g‖=1
f (τ1, τ2,κ, g),

B Harrach Inverse Problems 35 (2019) 024005
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where f : L∞
+ (Ω)× L∞

+ (Ω)× L∞(Ω)× L2
�(Σ) →  is defined by

f (τ1, τ2,κ, g) := max {〈(Λ′(τ1)κ) g, g〉 ,−〈(Λ′(τ2)κ) g, g〉} ,

and K := {κ ∈ spanF : ‖κ‖ = 1}.

Proof. The NtD-operators are self-adjoint so that for all σ1,σ2 ∈ L∞(Ω)

‖Λ(σ1)− Λ(σ2)‖ = sup
g∈L2

�(Σ),‖g‖=1
|〈g, (Λ(σ1)− Λ(σ2)) g〉| .

Using the monotonicity inequality in lemma 2.6 also with interchanged roles of σ1 and σ2 , we 
obtain that for all σ1,σ2 ∈ L∞

+ (Ω), σ1 �≡ σ2, and all g ∈ L2
�(∂Ω)

|〈g, (Λ(σ1)− Λ(σ2)) g〉|
= max{〈g, (Λ(σ2)− Λ(σ1)) g〉 , 〈g, (Λ(σ1)− Λ(σ2)) g〉}
� max{〈Λ′(σ1)(σ2 − σ1)g, g〉 , 〈Λ′(σ2)(σ1 − σ2)g, g〉}

= ‖σ1 − σ2‖ max

{〈
Λ′(σ1)

σ2 − σ1

‖σ1 − σ2‖
g, g

〉
,
〈
Λ′(σ2)

σ1 − σ2

‖σ1 − σ2‖
g, g

〉}

= ‖σ1 − σ2‖ f (σ1,σ2,
σ2 − σ1

‖σ1 − σ2‖
, g).

Hence,

 

‖Λ(σ1)− Λ(σ2)‖
‖σ1 − σ2‖

= sup
g∈L2

�(Σ),‖g‖=1

|〈g, (Λ(σ1)− Λ(σ2)) g〉|
‖σ1 − σ2‖

� sup
g∈L2

�(Σ),‖g‖=1
f (σ1,σ2,

σ2 − σ1

‖σ1 − σ2‖
, g)

� inf
(τ1,τ2,κ)

∈F[a,b]×F[a,b]×K

sup
g∈L2

�(Σ),‖g‖=1
f (τ1, τ2,κ, g).

□ 

Now we use a compactness argument to show that the expression in the lower bound in 
lemma 2.9 attains its minimum.

Lemma 2.10. There exists (τ̂1, τ̂2, κ̂) ∈ F[a,b] ×F[a,b] ×K so that

inf
(τ1,τ2,κ)

∈F[a,b]×F[a,b]×K

sup
g∈L2

�(Σ),‖g‖=1
f (τ1, τ2,κ, g) = sup

g∈L2
�(Σ),‖g‖=1

f (τ̂1, τ̂2, κ̂, g).

Proof. Since f  is continuous by lemma 2.5, the function

(τ1, τ2,κ) �→ sup
g∈L2

�(Σ),‖g‖=1
f (τ1, τ2,κ, g)

is lower semicontinuous and thus attains its minimum over the compact set F[a,b]× 
F[a,b] ×K. □ 

It remains to show that the minimum attained in lemma 2.10 must be positive. To show that 
we use the localized potentials from lemma 2.7.
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Lemma 2.11. Let 0 �≡ κ ∈ L∞(Ω) be piecewise-analytic. Then at least one of the following 
two properties holds true:

 (i)  For all piecewise analytic σ ∈ L∞
+ (Ω) there exists g ∈ L2

�(∂Ω) with

−〈(Λ′(σ)κ) g, g〉 =
∫

Ω

κ|∇ug
σ|2 dx > 0.

 (ii)  For all piecewise analytic σ ∈ L∞
+ (Ω) there exists g ∈ L2

�(∂Ω) with

−〈(Λ′(σ)κ) g, g〉 =
∫

Ω

κ|∇ug
σ|2 dx < 0.

Hence, a fortiori,

sup
g∈L2

�(Σ),‖g‖=1
f (τ1, τ2,κ, g) > 0 for all (τ1, τ2,κ) ∈ F[a,b] ×F[a,b] ×K.

