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Abstract We propose and test a numerical method for the computation of the con-
vex source support from single-measurement electrical impedance tomography data.
Our technique is based on the observation that the convex source support is the
unique minimum of an optimization problem in the space of all convex and com-
pact subsets of the imaged body.

1 Introduction

Electrical impedance tomography is a modern non-invasive imaging technology
with the potential to complement computerized tomography in treatments like pul-
monary function diagnostics and breast cancer screening. From a mathematical per-
spective, the reconstruction of the exact conductivity within the imaged body from
electrical impedance tomography data amounts to solving a strongly ill-posed in-
verse problem.

The difficulty of this problem can partly be avoided by noting that one is usually
not interested in the conductivity as such, but only in the domain where it differs
from the conductivity of healthy tissue. A technique introduced in [5] for scattering
problems and adapted to electrical impedance tomography later in [3] takes this
approach one step further by considering a convex set, called the convex source
support, which contains information on the desired domain, but can be computed
from a single measurement.
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We propose a numerical method for the computation of the convex source support
from electrical impedance tomography data. It is based on the observation that this
particular set is the unique minimum of an optimization problem in the space of all
convex and compact subsets of the imaged body. In Section 2, we recall the notion
of the convex source support, and in Section 3, we formulate the above-mentioned
optimization problem and manipulate its constraint into a convenient form. In Sec-
tion 4, we introduce Galerkin approximations, which are spaces of polytopes with
fixed outer normals, to the space of all convex and compact subsets of a given Eu-
clidean vector space. These spaces possess a sparse and unique representation in
terms of coordinates. In Section 5, we discuss how the derivatives of the objective
function and the constraint of our optimization problem can be computed efficiently.
In Section 6, we gather all the above ingredients and solve the optimization problem
numerically using a standard interior point method on the Galerkin approximation,
which yields a numerical approximation of the convex source support.

This paper is a report on work in progress, which aims to present ideas rather than
a complete solution of the problem. In particular, we assume that we can measure
the potential on the entire boundary of the imaged body, which is not possible in
real-world applications, and we neither include an error analysis nor stability results
for the proposed algorithm.

2 The convex source support in electrical impedance tomography

We consider the following idealistic model of the EIT problem. Let Ω ⊂Rd , d ≥ 2,
be a smoothly bounded domain describing the imaged body, let σ ∈ L∞(Ω) be the
conductivity within Ω , and let g ∈ L2

⋄(∂Ω) be the electric current applied to ∂Ω ,
where L2

⋄(∂Ω) denotes the subspace of L2(∂Ω) with vanishing integral mean on
∂Ω . Then the electrical potential u ∈ H1

⋄ (Ω) solves

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω ,

σ∂ν u|∂Ω (x) = g(x), x ∈ ∂Ω ,
(1)

where ν is the outer normal on ∂Ω , and H1
⋄ (∂Ω) is the subspace of H1(Ω)-

functions with vanishing integral mean on ∂Ω .
Our aim is to find inclusions or anomalies in Ω where the conductivity σ differs

from a reference conductivity value σ0 (e.g. that of healthy tissue) from measuring
the electric potential u|∂Ω on ∂Ω . To simplify our exposition we assume σ0 ≡ 1
throughout this work. More precisely, we aim to find information on supp(σ −σ0)
from the data (u− u0)|∂Ω , where u0 solves (1) with the same Neumann boundary
data g, and σ replaced by σ0. This is usually referred to as the problem of single
measurement EIT since only one current g is applied to the patient.

Now we introduce the convex source support, following [3] and [5]. First note
that since u and u0 are solutions of (1) with conductivities σ and σ0 and identical
Neumann data g ∈ L2

⋄(∂Ω), their difference w := u−u0 solves the equation
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∆w = div((1−σ)∇u) in Ω , ∂ν w = 0 on ∂Ω , (2)

with a source term satisfying

supp((1−σ)∇u)⊂ supp(1−σ). (3)

This motivates the following construction of the convex source support. Let us de-
fine the virtual measurement operator

L : L2(Ω)d → L2
⋄(∂Ω), F 7→ w|∂Ω

,

where w ∈ H1
⋄ (Ω) solves

∆w = divF in Ω , ∂ν w = 0 on ∂Ω .

