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Abstract. We consider the inverse problem of determining both an unknown
diffusion and an unknown absorption coefficient from knowledge of (partial)
Cauchy data in an elliptic boundary value problem. For piecewise analytic
coefficients, we prove a complete characterization of the reconstructible infor-
mation. It is shown to consist of a combination of both coefficients together
with the jumps in the leading order diffusion coefficient and its derivative.

1. Introduction. Let B ⊂ Rn, n ≥ 2, be a bounded domain with smooth bound-
ary ∂B and outer normal vector ν. We consider the following inverse problem:
Determine simultaneously two unknown coefficients, the diffusivity a(x) and the
absorption c(x), in the elliptic partial differential equation

(1) −∇ · (a∇u) + cu = 0, in B,

from knowledge of all possible Cauchy data on an arbitrarily small open boundary
part S ⊆ ∂B,

{

(a∂νu|S , u|S) : u solves (1) with a∂νu|B\S = 0
}

This problem arises, e.g., in steady-state diffuse optical tomography, cf. the topical
reviews of Gibson, Hebden and Arridge [17], and Arridge and Schotland [2].

For globally smooth coefficients, this and similar problems have been studied
extensively. If a is smooth, then both unknown coefficients can be combined by
setting v :=

√
au, which transforms (1) into

−∆v + ηv = 0,

with the effective absorption

(2) η :=
∆
√
a√
a

+
c

a
.

If a = 1 in a neighborhood of S, then u and v have the same Cauchy boundary values
on S. Hence, the Cauchy data can only contain information about the effective
absorption η from which, generally, one cannot extract a and c. The consequence is
that the inverse problem of steady-state diffuse optical tomography is not uniquely
solvable, see Arridge and Lionheart [1].

These non-uniqueness arguments are, however, only valid for globally smooth
a and c. In fact, the author [21] has shown that this inverse problem is uniquely

2000 Mathematics Subject Classification. Primary: 35R30; Secondary: 35J25.
Key words and phrases. Simultaneous recovery of two coefficients, localized potentials, partial

boundary data.

663 c©2012 American Institute of Mathematical Sciences

http://dx.doi.org/10.3934/ipi.2012.6.663
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solvable in the class of piecewise constant functions (c might even be piecewise
analytic).

In this work we will close the gap between the non-uniqueness results in [1]
and the uniqueness results in [21]. We derive a complete characterization of the
reconstructible information for piecewise analytic a and c. Roughly speaking, the
boundary data is shown to determine the effective absorption η wherever a and c
are smooth, and also the jumps of a and its derivative on the discontinuity set of
a. A formal motivation for this result is that jumps in a or its first derivatives lead
to distributional-type singularities in η that can be distinguished from a regular
function c.

The rigorous formulation of our result is given in theorem 2.2 below. Let us note
that our characterization is complete in the sense that two pairs of coefficients (a, c)
can only be distinguished by boundary data, if they differ in one of the properties
given in theorem 2.2. Also, the result implies both the non-uniqueness result (for
smooth a and c) and the uniqueness result (since a piecewise constant function is
uniquely determined by its jumps).

The proof of our result follows the general approach in [21]. We first derive
monotony results to relate the unknown coefficients to the Cauchy data, resp., the
corresponding Neumann-to-Dirichlet operators. Then we separately control the
terms in the monotony results using the technique of localized potentials developed
by the author in [15]. Localized potentials are solutions of (3) that are large on
some subsets of the domain while staying small somewhere else. Note that growth
properties of special solutions are frequently being used in the study of coefficient
determination problems. The specific advantage of localized potentials is that their
construction relies on abstract, but simple, functional analytic arguments, which
makes them particularly adaptable, and enables us to control the solutions’ H1-
and L2-norms on all kinds of different subsets and boundaries.

Let us give some more reference on related problems. The question whether
η can be reconstructed from Cauchy data of v has mainly been studied in the
context of the famous Calderón problem [8, 9], where c = 0. For full boundary
data (∂B = S) see Druskin [11, 12, 13], Kohn and Vogelius [31, 32], Sylvester and
Uhlmann [38], Nachman [36] and Astala and Päivärinta [4] for seminal contributions
and Uhlmann [39] for a recent overview. For some more related works, let us refer
to [35, 14, 18, 19, 6, 30, 22, 3, 5].

Uniqueness results for partial boundary data were achieved in Bukhgeim and
Uhlmann [7], Knudsen [29], Isakov [27], Kenig, Sjöstrand and Uhlmann [28] and
the author’s work [15]. For two-dimensional domains, recent breakthroughs have
been made for the Calderón problem with partial data and also for general second-
order elliptic equations by Imanuvilov, Uhlmann and Yamamoto [23, 24, 25]. If a is
real but c has a known, non-zero imaginary part then one can reconstruct η in (2)
and extract c and a from it, cf. Grinberg [20]. The detection of the combined sup-
port of diffusive and absorbing inclusions was studied by Hyvönen and the author
in [16]. In three or higher dimensions, simultaneous identifiability of convection
and absorption coefficients was achieved by Nakamura, Sun and Uhlmann [37], and
in two dimensions, Cheng and Yamamoto [10] showed uniqueness for two convec-
tion coefficients. Result in the context of Maxwell’s and elasticity equations are
summarized in the book of Isakov [26].

We finish this introduction with some general comments on the technique of lo-
calized potentials. On the good side, the technique is independent of the dimension
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Determining diffusion and absorption 665

n ≥ 2, it immediately yields results for partial boundary data, and it can handle
parameter jumps. Moreover, it is comparatively simple and seems to be extendable
to several more complex problems. The major disadvantage is that (due to the
monotony arguments) it can only distinguish two parameters if there is a neighbor-
hood of the boundary in which one parameter is ”for the first time larger than the
other”. This restricts the use of our technique to piecewise analytic parameters. Up
to now, C∞-parameters can not be handled as the difference of two such functions
can have an infinite number of sign changes close to the boundary.

