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THE CALDER\'ON PROBLEM WITH FINITELY MANY UNKNOWNS
IS EQUIVALENT TO CONVEX SEMIDEFINITE OPTIMIZATION\ast 

BASTIAN HARRACH\dagger 

Abstract. We consider the inverse boundary value problem of determining a coefficient function
in an elliptic partial differential equation from knowledge of the associated Neumann--Dirichlet-
operator. The unknown coefficient function is assumed to be piecewise constant with respect to
a given pixel partition, and upper and lower bounds are assumed to be known a priori. We will
show that this Calder\'on problem with finitely many unknowns can be equivalently formulated as a
minimization problem for a linear cost functional with a convex nonlinear semidefinite constraint.
We also prove error estimates for noisy data, and extend the result to the practically relevant case
of finitely many measurements, where the coefficient is to be reconstructed from a finite-dimensional
Galerkin projection of the Neumann--Dirichlet-operator. Our result is based on previous works
on Loewner monotonicity and convexity of the Neumann--Dirichlet-operator, and the technique of
localized potentials. It connects the emerging fields of inverse coefficient problems and semidefinite
optimization.
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optimization, Loewner monotonicity and convexity
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1. Introduction. We consider the Calder\'on problem of determining the spa-
tially dependent coefficient function \sigma in the elliptic partial differential equation
(PDE)

\nabla \cdot (\sigma \nabla u) = 0

from knowledge of the associated (partial data) Neumann--Dirichlet-operator \Lambda (\sigma ); cf.
section 3.1 for the precise mathematical setting. The coefficient function \sigma is assumed
to be piecewise constant with respect to a given pixel partition of the underlying
imaging domain, so that only finitely many unknowns have to be reconstructed. We
also assume that upper and lower bounds b > a > 0 are known a priori, so that the
pixelwise values of the unknown coefficient function can be identified with a vector in
[a, b]n \subset \BbbR n, where n\in \BbbN is the number of pixels.

In this paper, we prove that the problem can be equivalently reformulated as a
convex optimization problem where a linear cost function is to be minimized under a
nonlinear convex semidefiniteness constraint. Given \^Y =\Lambda (\^\sigma ), the vector of pixelwise
values of \^\sigma is shown to be the unique minimizer of

cT\sigma \rightarrow min! s.t. \sigma \in [a, b]n, \Lambda (\sigma )\preceq \^Y ,

where c\in \BbbR n only depends on the pixel partition, and on the upper and lower bounds
a, b > 0. The symbol ``\preceq "" denotes the semidefinite (or Loewner) order, and \Lambda is shown
to be convex with respect to this order, so that the admissible set of this optimization
problem is convex.
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We also prove an error estimate for the case of noisy measurements Y \delta \approx \Lambda (\^\sigma ) and
show that our results still hold for the case of finitely many (but sufficiently many)
measurements.

Let us give some more remarks on the origins and relevance of this result. The
Calder\'on problem [4, 5] has received immense attention in the last decades due to
its relevance for nondestructive testing and medical imaging applications, and its
theoretical importance in studying inverse coefficient problems. We refer the reader
to [6, 22] for recent theoretical breakthroughs and to the books [24, 25, 1] for the
prominent application of electrical impedance tomography (EIT).

In practical applications, only a finite number of measurements can be taken and
the unknown coefficient function can only be reconstructed up to a certain resolution.
For the resulting finite-dimensional nonlinear inverse problems, uniqueness results
have been obtained only recently in [2, 11].

Numerical reconstruction algorithms for the Calder\'on problem and related inverse
coefficient problems are typically based on Newton-type iterations or on minimizing
a nonconvex regularized data fitting functional. Both approaches highly suffer from
the problem of local convergence (resp., local minima) and therefore require a good
initial guess close to the unknown solution which is usually not available in practice.
We refer the reader to the above-mentioned books [24, 25, 1] for an overview on
this topic, and point out the result in [23] that shows a local convergence result
for the Newton method for EIT with finitely many measurements and unknowns.
For a specific infinite-dimensional setting, a convexification idea was developed in
[19]. Moreover, knowing \^Y =\Lambda (\^\sigma ) (i.e., infinitely many measurements) and the pixel
partition, the values in \^\sigma can also be recovered one by one with globally convergent
one-dimensional monotonicity tests, and these tests can be implemented as in [7, 8]
without knowing the upper and lower conductivity bounds. But, to the knowledge of
the author, these ideas do not carry over to the case of finitely many measurements,
and, for this practically important case, the problem of local convergence (resp., local
minima) remains unsolved.