Given a measurement f = (u−u0)|∂Ω
∈ L2

⋄(∂Ω), the convex source support of prob-
lem (1) is defined by

C f :=
∩

LF= f

co(supp(F)),

which is the intersection of the convex hulls of all supports of sources that could
possibly generate the measurement f . By equations (2) and (3),

C (u−u0)|∂Ω
⊂ co(supp((1−σ)∇u))⊂ co(supp(σ −σ0)),

which means that the convex source support provides coarse, but reliable informa-
tion about the position of the set supp(σ −σ0). In fact, much more is known. The
following theorem, e.g., can be found in [3].

Theorem 1. We have C f = /0 if and only if f = 0, and for every ε > 0, there exists
Fε ∈ L2(Ω)d such that LFε = f and dist(co(supp(Fε)),C f )< ε .

3 An optimization problem in Kc(R
d)

For given data f ∈ L2
⋄(∂Ω), we recast the computation of the convex source support

as a minimization problem

vol(D) = min! subject to D ∈ Kc(R
d), C f ⊂ D ⊂ Ω (4)

in the space Kc(R
d) of all nonempty convex and compact subsets of Rd , which

obviously has the unique solution D∗ = C f . To solve the problem (4), we mainly
need a handy criterion to check whether C f ⊂ D.

By Theorem 1, we have C f ⊂ int D if and only if there exists F ∈ L2(Ω)d with
supp(F) ⊂ D and LF = f . In other words, we have to check whether f ∈ R(LD),
i.e. whether f is in the range of the operator LD, where
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LD : L2(D)d → L2
⋄(∂Ω), F 7→ w|∂Ω

,

and w ∈ H1
⋄ (Ω) solves

∆w = divF in Ω , ∂ν w = 0 on ∂Ω .

Proposition 1. If the interior of D ⊆ Ω is not empty, then LD is a compact linear
operator with dense range, and

f ̸∈ R(LD) if and only if lim
α→0

∥RD
α f∥= ∞.

where RD
α f := (L∗

DLD +αI)−1L∗
D f .

Proof. LD is the concatenation of the linear bounded solution operator and the linear
compact trace operator from H1

⋄ (Ω) to L2
⋄(∂Ω) and thus linear and compact. The

adjoint of LD is given by (see [4, Lemma 2])

L∗
D : L2

⋄(∂Ω)→ L2(D)n, φ 7→ ∇v0|D,

where v0 ∈ H1
⋄ (D) solves

∆v0 = 0 in Ω , ∂ν v0|∂Ω = φ on ∂Ω .

By unique continuation, L∗
D is injective and thus LD has dense range. This also im-

plies that the domain of definition of the Moore-Penrose inverse L+
D (cf. [2, Def. 2.2])

is given by
D(L+

D) = R(LD)+R(LD)
⊥ = R(LD).

Since RD
α is a linear regularization (the Tikhonov regularization, cf. [2, Section 5]),

and a simple computation shows that

sup
α>0

∥LDRD
α∥ ≤ 1,

it follows from standard regularization theory (cf.,e.g., [2, Prop. 3.6]) that

lim
α→0

RD
α f = L+

D f if f ∈ D(L+
D) = R(LD),

and that
lim
α→0

∥RD
α f∥= ∞ if f ̸∈ D(L+

D) = R(LD).

This proves the assertion.

To implement Proposition 1, we therefore have to check whether the quantity

∥RD
α f∥2 = ∥(L∗

DLD +αI)−1L∗
D f∥2 = ∥L∗

D(LDL∗
D +αI)−1 f∥2

= ((LDL∗
D +αI)−1LDL∗

D(LDL∗
D +αI)−1 f , f )
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remains bounded as α → 0. Writing MD := LDL∗
D : L2

⋄(∂Ω)→ L2
⋄(∂Ω), we obtain

the convenient representation

∥RD
α f∥2 = ((MD +αI)−1MD(MD +αI)−1 f , f ). (5)

Fix an orthonormal basis (φ j) j of L2
⋄(∂Ω). The characterization of L∗

D in [4,
Lemma 2] shows that

(MDφ j,φk) = (L∗
Dφ j,L∗

Dφk) =
∫

D
∇u j

0 ·∇uk
0 dx, (6)

where u j
0 solves

∆u j
0 = 0 in Ω , ∂ν u j

0 = φ j on ∂Ω . (7)

Note that the integrands ∇u j
0 ·∇uk

0 do not depend on D and hence can be precom-
puted. Since ∫

D
∇u j

0 ·∇uk
0 dx =

∫
∂D

∂ν u j
0 ·u

k
0 ds

by the Gauß-Green theorem, even more computational effort can be shifted to the
offline phase, provided the sets under consideration possess essentially finitely many
different normals, which is the situation we consider in Section 4 and what follows.