The outline of this work is as follows. We rigorously formulate our result in
Section 2. In Section 3 we derive a general monotony lemma and some more spe-
cific corollaries. The existence of localized potentials is shown in Section 4. The
monotony results and the localized potentials are then combined to prove our main
result in Section 5.

2. The main result. We now rigorously state our main result. Let B ⊂ Rn,
n ≥ 2, be a bounded domain with smooth boundary ∂B and outer normal ν;
cf. definition 2.1 below. Let S ⊆ ∂B be an arbitrarily small open part of the
boundary, g ∈ L2(S), and a, c ∈ L∞

+ (B), where the subscript ”+” denotes positive

essential infima. Then there exists a unique solution u ∈ H1(B) of the elliptic
partial differential equation

(3) −∇ · (a∇u) + cu = 0 in B

with Neumann boundary values

(4) a∂νu|∂B =

{

g on S,
0 on B \ S.

The knowledge of all possible pairs of Neumann and Dirichlet boundary values
(a∂νu|S , u|S) is equivalent to knowing the local Neumann-to-Dirichlet operator,

(5) Λa,c : L2(S) → L2(S), g 7→ u|S ,
where u solves (3) and (4). Λa,c is a linear, compact and selfadjoint operator.

Definition 2.1. (a) An open subset Γ ⊆ ∂O of the boundary of a bounded domain
O ⊂ Rn is called a smooth piece (resp., Lipschitz piece) if Γ is the graph of a
C∞- (resp., Lipschitz-) function, and O lies on one side of Γ.

(b) A bounded domain O ⊂ Rn is said to have smooth boundary (resp., Lipschitz
boundary) if every point x ∈ ∂O lies inside a smooth (resp. Lipschitz) piece.

It is said to have piecewise smooth boundary ∂O if ∂O is a countable union
of closures of smooth pieces.

(c) A function a ∈ L∞(B) is piecewise analytic (resp., piecewise C∞) on a partition
(Oj ,Γ)

J
j=1 of pairwise disjoint domains Oj ⊆ B, if

(i) ∂Oj is Lipschitz and piecewise smooth.

(ii) B =
⋃J

j=1 Oj ,

(iii) Γ =
⋃J

j=1 ∂Oj \ ∂B,

and a|Oj
has an extension to a (real-)analytic, (resp. C∞) function on a neigh-

borhood of Oj .

Note that we require that the boundaries ∂Oj in definition 2.1(c) are not just
piecewise smooth, but also Lipschitz. Hence, ∂Oj may have corners, but no cusps.

With a consistently oriented normal ν on Γ, we denote by a+|Γ, resp., a−|Γ,
the traces taken from the side that the normal, resp., its negative, is oriented into.
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[a]Γ := a−|Γ − a+|Γ is the jump in the direction of the normal. In the case of
a+|Γ = a−|Γ we also write a|Γ for the sake of brevity.

Our main result is the following theorem.

Theorem 2.2. Let a1, a2, c1, c2 ∈ L∞
+ (B) be piecewise analytic coefficients on a

joint partition (Oj ,Γ)
J
j=1, and let Λa1,c1 , Λa2,c2 be the corresponding local Neumann-

to-Dirichlet operators on the boundary part S.
Then, Λa1,c1 = Λa2,c2 if and only if

(a) on the boundary part S,

a1|S = a2|S , and ∂νa1|S = ∂νa2|S on S,

(b) on the insulated remainder part ∂B \ S,
∂νa1
a1

|∂B\S =
∂νa2
a2

|∂B\S on ∂B \ S,

(c) on the set where all coefficients are analytic,

η1 :=
∆
√
a1√
a1

+
c1
a1

=
∆
√
a2√
a2

+
c2
a2

=: η2 on B \ Γ,

(d) on the discontinuity set Γ,

a+1 |Γ
a−1 |Γ

=
a+2 |Γ
a−2 |Γ

, and
[∂νa2]Γ

a−2 |Γ
=

[∂νa1]Γ

a−1 |Γ
on Γ.

The theorem will be proven in Section 5 by combining monotony results and
localized potentials derived in the following two sections.

3. Monotony results.

3.1. Motivation. Let us start with a simple example of a monotony relation to
motivate the elementary but somewhat technical results in the next subsection.

Let a1, a2, c1, c2 ∈ L∞
+ (B) and let Λa1,c1 , Λa2,c2 be the corresponding local

Neumann-to-Dirichlet operators. It is easy to show, cf., e.g. [21, Lemma 4.1],
that for all g ∈ L2(S),

∫

S

g (Λa1,c1 − Λa2,c2) g ds ≥
∫

B

(

(a2 − a1) |∇u2|2 + (c2 − c1) |u2|2
)

dx,

where u2 is the solution of (3) and (4) for (a, c) = (a2, c2).
Hence, if a2 > a1 and c2 > c1 then Λa1,c1 > Λa2,c2 in the sense of quadratic

forms, which is why we refer to such inequalities as monotony results.
Monotony relations can be used to prove uniqueness results: Assume that a2 and

a1 are constant. If we can construct a solution u2 for which |∇u2|2 is very large
but |u|2 is very small, then a2 > a1 must imply that Λ2 6= Λ1. If a2 and a1 are
constant in some neighbourhood of S then a similar argument holds if there exists
a solution for which |∇u2|2 is very large only on this neighbourhood. In fact, such
solutions (the so-called localized potentials) can be constructed. Together with the
above monotony relation they can be used to prove that Λa,c uniquely determines
piecewise constant a and c, cf. [21].