The new equivalent convex reformulation of the Calder\'on problem with finitely
many unknowns presented in this work connects the emerging fields of inverse prob-
lems in PDEs and semidefinite optimization. It is based on previous works on Loewner
monotonicity and convexity, and the technique of localized potentials [10, 17], and ex-
tends the recent work [14] to the Calder\'on problem. The origins of these ideas go back
to inclusion detection algorithms such as the factorization and monotonicity method
[3, 18, 26], and the idea of overcoming nonlinearity in such problems [16].

The structure of this article is as follows. In section 2, we demonstrate on a
simple, yet illustrative example how nonlinear inverse coefficient problems such as the
Calder\'on problem suffer from local minima. In section 3 we then formulate our main
results on reformulating the Calder\'on problem as a convex minimization problem.
In section 4 the results are proven, and section 5 contains some conclusions and an
outlook.

2. Motivation: The problem of local minima. To motivate the importance
of finding convex reformulations, we first give a simple example on how drastically in-
verse coefficient problems such as the Calder\'on problem can suffer from local minima.
We consider

(2.1) \nabla \cdot (\sigma \nabla u) = 0

© 2023 Bastian Harrach
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Fig. 2.1. A simple example with two unknown values.

in the two-dimensional unit ball \Omega =B1(0)\subset \BbbR 2. The coefficient \sigma is assumed to be
the radially symmetric piecewise constant function

\sigma (x) =

\left\{   1 for 1> \| x\| \geq r1,
\sigma 1 for r1> \| x\| \geq r2,
\sigma 2 for r2> \| x\| ,

with known radii 1> r1 > r2 > 0, but unknown values \sigma 1, \sigma 2 > 0; cf. Figure 2.1 for a
sketch of the setting with r1 := 0.5 and r2 := 0.25.

We aim to reconstruct the two unknown values \sigma = (\sigma 1, \sigma 2) from the Neumann--
Dirichlet-operator (NtD)

\Lambda (\sigma ) : g \mapsto \rightarrow u| \partial \Omega , where u solves (2.1) with \sigma \partial \nu u| \partial \Omega = g.

For this simple geometry, the NtD can be calculated analytically. Using polar
coordinates (r,\varphi ), it is easily checked that, for each j \in \BbbN , the function

u(r,\varphi ) :=

\left\{ 
rj sin(j\varphi ) for r2> r,

1
2 (ajr

j + bjr
 - j) sin(j\varphi ) for r1> r\geq r2,

1
4 (cjr

j + djr
 - j) sin(j\varphi ) for 1> r\geq r1

solves (2.1) (in the weak sense) if aj , bj , cj , dj \in \BbbR fulfill the following four interface
conditions:

u| \partial B - 
r2

= u| \partial B+
r2
, u| \partial B - 

r1
= u| \partial B+

r1
,

\sigma \partial \nu u| \partial B - 
r2

= \sigma \partial \nu u| \partial B+
r2
, \sigma \partial \nu u| \partial B - 

r1
= \sigma \partial \nu u| \partial B+

r1
.

This is equivalent to aj , bj , cj , dj \in \BbbR solving the linear system

1=
1

2
(aj + bjr

 - 2j
2 ), aj + bjr

 - 2j
1 =

1

2
(cj + djr

 - 2j
1 ),

\sigma 2
\sigma 1

=
1

2
(aj  - bjr

 - 2j
2 ), \sigma 1(aj  - bjr

 - 2j
1 ) =

1

2
(cj  - djr

 - 2j
1 ),
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and from this we easily obtain that

aj = 1+
\sigma 2
\sigma 1
,

bj =

\biggl( 
1 - \sigma 2

\sigma 1

\biggr) 
r2j2 ,

cj = aj + bjr
 - 2j
1 + \sigma 1(aj  - bjr

 - 2j
1 )

=

\biggl( 
1

\sigma 1
+ 1

\biggr) 
(\sigma 1 + \sigma 2) +

\biggl( 
1

\sigma 1
 - 1

\biggr) 
(\sigma 1  - \sigma 2)

r2j2
r2j1

,

dj = ajr
2j
1 + bj  - \sigma 1(ajr

2j
1  - bj)

=

\biggl( 
1

\sigma 1
 - 1

\biggr) 
(\sigma 1 + \sigma 2) r

2j
1 +

\biggl( 
1

\sigma 1
+ 1

\biggr) 
(\sigma 1  - \sigma 2) r

2j
2 .