Proposition 1 gives a mathematically rigorous criterion to check whether a set
D contains the convex source support. In the following we describe a heuristic nu-
merical implementation of this criterion and test it on a simple test example. Let us
stress that we do not have any theoretical results on convergence or stability of the
proposed numerical implementation, and that it is completely unclear whether such
an implementation exists. Checking whether a function lies in the dense range of
an infinite-dimensional operator seems intrinsically unstable to discretization errors
and errors in the function or the operator. Likewise, it is unclear how to numerically
check whether the sequence in Proposition 1 diverges or not.

In other words, the following heuristic numerical algorithm is motivated by a
rigorous theoretical result but it is completely heuristic and we do not have any the-
oretical justification for this algorithm. Since, to the knowledge of the authors, no
convergent numerical methods are known for the considered problem, we believe
that this algorithm might still be of interest and serve as a first step towards mathe-
matically rigorously justified algorithms.

To heuristically check, whether ∥RD
α f∥ → ∞, we fix suitable constants α,C > 0

and N ∈ N. Consider the finite-dimensional subspace VN := span(φ1, . . . ,φN) of
L2
⋄(∂Ω) and the corresponding L2 orthogonal projector PN : L2

⋄(∂Ω)→VN . Instead
of MD, we consider the truncated operator MN

D := PNM|VN : VN →VN , which satisfies

(MN
D φ j,φk) = (PNMDφ j,φk) = (MDφ j,φk) for 1 ≤ j,k ≤ N,

so that formula (6) holds for MN
D as well. We define

∥RD
α,Nv∥2 := ((MN

D +αI)−1MN
D (M

N
D +αI)−1PNv,PNv) for all v ∈ L2

⋄(∂Ω)
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and note that
RD

α,N f → RD
α f as N → ∞

follows from a discussion, which involves a variant of the Banach Lemma. There-
fore, the use of the criterion

∥RD
α,N f∥2 ≤C

instead of ∥RD
α f∥→ ∞ is well-motivated, and we solve

vol(D) = min! subject to D ∈ Kc(R
d), D ⊂ Ω , ∥RD

α,N f∥2 ≤C. (8)

with, e.g., α = 10−4 and C = 106 instead of (4).

4 Galerkin approximations to Kc(R
2)

We outline a setting for a first-discretize-then-optimize approach to numerical opti-
mization in the space Kc(R

2), which we use to solve problem (8). To this end, we
define Galerkin subspaces of Kc(R

2) in terms of polytopes with prescribed sets of
outer normals. These spaces have good global approximation properties (see Propo-
sition 2), they possess a unique representation in terms of few coordinates, and their
sets of admissible coordinates are characterized by sparse linear inequalities. A the-
ory of these spaces in arbitrary dimension is work in progress.

Fix a matrix A ∈Rm×2 with rows aT
i , i = 1, . . . ,m, where ai ∈R2, ∥ai∥2 = 1 for

all i and ai ̸= a j for all i, j with i ̸= j. For every b ∈ Rm, we consider the convex
polyhedron

QA,b := {x ∈R2 : Ax ≤ b},

and we define a space GA ⊂ Kc(R
2) of convex polyhedra by setting

GA := {QA,b : b ∈Rm}\{ /0}.

The choice of these spaces is motivated by an approximation result from [8]. Recall
the definition of the one-sided Hausdorff distance

dist : Kc(R
2)×Kc(R

2)→R+, dist(D,D′) := sup
x∈D

inf
x′∈D′

∥x− x′∥2.

Proposition 2. Assume that the matrix A ∈Rm×2 satisfies

δ := max
x∈R2, ∥x∥2=1

dist({x},{aT
1 , . . . ,a

T
m})< 1. (9)
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Then the associated space GA consists of convex polytopes, and for all D ∈Kc(R
2),

there exists QA,b ∈ GA such that D ⊂ QA,b and

dist(QA,b,D)≤ 2δ −δ 2

1−δ
dist(D,{0}).