In this work we require more technical monotony relations to study the unique-
ness question for piecewise analytic coefficients. As explained in the introduction,
setting v =

√
au transforms (3) into an equation where both a and c are combined

into an effective absorption coefficient η. To be able to combine the coefficients only
in a part of the domain, we will use this transformation with a replaced by a more
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general function α and derive a corresponding monotony relation. Three corollaries
of this general monotony result will later be used in our uniqueness proof.

3.2. A monotony lemma and three corollaries. As in Theorem 2.2, let the
coefficients a1, a2, c1, c2 ∈ L∞

+ (B) be piecewise analytic functions on a joint partition

(Oj ,Γ)
J
j=1, and let Λa1,c1 , Λa2,c2 be the corresponding local Neumann-to-Dirichlet

operators.

Lemma 3.1. For all functions α1, α2 ∈ L∞
+ (B) that are piecewise C∞ on the

partition (Oj ,Γ), and for all g ∈ L2(S),

∫

S

g (Λa2,c2 − Λa1,c1) g ds

≤
∫

S

(

1−
√
α2√
α1

)

gu2 ds−
∫

∂B

(

a1
α1

∂να1

2α1
− a2

α2

∂να2

2α2

)

α2|u2|2 ds

+

∫

B\Γ

(

η
(α1)
1 − η

(α2)
2

)

α2|u2|2 dx+

∫

B\Γ

(

a1
α1

− a2
α2

)

|∇ (
√
α2u2)|2 dx

+

∫

Γ

{

1

2

([

a2
α2

∂να2

]

Γ

−
[

α2

α1

a1
α1

∂να1

]

Γ

)

|u2|2 − 2

[√
α2√
α1

]

Γ

a1∂νu1u2

}

ds,

where

(6) η
(αj)
j :=

∇ ·
(

aj

αj
∇√

αj

)

√
αj

+
cj
αj

on B \ Γ,

j = 1, 2, and u1 and u2 are the solutions of (3), (4) for (a, c) = (a1, c1), resp.,
(a, c) = (a2, c2).

Note that we use two common, but somewhat sloppy notations here. First, the
seemingly effectless removal of the Lebesgue null set Γ from the integration domain
actually means that the derivatives in the integral are taken on B \ Γ. Second, the
last term in the asserted inequality is in fact the dual pairing of

a1∂νu1 ∈ H−1/2(Γ) and 2

[√
α2√
α1

]

Γ

u2 ∈ H1/2(Γ),

which, here and in the following, we write as an integral for ease of notation.
We will use this lemma with αj = aj on some part of B, and αj = 1 on another.

We start with the cases where αj = 1 or αj = aj everywhere on B. In the first case
we obtain the monotony result already stated in our motivation.

Corollary 1. For all g ∈ L2(S),

∫

S

g (Λa2,c2 − Λa1,c1) g ds ≤
∫

B

(

(a1 − a2) |∇u2|2 + (c1 − c2) |u2|2
)

dx,

where u2 is the solution of (3) and (4) for (a, c) = (a2, c2).

The second corollary follows from setting α1 = a1 and α2 = a2.
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Corollary 2. For all g ∈ L2(S),
∫

S

g (Λa2,c2 − Λa1,c1) g ds

≤
∫

B\Γ
(η1 − η2) a2|u2|2 dx

+

∫

S

(

1−
√
a2√
a1

)

gu2 ds−
∫

∂B

(

∂νa1
2a1

− ∂νa2
2a2

)

a2|u2|2 ds

+

∫

Γ

{

1

2

(

[∂νa2]Γ −
[

a2
a1

∂νa1

]

Γ

)

|u2|2 − 2

[√
a2√
a1

]

Γ

a1∂νu1u2

}

ds,

where u1 and u2 are the solutions of (3) and (4) for (a, c) = (a1, c1), resp., (a, c) =
(a2, c2).

Note that by interchanging (a1, c1) and (a2, c2), and negation, analog estimates
from above are obtained. In particular, Corollary 2 already implies the if-part in
Theorem 2.2.

In the last corollary we eliminate the term containing u1.

Corollary 3. Let O be a subdomain of B whose boundary contains a smooth piece
of S. Let α1, α2 ∈ L∞

+ (B) be piecewise C∞ on the partition (Oj ,Γ). Furthermore,

let
√
α2√
α1

be continuous on a neighborhood of O and let B\O have Lipschitz boundary.

Then there exists C > 0 such that for all g ∈ L2(S),
∫

S

g (Λa2,c2 − Λa1,c1) g ds

≤
∫

S∩∂O

(

1−
√
α2√
α1

)

gu2 ds−
∫

∂B∩∂O

(

a1
α1

∂να1

2α1
− a2

α2

∂να2

2α2

)

α2|u2|2 ds

+

∫

O\Γ

(

η
(α1)
1 − η

(α2)
2

)

α2|u2|2 dx+

∫

O\Γ

(

a1
α1

− a2
α2

)

|∇ (
√
α2u2)|2 dx

+

∫

O∩Γ

{

1

2

([

a2
α2

∂να2

]

Γ

−
[

α2

α1

a1
α1

∂να1

]

Γ

)

|u2|2
}

+ C ‖u2‖2
H1(B\O)

,

where u2 is the solution of (3) and (4) for (a, c) = (a2, c2) and η
(αj)
j is given by (6).