Proof. Using the definiteness property of piecewise analytic functions from lemma 2.8 we 
obtain two sets D1 = int D1 and D2 = outΣ D2 with

D1 = int D1 � outΣ D2 = D2

and either

 (i)  κ|Ω\D2 � 0 and κ|D1 ∈ L∞
+ (D1), or

 (ii)  κ|Ω\D2 � 0 and −κ|D1 ∈ L∞
+ (D1).

Let (gm)m∈ ⊂ L2
�(Σ) be the localized potentials sequence from lemma 2.7. Then, in case (i), 

we obtain

−〈(Λ′(σ)κ) gm, gm〉 =
∫

Ω

κ|∇ugm
σ |2 dx

=

∫

D1

κ|∇ugm
σ |2 dx +

∫

D2

κ|∇ugm
σ |2 dx

∫

Ω\(D1∪D2)

κ|∇ugm
σ |2 dx

� ess infκ|D1

∫

D1

|∇ugm
σ |2 dx − ‖κ‖L∞(D2)

∫

D2

|∇ugm
σ |2 dx → ∞,

so that 
∫
Ω
κ|∇ugm

σ |2 dx > 0 for sufficiently large m ∈ .

In case (ii) we obtain

−〈(Λ′(σ)κ) gm, gm〉 =
∫

Ω

κ|∇ugm
σ |2 dx

=

∫

D1

κ|∇ugm
σ |2 dx +

∫

D2

κ|∇ugm
σ |2 dx

∫

Ω\(D1∪D2)

κ|∇ugm
σ |2 dx

� −ess inf (−κ)|D1

∫

D1

|∇ugm
σ |2 dx + ‖κ‖L∞(D2)

∫

D2

|∇ugm
σ |2 dx → −∞,

so that 
∫
Ω
κ|∇ugm

σ |2 dx < 0 for sufficiently large m ∈ . □ 
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Remark 2.12. It is known (see e.g. [45, corollary 3.5(b)]) that for all piecewise analytic 
σ, the Fréchet derivative Λ′(σ) is injective on the set of piecewise analytic functions, i.e. 
Λ′(σ)κ �= 0 for all piecewise analytic 0 �≡ κ ∈ L∞(Ω).

Since Λ′(σ)κ is a compact self-adjoint operator, this means that Λ′(σ)κ must possess either 
a positive or a negative eigenvalue. Lemma 2.11 can be interpreted in the sense, that for each 
κ �≡ 0 this property is sign-uniform in σ, i.e. for each κ �≡ 0, the operator Λ′(σ)κ either pos-
sesses a positive eigenvalue for all σ, or it possesses a negative eigenvalue for all σ (or both 
properties are fulfilled).

With these preparations we can now show the theorems 2.3 and 2.4.

Proof of theorem 2.3. The assertion follows from lemmas 2.9–2.11 with

 
c := sup

g∈L2
�(Σ),‖g‖=1

f (τ̂1, τ̂2, κ̂, g) > 0.
□ 

Proof of theorem 2.4. Using that

‖PGn (Λ(σ1)− Λ(σ2))PGn‖= sup
g∈Gn,‖g‖=1

|〈g, (Λ(σ1)− Λ(σ2)) g〉| ,

we obtain as in lemmas 2.9 and 2.10 that for all n ∈ , there exists (τ̂ (n)
1 , τ̂ (n)

2 , κ̂(n))

∈ F[a,b] ×F[a,b] ×K so that

‖PGn (Λ(σ1)− Λ(σ2))PGn‖
‖σ1 − σ2‖

� sup
g∈Gn,‖g‖=1

f (τ̂ (n)
1 , τ̂ (n)

2 , κ̂(n), g). (7)

The right hand side of (7) is monotonically increasing in n ∈  since the spaces Gn are nested. 
Hence, the assertion of theorem 2.4 follows, if we can prove that there exists n ∈  with

sup
g∈Gn,‖g‖=1

f (τ1, τ2,κ, g) > 0 for all (τ1, τ2,κ) ∈ F[a,b] ×F[a,b] ×K. (8)

We argue by contradiction and assume that this is not the case. Then there exists a sequence 

(τ
(n)
1 , τ (n)

2 ,κ(n)) ∈ F[a,b] ×F[a,b] ×K with

sup
g∈Gn,‖g‖=1

f (τ (n)
1 , τ (n)

2 ,κ(n), g) � 0 for all n ∈ ,

which also implies

sup
g∈Gm,‖g‖=1

f (τ (n)
1 , τ (n)

2 ,κ(n), g) � 0 for all n ∈ , n � m.