Hence, if the matrix A is augmented in such a way that δ → 0 as m → ∞, then GA
converges to Kc(R

2) uniformly on every bounded subset of Kc(R
2).

It is, at present, not entirely clear how to represent the spaces GA in terms of
coordinates. There are b ∈Rm with QA,b = /0, and two different vectors b,b′ ∈Rm

may encode the same polytope QA,b = QA,b′ . In our concrete optimization problem,
the constraint C f ⊂ D will enforce QA,b ̸= /0. For the time being, we treat the second
issue by forcing all hyperplanes {x∈R2 : aT

k x= bk}, k = 1, . . . ,m, to possess at least
one common point with QA,b. This approach will be made rigorous in the future.

Definition 1. We call the set CA of all b ∈Rm satisfying

p1

(
bm
b2

)
≥ b1, pk

(
bk−1
bk+1

)
≥ bk, k = 2, . . . ,m−1, and pm

(
bm−1

b1

)
≥ bm

with

p1 := aT
1

(
aT

m
aT

2

)−1

, pm := aT
m

(
aT

m−1
aT

1

)−1

,

pk := aT
k

(
aT

k−1
aT

k+1

)−1

, k = 2, . . . ,m−1

the set of admissible coordinates.

Note that the inverse matrices above exist when δ < 1 as required in Proposition
2. Hence it is easy to assemble the sparse matrix

HA =


1 −p1,2 −p1,1

−p2,1 1 −p2,2
. . . . . . . . .

−pm−1,1 1 −pm−1,2
−pm,2 −pm,1 1

 ,

which gives rise to the following characterization of the set CA ⊂Rm.

Lemma 1. The set of admissible coordinates can be written as

CA = {b ∈Rm : HAb ≤ 0}.

All in all, we replaced the relatively inaccessible space Kc(R
2) with a Galerkin

subspace GA that is parametrized over a set CA ⊂Rm of coordinates, which, in turn,
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is described by a sparse linear inequality. For the practical computations in this
paper, we fix the matrix A = (a1, . . . ,am)

T given by

ak = (cos(2kπ/m),sin(2kπ/m))T , k = 1, . . . ,m,

which is probably the best choice in the absence of detailed information on the set
to be approximated. As we will have Ω = B1(0) in our computational example, we
will replace problem (4) with the fully discrete optimization problem

vol(QA,b) = min!

subject to b ∈Rm, HAb ≤ 0, b ≤ 1, ∥R
QA,b
α,N f∥2 ≤C.

}
(10)

5 Gradients of functions on GA

The objective function D 7→ vol(D) and the constraint D 7→ ∥RD
α,N f∥2 are both given

in terms of integrals of a real-valued function over the set D. The evaluation of these
integrals is straight-forward and efficient. The efficient evaluations of the gradients
of both integrals with respect to coordinates requires some preparation. We follow
[6, Lemma 2.2] and [7, Theorem 1].

Proposition 3. Let b ∈ CA, let k ∈ {1, . . . ,m}, and let Qk
A,b be the facet

Qk
A,b := QA,b ∩{x ∈R2 : aT

k x = bk}.

If we assume that vol2(QA,b)> 0 and vol1(Qk
A,b)> 0, then for any continuous func-

tion h :R2 →R we have

d
dbk

∫
QA,b

h(x)dx =
∫

Qk
A,b

h(ξ )dξ .

The above proposition shows that whenever QA,b is not degenerate, we have

∇bvol2(QA,b) = (vol1(Q1
A,b), . . . ,vol1(Qm

A,b))
T .

To compute ∇b∥R
QA,b
α,N f∥2, we need the following lemma. The construction of the

matrices P, S and U reduces the costs for the computation of the desired derivative.

Lemma 2. Let ε > 0, let M : (−ε,ε) → R
N×N , γ 7→ M(γ), be differentiable with

M(γ) symmetric and M(γ)+αI invertible for all γ ∈ (−ε,ε). Using the abbrevia-
tions

X := M+αI, Y := X−1M′X−1 and Z := MX−1,

we find that
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(X−1MX−1)′ =−Y Z +Y − (Y Z)T .