3.3. Proof of Lemma 3.1 and the corollaries.
Proof of Lemma 3.1. We define the space

H∆(B \ Γ) := {v ∈ H1(B \ Γ) : ∆v|B\Γ ∈ L2(B \ Γ)}.
Functions in H∆(B \ Γ) have well defined one-sided Neumann-boundary traces in
Γ∪∂B. For j = 1, 2, it is easily checked that uj ∈ H∆(O) and that uj is a (possibly
not unique) solution of

bj(uj, v) = l(v) for all v ∈ H∆(B \ Γ),
with

bj(v, w) :=

∫

B\Γ
(aj∇v · ∇w + cjvw) dx−

∫

Γ

[ajw∂νv]Γ ds,

l(w) :=

∫

S

gw ds,

for all v, w ∈ H∆(B \ Γ).
Inverse Problems and Imaging Volume 6, No. 4 (2012), 663–679
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Noting that v ∈ H∆(B \ Γ) if and only if
√
αjv ∈ H∆(B \ Γ), we also introduce

bαj
(vαj

, wαj
) := bj

(

vαj√
αj

,
wαj√
αj

)

and lαj
(wαj

) := l

(

wαj√
αj

)

for all vαj
, wαj

∈ H∆(B \ Γ). Thus, uαj
:=

√
αjuj solves

bαj
(uαj

, vαj
) = lαj

(vαj
) for all vαj

∈ H∆(B \ Γ),
Using the product rule and integration by parts on the subdomains where aj is

analytic, and αj is C∞, we obtain (omitting the index j)
∫

B\Γ
a∇v · ∇w dx =

∫

B\Γ

(

a

α
∇vα · ∇wα +

∇ ·
(

a
α∇

√
α
)

√
α

vαwα

)

dx

−
∫

Γ

[

a

α

∂να

2α
vαwα

]

Γ

ds−
∫

∂B

a

α

∂να

2α
vαwα ds,

for all vα =
√
αv and wα =

√
αw in H∆(B \ Γ).

Hence,

bαj
(vαj

, wαj
) =

∫

B\Γ

aj
αj

∇vαj
· ∇wαj

dx+

∫

B\Γ
η
(αj)
j vαj

wαj
dx

−
∫

∂B

aj
αj

∂ναj

2αj
vαj

wαj
ds−

∫

Γ

[

aj
αj

wαj
∂νvαj

]

Γ

ds.

Now we can write
∫

S

g (Λa2,c2 − Λa1,c1) g ds

= b2(u2, u2)− b1(u1, u1) = bα2
(uα2

, uα2
)− bα1

(uα1
, uα1

)

= (lα2
− lα1

) (uα2
) + bα1

(uα1
, uα2

)− bα1
(uα1

, uα1
)

= (lα2
− lα1

) (uα2
)− bα1

(uα2
− uα1

, uα2
− uα1

)

+ (bα1
(uα2

, uα2
)− bα2

(uα2
, uα2

)) + (bα1
(uα1

, uα2
)− bα1

(uα2
, uα1

)) .

The first summand in the final expression is

(lα2
− lα1

) (uα2
) = l

(

uα2

α2
− uα2

α1

)

=

∫

S

(

1−
√
α2√
α1

)

gu2 ds.

We estimate the second summand by

−bα1
(uα2

− uα1
, uα2

− uα1
) = −b1

(

uα2
− uα1√
α1

,
uα2

− uα1√
α1

)

≤
∫

Γ

[

a1
uα2

− uα1√
α1

∂ν

(

uα2
− uα1√
α1

)]

Γ

ds.

For the third and fourth summand we obtain

bα1
(uα2

, uα2
)− bα2

(uα2
, uα2

)

=

∫

B\Γ

{(

a1
α1

− a2
α2

)

|∇uα2
|2 +

(

η
(α1)
1 − η

(α2)
2

)

|uα2
|2
}

dx

−
∫

∂B

(

a1
α1

∂να1

2α1
− a2

α2

∂να2

2α2

)

|uα2
|2 ds

−
∫

Γ

([

a1
α1

uα2
∂νuα2

]

Γ

−
[

a2
α2

uα2
∂νuα2

]

Γ

)

ds
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S

O O
′

B

∂B

Ω

Ω
′

T
T

′

Σ

Figure 1. Sketch of the domains considered in Lemma 4.1.

and

bα1
(uα1

, uα2
)− bα1

(uα2
, uα1

) =

∫

Γ

([

a1
α1

uα1
∂νuα2

]

Γ

−
[

a1
α1

uα2
∂νuα1

]

Γ

)

ds

Combining these terms and using the interface conditions

[uj ]Γ = 0 = [aj∂νuj ]Γ

yields the assertion of Lemma 3.1. �

Proof of Corollaries 1–3. The corollaries 1 and 2 immediately follow from Lemma 3.1
by setting α1 = 1 = α2, resp., α1 = a1 and α2 = a2.

To show Corollary 3 let Oε be the neighborhood of O on which
√
α2√
α1

is continuous.

Choose a C∞(B)-cutoff function ϕ(x) with

0 < ϕ(x) < 1, and ϕ(x) =

{

1 on O,
0 on B \Oε,

and set

α̃j := αϕ
j , j = 1, 2.

Then, α̃j = αj on O, α̃j = 1 on B \ Oε, and, since
α1

α2
has no jumps in Oε, the

fraction
√
α̃2/

√
α̃1 is continuous in B. Using Lemma 3.1 with α̃1 and α̃2 yields

Corollary 3. �

4. Localized potentials. Now we show that we can independently control the
terms in the monotony estimates. For the following lemma, see Figure 1 for a
sketch of the considered domains.

4.1. Existence of localized potentials.

Lemma 4.1. Let a, c ∈ L∞
+ (B) be piecewise analytic. Let O ⊆ B be a subdomain

with S ⊂ ∂O. In each of the following assertions, uk ∈ H1(B) denotes the solution
of (3) and (4), with Neumann boundary values g = gk.

(a) (i) There exists a sequence (gk)k∈N ⊂ L2(S) such that

‖uk‖2
H1(O) → ∞, ‖uk‖2

L2(S) + ‖uk‖2
L2(O) + ‖uk‖2

H1(B\O)
→ 0.

(ii) There exists a sequence (gk)k∈N ⊂ L2(S) such that

‖uk‖2
L2(S) → ∞, ‖uk‖2

L2(O) + ‖uk‖2
H1(B\O)

→ 0.