After passing to a subsequence if necessary, we can assume by compactness that the sequence 

(τ
(n)
1 , τ (n)

2 ,κ(n)) converges to some element

(τ̂1, τ̂2, κ̂) ∈ F[a,b] ×F[a,b] ×K.

Since, for all m ∈ , the function

(τ1, τ2,κ) �→ sup
g∈Gm,‖g‖=1

f (τ1, τ2,κ, g)
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is lower semicontinuous, it follows that

sup
g∈Gm,‖g‖=1

f (τ̂1, τ̂2, κ̂, g) � 0 for all m ∈ .

But, by continuity, this would imply

f (τ̂1, τ̂2, κ̂, g) � 0 for all g ∈
⋃

m∈
Gm = L2

�(Σ),

which contradicts lemma 2.11. This shows that (8) must be true for sufficiently large n ∈  
and thus theorem 2.4 is proven. □ 

3. Uniqueness and Lipschitz stability from electrode measurements

3.1. Setting and main results

Now we consider the CEM. As before let σ ∈ L∞
+ (Ω) denote the conductivity distribution in 

a smoothly bounded domain Ω ⊆ d, d � 2. We assume that M ∈  open, connected, mutu-
ally disjoint electrodes Em ⊆ ∂Ω, m = 1, . . . , M, are attached to the boundary of Ω with all 
electrodes having the same contact impedance z > 0. When a current with strength Jm ∈  
is driven through the m-th electrode (with 

∑M
m=1 Jm = 0), the resulting electrical potential 

(u, U) ∈ H1(Ω)× M solves the following equations:

∇ · σ∇u = 0 in Ω, (9)

σ∂νu = 0 on ∂Ω \
⋃M

m=1
Em, (10)

u + zσ∂νu = const. =: Um on Em, m = 1, . . . , M, (11)

∫

Em

σ∂νu|Em ds = Jm on Em, m = 1, . . . , M, (12)

where U = (U1, . . . , UM) ∈ M is a vector containing the electric potentials on the electrodes 
E1, . . . , EM.

It can be shown that (9)–(12) possess a solution (u, U) ∈ H1(Ω)× m and that the solution 
is unique under the additional gauge (or ground level) condition U ∈ M

� , where M
�  is the 

subspace of vectors in m with zero mean, see e.g. [82]. We can thus define the M-electrode 
current-to-potential operator

RM(σ) : M
� → M

� : I = (I1, . . . , IM) �→ U = (U1, . . . , UM),

where (u, U) ∈ H1(Ω)× m
�  solves (9)–(12). Note also that (9)–(12) are equivalent to the 

variational formulation that (u, U) ∈ H1(Ω)× m
�  solves

∫

Ω

σ∇u · ∇w dx +
M∑

m=1

∫

Em

1
z
(u − Um)(w − Wm) ds =

M∑
m=1

JmWm (13)

for all (w, W) ∈ H1(Ω)× m
� , see again, [82].
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As in the previous section, we will consider conductivities that belong to a finite dimen-
sional subset of piecewise-analytic functions. Additionally, in order to use results from [30] 
on the approximation properties of the CEM, we assume that the background conductivity is 
an a priori known smooth function in a fixed neighborhood O of the boundary ∂Ω, i.e. we 
assume that F  is a finite dimensional subset of piecewise-analytic functions, so that there 
exists σ0 ∈ C∞(O) with σ|O = σ0|O for all σ ∈ F . Together with the assumption of a priori 
known bounds, we assume (for b > a > 0)

σ ∈ F[a,b] := {σ ∈ F : a � σ(x) � b for all x ∈ Ω}.

We will show that RM(σ) uniquely determines σ ∈ F[a,b] (with Lipschitz stability) if, roughly 
speaking, enough electrodes are being used. To make this statement precise, assume that the 
number of electrodes is increased so that the electrode configurations fulfill the Hyvönen 
criteria [30, 52]:

 (H1)  For all electrode configurations

E(M)
1 , . . . , E(M)

M ⊆ ∂Ω

  there exist open, connected, and mutually disjoint sets (called virtual extended electrodes) 
Ẽ(M)

m , m = 1, . . . , M with

E(M)
m ⊆ Ẽ(M)

m ,
M⋃

m=1

Ẽ(M)
m = ∂Ω,

  so that

hM := max
m=1,...,M

{
sup

x,y∈Ẽ(M)
m

dist(x, y)

}
→ 0 for M → ∞,

∃cE > 0 : min
m=1,...,M

|E(M)
m |

|Ẽ(M)
m |

� cE for all M ∈ .