The Dirichlet and Neumann boundary values of u are

u| \partial B1(0) =
1

4
(cj + dj) sin(j\varphi ) and \sigma \partial \nu u| \partial B1(0) =

j

4
(cj  - dj) sin(j\varphi ),

so that

\Lambda (\sigma ) sin(j\varphi ) = \lambda j sin(j\varphi ) with \lambda j :=
cj + dj
j(cj  - dj)

.

By rotational symmetry, the same holds with sin(\cdot ) replaced by cos(\cdot ). Hence, with
respect to the standard L2-orthonormal basis of trigonometric functions

\{ g1, g2, g3, . . .\} =
\biggl\{ 
1

\pi 
sin(\varphi ),

1

\pi 
cos(\varphi ),

1

\pi 
sin(2\varphi ), . . .

\biggr\} 
\subseteq L2

\diamond (\partial \Omega ),

the Neumann--Dirichlet-operator \Lambda (\sigma ) \in \scrL (L2
\diamond (\partial \Omega )) can be written as the infinite-

dimensional diagonal matrix

\Lambda (\sigma ) =

\left( 
\lambda 1

\lambda 1
\lambda 2

. . .

\right) 
,

with \lambda j depending on \sigma = (\sigma 1, \sigma 2) \in \BbbR 2 as given above, and L2
\diamond (\partial \Omega ) denoting the

space of L2-functions with vanishing integral mean on \partial \Omega .
We assume that we can only take finitely many measurements of \Lambda (\sigma ). For this

example, we choose the measurements to be the upper left 6\times 6-part of this matrix,
i.e., the Galerkin projection of \Lambda (\sigma ) to span\{ g1, . . . , g6\} ,

F (\sigma ) :=

\biggl( \int 
\partial \Omega 

gj\Lambda (\sigma )gk ds

\biggr) 
j,k=1,...,6

\in \BbbR 6\times 6,

and try to reconstruct \sigma \in \BbbR 2 from F (\sigma ) \in \BbbR 6\times 6. Note that, effectively, we thus aim
to reconstruct two unknowns \sigma = (\sigma 1, \sigma 2) from three independent measurements \lambda 1,
\lambda 2, and \lambda 3.

We now demonstrate how standard least-squares data-fitting approaches for this
inverse problem may suffer from local minima. We set \^\sigma := (1,1) and \^Y := F (\^\sigma ) to
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Fig. 2.2. Residual functional for a least-squares data-fitting approach.

Fig. 2.3. Error of the final iterate of a standard minimization algorithm when started with

different initial values \sigma (0) = (\sigma 
(0)
1 , \sigma 

(0)
2 ).

be the true noiseless measurements of the associated NtD. The natural approach is
to find an approximation \sigma \approx \^\sigma by minimizing the least-squares residual functional

(2.2) \| F (\sigma ) - \^Y \| 2
F \rightarrow min!

where \| \cdot \| F denotes the Frobenius norm. Figure 2.2 shows the values of this residual
functional as a function of \sigma = (\sigma 1, \sigma 2). It clearly shows a global minimum at the
correct value \sigma = (1,1) but also a drastic number of local minimizers.

Hence, without a good initial guess, local optimization approaches are prone to
end up in local minimizers that may lie far away from the correct coefficient values,
and global optimization approaches for such highly nonconvex residual functionals
quickly become computationally infeasible for rising numbers of unknowns.

We demonstrate this problem of local convergence by applying the generic
MATLAB solver lsqnonlin to the least-squares minimization problem (2.2) (with
all options of lsqnonlin left on their default values). Figure 2.3 shows the Euclidean
norm of the error of the final iterate \sigma (N) returned by lsqnonlin as a function of

the initial value \sigma (0) = (\sigma 
(0)
1 , \sigma 

(0)
2 ). It shows how some regions of starting values lead

to inaccurate or even completely wrong results. Note that the values are plotted in
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logarithmic scale and cropped above and below certain thresholds to improve pre-
sentation. Also, in our example, increasing the number of measurements m did not
alleviate these problems, and the performance of lsqnonlin did not change when
providing the symbolically calculated Jacobian of F .