Inverse Problems and Imaging Volume 6, No. 4 (2012), 663–679
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(iii) Let O′ be an open subset of O. There exists (gk)k∈N ⊂ L2(S) with

‖uk‖2
L2(O′) → ∞, ‖uk‖2

H1(B\O)
→ 0.

(b) Let Ω be another open subset of B, with Ω∩O = ∅, and let ∂Ω and ∂O contain
a joint smooth piece Σ.
(i) There exists a sequence (gk)k∈N ⊂ L2(S) such that

‖uk‖2
H1(Ω) → ∞, ‖uk‖2

L2(Σ) + ‖uk‖2
L2(Ω) + ‖uk‖2

H1(B\O∪Ω)
→ 0.

(ii) There exists a sequence (gk)k∈N ⊂ L2(S) such that

‖uk‖2
L2(Σ) → ∞, ‖uk‖2

L2(Ω) + ‖uk‖2
H1(B\O∪Ω)

→ 0.

(iii) Let Ω′ be an open subset of Ω. There exists (gk)k∈N ⊂ L2(S) with

‖uk‖2
L2(Ω′) → ∞, ‖uk‖2

H1(B\O∪Ω)
→ 0.

(c) Let T, T ′ ⊂ ∂B \ S be open parts of ∂B with T ⊂ T ′. There exists a sequence
(gk)k∈N ⊂ L2(S) such that

‖uk‖2
L2(T ) → ∞, ‖uk‖2

L2(∂B\S∪T ′)
→ 0.

4.2. Proof of Lemma 4.1. The main idea of localized potentials is to reformulate
the desired growth properties as range inclusions. For the assertion (a), this is
done in subsection 4.2.1. The range inclusions are then proved in subsection 4.2.2
by compactness and unique continuation arguments. We then derive assertion (b)
from (a) and prove (c) again relying on unique continuation.

Before we start the reformulation, let us give some simplifying remarks. It suffices
to show the assertions (a)(i) and (ii) for shrinked subsets S and O. For these two
parts, we can therefore assume w.l.o.g. that O is also smoothly bounded and that
a and c are analytic on a neighborhood of O.

Also, instead of (a)(ii), it suffices to show

(a) (ii’) there exists a sequence (gk)k∈N ⊂ L2(S) such that

‖uk‖L2(∂B) → ∞, ‖uk‖2
L2(O) + ‖uk‖2

H1(B\O)
→ 0.

Then ‖uk‖2
H1(B\O)

→ 0 yields that ‖uk‖L2(S′) → ∞ for every neighborhood S′ of

∂B ∩ ∂O, so that we obtain the original assertion (a)(ii) from choosing S and O
small enough.

Furthermore, let us note the following unique continuation property. For every
open connected subset U ⊆ B only the trivial solution of

−∇ · (a∇u) + cu = 0 in U,

vanishes on an open subset of U or possesses zero Cauchy data on a smooth, open
part of ∂U . For Lipschitz continuous a and bounded c, this property is proven in
Miranda [34, Thm. 19, II]. It can be extended to our case of piecewise analytic a and
c by sequentially solving Cauchy problems (see also Druskin [13] for this argument).

4.2.1. Reformulation of Lemma 4.1(a) as range inclusions. In [21] the author has
proven a similar assertion involving only the L2− andH1-terms on subdomains, and
the reformulation arguments in [21] are easily extended to also include boundary
terms. For the convenience of the reader, we summarize the main steps for the
assertion (a)(i) here, the reformulations of (a)(ii’) and (iii) follow analogously.
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We first introduce the solution operator

G : H1(B)′ → L2(S), f 7→ u|S ,

where u ∈ H1(B) solves

(7) b(u, v) :=

∫

B

(a∇u · ∇v + cuv) dx = 〈f, v〉 for all v ∈ H1(B).

Here and in the following 〈·, ·〉 denotes the dual pairing on H1(B)′ × H1(B). For
dual pairings on boundary pieces we continue our somewhat sloppy notation from
the last section and write them as integrals.

The dual operator of G is given by

G′ : L2(S) → H1(B), g 7→ u,

where u ∈ H1(B) solves
∫

B

(a∇u · ∇v + cuv) dx =

∫

S

gv|S ds for all v ∈ H1(B),

i.e., G′ maps a given Neumann datum g to the solution u ∈ H1(B) of equations
(3), (4).

We can interprete the assertion in terms of bounds on the solution operator. The
assertion in (a)(i) is equivalent to the statement that there exists no C > 0 such
that

‖G′g‖2
H1(O) ≤ C

(

‖G′g‖2
L2(S) + ‖G′g‖2

L2(O) + ‖G′g‖2
H1(B\O)

)

.

holds for all g ∈ L2(S).
To reformulate this as a range inclusion we use the following functional analytic

lemma. For bounded linear operators Aj : Hj → H , j = 1, 2, between Hilbert
spaces H , H1 and H2 it holds that

R(A1) ⊆ R(A2), if and only if ∃C > 0 : ‖A′
1g‖ ≤ C ‖A′

2g‖ ∀g ∈ H ′,

cf, e.g., [15, Lemma 2.5].
We apply this equivalence using G′ as an operator from L2(S) to H1(O), and as

an operator from L2(S) to L2(S)×L2(O)×H1(B\O). (For the rigorous formulation
using inclusion and restriction operators we refer to [21].)