 (H2)  The operators

QM : M → L2(∂Ω), (Jm)
M
m=1 �→

M∑
m=1

JmχẼ(M)
m

PM : L2(∂Ω) → M , g �→

(
1

|E(M)
m |

∫

E(M)
m

g ds

)M

m=1

  fulfill that

∃CE > 0 : ‖(I − QMPM) f‖L2(∂Ω) � CEhM inf
c∈

‖ f + c‖H1(∂Ω)

  for all M ∈  and all f ∈ H1(∂Ω).

The first criterion implies the natural assumption that the electrode sizes shrink to zero, but 
always cover a certain fraction of the boundary. The somewhat technical second criterion 
can be interpreted as a Poincaré-type inequality that is fulfilled for regular enough electrode 

B Harrach Inverse Problems 35 (2019) 024005



13

shapes, see [30, 52, 69]. Together these criteria guarantee that the electrode measurement 
approximate all possible continuous measurements in a suitable sense.

Now we can state our main result:

Theorem 3.1. There exists N ∈  and c > 0 such that for all M � N

‖RM(σ1)− RM(σ2)‖L( M
� )

� c‖σ1 − σ2‖L∞(Ω) for all σ1,σ2 ∈ F[a,b].

In particular, this implies that for all σ1,σ2 ∈ F[a,b] and M � N

RM(σ1) = RM(σ2) if and only if σ1 = σ2.

Theorem 3.1 will be proven in section 3.3.

3.2. Differentiability, monotonicity, and approximation of linearized measurements

The electrode measurements RM(σ) fulfill analogue differentiability and monotonicity proper-

ties as the NtD-Operators. In the following 〈·, ·〉M denotes the Euclidian scalar product in M . 

For a vector J = (J1, . . . , JM) ∈ M
� , we denote by u(J)

σ ∈ H1
�(Ω) the solution of the CEM 

equations (9)–(12) with conductivity σ ∈ L∞
+ (Ω) and electrode currents J1, . . . , Jm ∈ .

Lemma 3.2. 

 (a)  The mapping

RM : L∞
+ (Ω) → L( M

� ), σ �→ RM(σ)

  is Fréchet differentiable. Its derivative is given by

R′
M(σ) ∈ L(L∞(Ω),L( M

� )), (R′
M(σ)κ) J = V ,

  where (v, V) ∈ H1(Ω)× m
�  solves

∫

Ω

σ∇v · ∇w dx +
M∑

m=1

∫

Em

1
z
(v − Vm)(w − Wm) ds

= −
∫

Ω

κ∇u(J)
σ · ∇w dx

 

(14)

  for all (w, W) ∈ H1(Ω)× m
� .

 (b)  For all σ ∈ L∞
+ (Ω) and κ ∈ L∞(Ω) the operator R′

M(σ)κ ∈ L( M
� ) is self-adjoint, and it 

fulfills

〈(R′
M(σ)κ) I, J〉M = −

∫

Ω

κ∇u(I)
σ · ∇u(J)

σ dx,

  for all I, J ∈ M
� .

 (c)  The mapping

R′
M : L∞

+ (Ω) → L(L∞(Ω),L( M
� )), σ �→ R′

M(σ)

  is continuous.
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Proof. This follows from the variational formulation of the CEM (13), see e.g. [70, sec-
tion 2] or [30, appendix B]. □ 

Lemma 3.3. For all σ1,σ2 ∈ L∞
+ (Ω) and J ∈ M

� , it holds that

〈(R′(σ2)(σ1 − σ2)) J, J〉M =

∫

Ω

(σ2 − σ1)|∇u(J)
σ2

|2 dx

� 〈(RM(σ1)− RM(σ2)) J, J〉M .

Proof. ([47], theorem 2). □ 

We will also require the following result from Garde and Staboulis [30] that the linearized 
CEM measurements approximate the linearized NtD operator.

Lemma 3.4. Under the Hyvönen assumptions (H1) and (H2), there exists C > 0 such that 
for all σ ∈ F[a,b] and κ ∈ spanF

‖Λ′(σ)κ− LQM (R′(σ)κ)Q∗
M‖L(L2

�(∂Ω)) � ChM ‖σ‖L∞(Ω)‖κ‖L∞(Ω),

where

L : L2(∂Ω) → L2
�(∂Ω), g �→ g − 1

|∂Ω|

∫

∂Ω

g ds,

Q∗
M : L2(∂Ω) → M , g �→

(∫

Ẽ(M)
1

g ds, . . . ,
∫

Ẽ(M)
M

g ds

)
.