The proof is elementary and therefore omitted. An application of Lemma 2 to the
matrix representation of MN

QA,b
yields

d
dbk

∥R
QA,b
α,N f∥2 =

d
dbk

((MN
QA,b

+αI)−1MN
QA,b

(MN
QA,b

+αI)−1 f , f )

= ((−YkZ +Yk − (YkZ)T ) f , f )

with the abbreviations

X := MN
QA,b

+αI, Yk := X−1(
d

dbk
MN

QA,b
)X−1 and Z := MN

QA,b
X−1,

where
[

d
dbk

MN
QA,b

]i j =
∫

Qk
A,b

∇ui
0 ·∇u j

0 dξ

by Proposition 3. Thus we obtain a formula for ∇b∥R
QA,b
α,N f∥2 that is not only more

precise than a numerical approximation by finite differences, but also much cheaper
to compute, because the area of integration is just a lower-dimensional surface.

6 A first numerical simulation

We test our numerical algorithm on a simple 2d example, where all quantities are
known explicitly and the algorithm can be observed under controlled conditions.
Let Ω = B1(0) be the unit circle and let σ0 ≡ 1. We consider a point inhomogeneity
which leads to a difference potential (cf. [1])

w(x) =
1
π
⟨z∗− x,η⟩
∥z∗− x∥2

2
, x ∈ B1(0),

that solves the partial differential equation

∆w = η ·∇δz∗ in Ω , σ0∂ν u|∂Ω = 0,

where z∗ is the location of the point inhomogeneity, and η ∈ R2, ∥η∥2 = 1 is a
dipole orientation vector depending on the applied current pattern. Using a standard
smoothing argument, it is easily checked (see, e.g., [4]) that for each open set O
containing z∗ there exists F ∈ L2(O)2 so that

∆w = divF.

Hence the convex source support of the difference measurement w|∂Ω is the inho-
mogeneity location z∗. In our example we used z∗ = ( 3

10 ,
3
10 )

T and η = (1,0)T .



10 Bastian Harrach and Janosch Rieger

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

step 1, time 0.037279 sec

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

step 2, time 0.037482 sec

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

step 4, time 0.135292 sec

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

step 8, time 0.247123 sec

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

step 12, time 0.337200 sec

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

step 14, time 0.579555 sec

Fig. 1 Selected iterates of Matlab’s interior point optimization tool applied to (10) with data speci-
fied in Section 6. The current iterate is highlighted in black. The position of the dipole is the center
of the red circle.
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In the following computations, it is convenient to switch between standard coor-
dinates (x1,x2) and polar coordinates (r,ξ ). Consider the basis

φ2 j(ξ ) =
1√
π

cos( jξ ), φ2 j+1(ξ ) =
1√
π

sin( jξ ), j ∈N1,

of L2
⋄(∂Ω). Since the Laplace operator satisfies

ux1x1 +ux2x2 = urr +
1
r

ur +
1
r2 uξ ξ ,

it is easy to see that the corresponding solutions of problem (7) are

u2 j
0 (r,ξ ) =

1
j
√

π
cos( jξ )r j, u2 j+1

0 (r,ξ ) =
1

j
√

π
sin( jξ )r j, j ∈N1.

Since the gradient satisfies

ux1 = cosξ ·ur +
1
r

sinξ ·uξ , ux2 = sinξ ·ur +
1
r

cosξ ·uξ ,

we have explicit representations

d
dx1

u2 j
0 =

r j−1
√

π
cos(( j+1)ξ ),

d
dx2

u2 j
0 =− r j−1

√
π

sin(( j−1)ξ ),

d
dx1

u2 j+1
0 =

r j−1
√

π
sin(( j+1)ξ ),

d
dx2

u2 j+1
0 =

r j−1
√

π
cos(( j−1)ξ ).

Now we fix the matrix A = (a1, . . . ,a8)
T given by

ak = (cos(kπ/4),sin(kπ/4))T , k = 1, . . . ,8,

and solve optimization problem (4) approximately by applying Matlab’s interior
point method to problem (10) with initial value b0 = ( 4

5 , . . . ,
4
5 )

T and N = 6, com-
puting values and gradients of the objective b 7→ vol2(QA,b) and the constraint

b 7→ ∥R
QA,b
α,N w|∂Ω∥2 as in Section 5. The results and the computation times on an

ordinary desktop computer are displayed in Figure 1.
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