Note that the canonical restrictions fromH1(B) to L2(S), L2(O), andH1(B\O),
yield, by duality, injections from L2(S), L2(O), and H1(B \O)′ to H1(B)′. Hence,
we obtain that the assertion (a)(i) is equivalent to the fact that

G
(

H1(O)′
)

6⊆ G
(

L2(S)
)

+G
(

L2(O)
)

+G
(

H1(B \O)′
)

.(8)

Analogously, we obtain that (a)(ii’) and (iii) are equivalent to

G
(

L2(∂B)
)

6⊆ G
(

L2(O)
)

+G
(

H1(B \O)′
)

,(9)

G
(

L2(O′)
)

6⊆ G
(

H1(B \O)′
)

.(10)

4.2.2. Proof of the range inclusions. To show the assertion of Lemma 4.1, we now
prove the equivalent range inclusions (or, rather, non-inclusions) (8)–(10).
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Proof of (8). We first show that G(H1(B \ O)′) ⊆ G(L2(O)). To that end let
u|S = Gh with h ∈ H1(B \O)′. With a cutoff function χ ∈ C∞(B) which is one in
a neighborhood of S, vanishes outside O and fulfills ∂νχ|∂O = 0, we obtain

∫

B

(a∇(χu) · ∇v + c(χu)v) dx = −
∫

O

(∇ · (au∇χ) + a∇u · ∇χ) v dx.

and thus u|S = (χu)|S ∈ G(L2(O)).
In effect,

G
(

L2(S) + L2(O) +H1(B \O)′
)

⊆ G(K),

where K := L2(S) + L2(O) is a compact subset of H1(O)′. Hence, G(K) is a
compact subset of G

(

H1(O)′
)

(equipped with the graph norm). Since the latter

space is infinite dimensional, we deduce G(K) ( G
(

H1(O)′
)

and thus (8). �

Proof of (9). First note that replacing the piecewise-analytic a and c by (everywhere)
C∞ extensions of a|O and c|O (still satisfying a, c ∈ L∞

+ (B)) changes the ranges in

(9) only by a term in G(H1(B \ O)′). For the proof of (9), we can therefore also
assume w.l.o.g. that a, c ∈ C∞(B).

From the proof of (8) we already know that G(H1(B \O)′) ⊆ G(L2(O)), so that
the right hand side of (9) is simply G(L2(O)).

We will show (9) by proving that G(L2(O)) ( G(L2(∂B)). We apply the same
compactness argument as in the proof of (8) and note that the first is a compact,
and thus proper, subset of the infinite dimensional space G(H1/2(O)′). It therefore
suffices to show that G(H1/2(O)′) ⊆ G

(

L2(∂B)
)

.
To that end we introduce the solution operator of the Dirichlet problem,

γ− : H1/2(∂B) → H1(B), γ−f = u,

where u solves (3) with Dirichlet boundary values u|∂B = f on ∂B.
Due to our smoothness assumptions, γ− can be extended to scales of Sobolev-

spaces and their duals; cf. Lions and Magenes [33, Chp. 2, Theorem 7.4]. In
particular, it extends by continuity to an operator from L2(∂B) to H1/2(B), and
so its dual (γ−)′ : H1(B)′ → H1/2(∂B)′ fulfills

(γ−)′(H1/2(O)′) ⊆ (γ−)′(H1/2(B)′) ⊆ L2(∂B).

Now let u|S = Gf , with f ∈ H1/2(O)′, and let ũ ∈ H1(B) be the solution from
the definition of G((γ−)′f). By construction,

b(u− ũ, v) = 0 for all v ∈ H1(B) with v = γ−v|∂B.

Furthermore let ũ0 ∈ H1
0 (B) solve

b(ũ0, v) = b(u− ũ, v) for all v ∈ H1
0 (B).

From the definition of γ− it follows that b(ũ0, γ
−v|∂B) = 0. Since

b(u− ũ− ũ0, v) = b(u− ũ− ũ0, v − γ−v|∂B) + b(u− ũ− ũ0, γ
−v|∂B) = 0,

holds for all v ∈ H1(B), we obtain u = ũ + ũ0, so that u|S = ũ|S ∈ G(L2(∂B)).
This shows that G(H1/2(O)′) ⊆ G

(

L2(∂B)
)

, and hence the assertion (9). �

Proof of (10). This follows from the unique continuation property as in [21, Thm. 3.1];
cf. also [15, Lemma 2.3]. �
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4.2.3. Proof of Lemma 4.1(b). The assertions in (b) can be deduced from (a) in the
following way. First, we can shrink O to assume w.l.o.g. that B \ O is smoothly
bounded.

Then, analogously to subsection 4.2.1, we obtain that assertion (b)(i) is equiva-
lent to the range inclusion

(11) G
(

H1(Ω)′
)

6⊆ G
(

L2(Σ)
)

+G
(

L2(Ω)
)

+G
(

H1(B \O ∪ Ω)′
)

.

Now, we introduce the solution operator

Γ : H1(B)′ → L2(Σ), f 7→ u|Σ,
which is defined in the same way as G but takes the trace on Σ instead of S.

By unique continuation on O, (11) is equivalent to

(12) Γ
(

H1(Ω)′
)

6⊆ Γ
(

L2(Σ)
)

+ Γ
(

L2(Ω)
)

+ Γ
(

H1(B \O ∪ Ω)′
)

.

This is precisely what we showed for (a)(i) with Ω and Σ in place of O and S.
Analogously, (b)(ii) and (iii) follow from (a)(ii) and (iii). �

4.2.4. Proof of Lemma 4.1(c). Analogously to subsection 4.2.1, we obtain that as-
sertion (c) is equivalent to the range inclusion

G
(

L2(T )
)

6⊆ G
(

L2(∂B \ S ∪ T ′)
)

.