Moreover, for all g ∈ L2
�(∂Ω)

〈LQM (R′(σ)κ)Q∗
Mg, g〉 = 〈(R′(σ)κ)Q∗

Mg, Q∗
Mg〉M .

Proof. ([30], theorem 3, proposition 4). □ 

3.3. Proof of theorem 3.1

Again, for the sake of brevity, we omit norm subscripts when the choice of the norm is clear 
from the context. As in section 2.3 we obtain from the monotonicity result lemma 3.3 that

‖RM(σ1)− RM(σ2)‖ � ‖σ1 − σ2‖ inf
(τ1,τ2,κ)

∈F[a,b]×F[a,b]×K

sup
J∈ M

�
‖J‖=1

fM(τ1, τ2,κ, J),

where fM : L∞
+ (Ω)× L∞

+ (Ω)× L∞(Ω)× M
� →  is defined by

fM(τ1, τ2,κ, J) := max {〈(R′
M(τ1)κ) J, J〉 ,−〈(R′

M(τ2)κ) J, J〉} ,

and K := {κ ∈ spanF : ‖κ‖ = 1}.
We compare this with f : L∞

+ (Ω)× L∞
+ (Ω)× L∞(Ω)× L2

�(∂Ω) → ,

f (τ1, τ2,κ, g) := max {〈(Λ′(τ1)κ) g, g〉 ,−〈(Λ′(τ2)κ) g, g〉} ,

from the continuum model (see lemma 2.9) with Σ = ∂Ω.
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For all real numbers r1, r2, s1, s2 ∈  one has that

max{r1, s1} −max{r2, s2} =
1
2
(r1 + s1 + |r1 − s1| − r2 − s2 − |r2 − s2|)

�
1
2
(r1 + s1 + |r1 − s1 − (r2 − s2)| − r2 − s2)

= max{(r1 − r2), (s1 − s2)}.

Hence, we obtain with lemma 3.4 that for all (τ1, τ2,κ) ∈ F[a,b] ×F[a,b] ×K and g ∈ L2
�(∂Ω) 

with ‖g‖ = 1

| f (τ1, τ2,κ, g)− fM(τ1, τ2,κ, Q∗
Mg)|

�max {|〈(Λ′(τ1)κ− QM (R′
M(τ1)κ)Q∗

M) g, g〉| ,
|〈(Λ′(τ2)κ− QM (R′

M(τ2)κ)Q∗
M) g, g〉|}

� ChM ‖κ‖ ‖g‖ max{‖τ1‖ , ‖τ2‖} � ChMb,

where ‖κ‖ = 1 and max{‖τ1‖ , ‖τ2‖} � b follows from the definition of K and F[a,b].
For all g ∈ L2(∂Ω) we have that

‖Q∗
Mg‖2 =

M∑
m=1

(∫

Ẽ(M)
m

g ds
)2

�
M∑

m=1

|Ẽ(M)
m |

∫

Ẽ(M)
m

g2 ds � |∂Ω| ‖g‖2,

so that we obtain for all (τ1, τ2,κ) ∈ F[a,b] ×F[a,b] ×K

sup
J∈ M

� ,
‖J‖=1

fM(τ1, τ2,κ, J) � |∂Ω|−1
sup

g∈L2
�(∂Ω),

‖g‖=1

fM(τ1, τ2,κ, Q∗
Mg)

� |∂Ω|−1
sup

g∈L2
�(∂Ω),

‖g‖=1

f (τ1, τ2,κ, g)− |∂Ω|−1 ChMb.

Since the first summand is positive by lemma 2.11, it follows that for sufficiently large num-
bers of electrodes M

sup
J∈ M

� ,
‖J‖=1

fM(τ1, τ2,κ, J) > 0 for all (τ1, τ2,κ) ∈ F[a,b] ×F[a,b] ×K.

With the same lower semicontinuity and compactness argument as in the continuum model, 
this yields

inf
(τ1,τ2,κ)

∈F[a,b]×F[a,b]×K

sup
J∈ M

� ,
‖J‖=1

fM(τ1, τ2,κ, J) > 0,

so that the assertion is proven. □ 
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