This immediately follows from unique continuation. �

5. Proof of Theorem 2.2. Now we can prove our main result. Let a1, a2, c1, c2 ∈
L∞
+ (B) be piecewise analytic coefficients on a joint partition (Oj ,Γ)

J
j=1, and let

Λa1,c1 , Λa2,c2 be the corresponding local Neumann-to-Dirichlet operators.
As we already remarked in section 3, the if-part of Theorem 2.2 follows from

Corollary 2.
To show the only-if-part, we will proceed along the following steps. In subsections

5.1.1 and 5.1.2, we show that

a1|S = a2|S on S,(13)

∂νa1|S = ∂νa2|S on S.(14)

We then prove in subsection 5.2 that

η1 = η2 on B \ Γ,(15)

a+1 |Γ
a−1 |Γ

=
a+2 |Γ
a−2 |Γ

on Γ,(16)

[∂νa2]Γ

a−2 |Γ
=

[∂νa
−
1 ]Γ

a−1 |Γ
on Γ.(17)

Finally we conclude in subsection 5.3 that

∂νa1
a1

|∂B =
∂νa2
a2

|∂B on ∂B.(18)

All of these steps will be proven by applying the localized potentials from section 4
to control the individual terms in our monotony estimates from section 3. More
precisely, in each step, we will argue by contradiction and show that, if the respective
assertion was not true, there would exist a sequence (g(k))k∈N ∈ L2(S) with

(19)

∣

∣

∣

∣

∫

S

g(k) (Λa1,c1 − Λa2,c2) g
(k) ds

∣

∣

∣

∣

→ ∞,
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thus contradicting Λa1,c1 = Λa2,c2 .

5.1. The boundary part S: Proof of (13), (14).

5.1.1. Proof of (13). To show (13), we assume the converse. Then, by continuity of
a1 and a2, there exists a connected neighborhood O of a smooth piece S′ of S on
which all coefficients are analytic, and either a1− a2 ∈ L∞

+ (O) or a2− a1 ∈ L∞
+ (O).

By possibly interchanging the roles of Λa1,c1 and Λa2,c2 , we can, w.l.o.g., assume

the latter. We then apply Lemma 4.1(a)(i) to obtain a sequence g(k) such that the

corresponding solutions u
(k)
2 of (3), (4) for (a, c) = (a2, c2) and g = g(k) fulfill

‖u(k)
2 ‖H1(O) → ∞, ‖u(k)

2 ‖L2(O) → 0, and ‖u(k)
2 ‖H1(B\O) → 0.

Hence, we obtain from Corollary 1 that
∫

S

g(k) (Λa1,c1 − Λa2,c2) g
(k) ds

≥
∫

O

(a2 − a1) |∇u
(k)
2 |2 dx− ‖a2 − a1‖L∞(B\O)‖u

(k)
2 ‖2

H1(B\O)

− ‖c2 − c1‖L∞(B)‖u(k)
2 ‖2

L2(B)

→ ∞,

so that (19) holds, which contradicts Λa1,c1 = Λa2,c2 . �

5.1.2. Proof of (14). Similarly, we prove (14) by assuming the converse, which gives
us a connected neighborhood O, such that S′ := ∂O ∩ ∂B is a smooth piece of
S, B \ O has Lipschitz boundary, all coefficients are analytic on O, and, w.l.o.g.,
∂νa2 − ∂νa1 ∈ L∞

+ (S′).
Now we set α1 := a1 and α2 = a2 on O and extend them smoothly to positive

C∞-functions on a neighborhood of B. Using (13), we then obtain from Lemma 3.1
that there exists a constant C > 0 such that

∫

S

g (Λa1,c1 − Λa2,c2) g ds

≥
∫

S′

(

∂νa2
2

− ∂νa1
2

)

|u2|2 ds− C
(

‖u2‖2
L2(B) + ‖u2‖2

H1(B\O)

)

for all g ∈ L2(S) with support in S′ and corresponding solutions u2 of (3), (4) with
(a, c) = (a2, c2).

Hence, we can now apply Lemma 4.1(a)(ii) to obtain a sequence g(k) ⊆ L2(S′)

such that the corresponding solutions u
(k)
2 fulfill

‖u(k)
2 ‖L2(S′) → ∞, ‖u(k)

2 ‖L2(O) → 0, and ‖u(k)
2 ‖H1(B\O) → 0,

which again gives us (19) and thus the desired contradiction. �

5.2. The interior B: Proof of (15)–(17). Now we prove (15)–(17) by induction
over the number of sets Oj . At least one of the boundaries ∂Oj must contain a
smooth piece of S, w.l.o.g., let this be ∂O1.
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5.2.1. Induction basis: Proof of (15) in O1. We first show that (15) holds in O1.
Assume that this is not the case. Since all coefficients have analytic extensions to
a neighborhood of O1, there must be a smallest number l ∈ N0 such that the l-th
normal derivative ∂l

ν(η1 − η2) does not vanish everywhere on ∂O1 ∩ ∂B, cf. Kohn
and Vogelius [31] for the origin of this argument.

By possibly shrinking S and O1 we can therefore assume that, w.l.o.g.,

η2 ≥ η1 in O1,

and that there exists an open subdomain O′
1 ⊆ O1 on which η2 − η1 ∈ L∞

+ (O′
1).

Furthermore we can assume that S′ := ∂O1 ∩ ∂B ⊂ S is a smooth part of S and
that B \O has Lipschitz boundary.

As in the proof of (14), we set α1 := a1 and α2 = a2 on O1 and extend them
smoothly to positive functions in C∞(B). Using (13) and (14), we now obtain from
Lemma 3.1 that there exists a constant C > 0 with

∫

S

g (Λa1,c1 − Λa2,c2) g ds ≥
∫

O1

(η2 − η1)a2|u2|2 dx− C ‖u2‖2
H1(B\O1)

for all g ∈ L2(S′) and corresponding solutions u2 of (3), (4) with (a, c) = (a2, c2).
Hence, by applying the potentials from Lemma 4.1(a)(iii) we obtain (19) and

thus the contradiction. �

5.2.2. Induction step for (15)–(17). Now assume that (15)–(17) holds on some num-
ber k < J of the sets Oj , w.l.o.g. let these sets be O1, . . . , Ok. More precisely, we
assume that (15) holds on O1 ∪ . . . ∪ Ok and that (16) and (17) hold on the inter-
section of Γ with O := int(O1 ∪ . . . ∪Ok).

At least one of the boundaries of the Oj , j > k, must contain a joint smooth
piece with ∂O, w.l.o.g., let this be Ok+1.
Proof of (16). We first show that (16) holds on ∂O ∩ ∂Ok+1. Assume that this is
not the case. Then there exists a smooth piece Σ ⊂ ∂O ∩ ∂Ok+1 on which, w.l.o.g.,

a+2 |Σ
a−2 |Σ

− a+1 |Σ
a−1 |Σ

∈ L∞
+ (Σ).

Now we set α1 := a1 and α2 := a2 on O and extend them to functions in B, so
that they are C∞ in a neighborhood of Σ. Again by continuity, there must exist a
subdomain Ω ⊆ Ok+1 with Σ ⊂ ∂Ω and

a2
α2

− a1
α1

∈ L∞
+ (Ω),

where we assumed, w.l.o.g., that the ”+”-direction points into Ω.
Note that by the induction assumption a1/a2 is continuous on O and thus α1/α2

is continuous on the interior of O ∪ Ω ∪ Σ. Now, by shrinking O, Ω and Σ, we
can assume that α1/α2 is continuous on a neighborhood of O ∪ Ω, and, also by
shrinking, assume that S′ := ∂O ∩ ∂B is a smooth part of S, and that B \ O ∪ Ω
has Lipschitz boundary.

Corollary 3 yields a C > 0 such that for all g ∈ L2(S) and corresponding solutions
u2 of (3), (4) with (a, c) = (a2, c2),
∫

S

g (Λa1,c1 − Λa2,c2) g ds ≥
∫

Ω

(

a2
α2

− a1
α1

)

|∇ (
√
α2u2)|2 dx

− C
(

‖u2‖2
H1(B\O∪Ω)

+ ‖u2‖2
L2(Ω) + ‖u2‖2

L2(Σ)

)

.
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Applying the localized potentials from Lemma 4.1(b)(i) yields (19) and thus the
desired contradiction. Hence, we have shown that (16) holds on ∂O ∩ ∂Ok+1. �

Proof of (17). To show that (17) holds on ∂O∩∂Ok+1, we use our usual assumption
of the contrary to obtain a smooth piece Σ ⊂ ∂O ∩ ∂Ok+1 on which, w.l.o.g.,

[

a2
a1

∂να1

]

Γ

− [∂να2]Γ ∈ L∞
+ (Σ)

and a subdomain Ω ⊂ Ok+1 with Σ = ∂Ω ∩ ∂O.
Then we shrink O, Ω and Σ so that ∂O ∩ ∂B is a smooth piece of S, a1/a2 is

continuous on a neighborhood of O ∪ Ω, and B \ O ∪ Ω has Lipschitz boundary.
(Note that we already know that a1/a2 is continuous on O and across ∂O∩∂Ok+1.)
After that we apply Corollary 3 with α1 = a1, α2 = a2 which gives us a C > 0 such
that for all g ∈ L2(S) and corresponding solutions u2 of (3), (4) with (a, c) = (a2, c2),

∫

S

g (Λa1,c1 − Λa2,c2) g ds ≥
∫

Σ

{

1

2

([

a2
a1

∂νa1

]

Γ

− [∂νa2]Γ

)

|u2|2
}

− C
(

‖u2‖2
H1(B\O∪Ω)

+ ‖u2‖2
L2(Ω)

)

.

Hence, using the localized potentials from Lemma Lemma 4.1(b)(ii) we obtain
(19). Thus we have shown that (17) holds on ∂O ∩ ∂Ok+1. �

Proof of (15). To finish the induction step it only remains to show (15) on Ok+1.
We assume the contrary. By the same analyticity arguments as in the induction
start in subsection 5.2.1, we can assume that (after shrinking Ok+1)

η2 ≥ η1 in Ok+1,

and that there exists an open subdomain O′
k+1 ⊆ Ok+1 on which η2 − η1 ∈

L∞
+ (O′

k+1).
Again, we also shrink O to obtain that ∂O ∩ ∂B is a smooth piece of S and,

again by shrinking, we can assume that a1/a2 has no jumps on a neighborhood of
O ∪ Ok+1, and that B \ O ∪Ok+1 has Lipschitz boundary. We then obtain from
Corollary 3 that there exists C > 0 such that for all g ∈ L2(S) and corresponding
solutions u2 of (3), (4) with (a, c) = (a2, c2),
∫

S

g (Λa1,c1 − Λa2,c2) g ds ≥
∫

Ok+1

(η2 − η1)a2|u2|2 dx− C ‖u2‖2
H1(B\O∪Ok+1)

.

Using the localized potentials with the third property in Lemma 4.1(b) we obtain
(19) and thus the desired contradiction. Hence, (15) holds on Ok+1. This finishes
our induction step and finally yields that (15)–(17) holds in B. �

5.3. The insulated part ∂B \S: Proof of (18). With all that we have shown so
far, it follows from Corollary 2 that for all g ∈ L2(S) and corresponding solutions
u2 of (3), (4) with (a, c) = (a2, c2),

∫

S

g (Λa1,c1 − Λa2,c2) g ds ≥
∫

∂B

(

∂νa1
2a1

− ∂νa2
2a2

)

a2|u2|2 ds.

So, if
∂νa1
2a1

− ∂νa2
2a2

= 0.

was not true on some part of ∂B, then we would obtain (19) using appropriate
localized potentials from Lemma 4.1(c).

Hence, (18) must hold true, and this finishes the proof of Theorem 2.2. �
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