Our example illustrates how standard approaches to nonlinear inverse coefficient
problems (such as the Calder\'on problem) may lead to nonconvex residual functionals
that are highly affected by the problem of local minimizers. Overcoming the problem
of nonlinearity requires overcoming this problem of nonconvexity. In the next sections
we will show that this is indeed possible. The Calder\'on problem with finitely many
unknowns and measurements can be equivalently reformulated as a convex minimiza-
tion problem.

3. Setting and main results.

3.1. The partial data Calder\'on problem. Let \Omega \subset \BbbR d, d\geq 2, be a Lipschitz
bounded domain, let \nu denote the outer normal on \partial \Omega , and let \Sigma \subseteq \partial \Omega be a relatively
open boundary part. L\infty 

+ (\Omega ) denotes the subset of L\infty -functions with positive essen-
tial infima, and H1

\diamond (\Omega ) and L2
\diamond (\Sigma ) denote the spaces of H1- and L2-functions with

vanishing integral mean on \Sigma .
For \sigma \in L\infty 

+ (\Omega ), the partial data (or local) Neumann--Dirichlet-operator

\Lambda (\sigma ) : L2
\diamond (\Sigma )\rightarrow L2

\diamond (\Sigma )

is defined by \Lambda (\sigma )g := u| \Sigma , where u\in H1
\diamond (\Omega ) solves

(3.1) \nabla \cdot (\sigma \nabla u) = 0 in \Omega and \sigma \partial \nu u| \partial \Omega =

\biggl\{ 
g on \Sigma ,
0 else.

Occasionally, we will also write ug\sigma for the solution of (3.1) in the following to highlight
the dependence on the conductivity coefficient \sigma and the Neumann boundary data g.

It is well known (and easily follows from standard elliptic PDE theory) that \Lambda (\sigma )
is a compact self-adjoint operator from L2

\diamond (\Sigma ) to L2
\diamond (\Sigma ). The question of whether

\Lambda (\sigma ) uniquely determines \sigma is known as the (partial data) Calder\'on problem.

3.2. The Calder\'on problem with finitely many unknowns. We will now
introduce the Calder\'on problem with finitely many unknowns and formulate our first
main result on its equivalent convex reformulation.

The setting with finitely many unknowns. We assume that \Omega is decomposed into
n\in \BbbN pixels, i.e.,

\Omega =
n\bigcup 

j=1

Pj ,

where P1, . . . , Pn \subseteq \Omega are nonempty, pairwise disjoint subdomains with Lipschitz
boundaries. We furthermore assume that the pixels are numbered according to their
distance from the boundary part \Sigma , so that the following holds: For any j \in \{ 1, . . . , n\} 
we define

Qj :=
\bigcup 
i>j

Pi

and assume that, for all j = 1, . . . , n, the complement of Qj in \Omega is connected and
contains a nonempty relatively open subset of \Sigma .
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We will consider conductivity coefficients \sigma \in L\infty 
+ (\Omega ) that are piecewise constant

with respect to this pixel partition, and assume that we know upper and lower bounds,
b > a> 0. Hence,

\sigma (x) =
n\sum 

j=1

\sigma j\chi Pj
(x) with \sigma 1, . . . , \sigma n \in [a, b]\subset \BbbR +,

and \chi Pj
: \Omega \rightarrow \BbbR denoting the characteristic functions on Pj . In the following, with

a slight abuse of notation, we identify such a piecewise constant function \sigma : \Omega \rightarrow \BbbR 
with its coefficient vector \sigma = (\sigma 1, . . . , \sigma n)

T \in \BbbR n. Accordingly, we consider \Lambda as a
nonlinear operator

\Lambda : \BbbR n
+ \rightarrow \scrL (L2

\diamond (\Sigma )),

and consider the problem to

reconstruct \sigma \in [a, b]n \subset \BbbR n
+ from \Lambda (\sigma )\in \scrL (L2

\diamond (\Sigma )).

Here, and in what follows, \BbbR n
+ := (0,\infty )n denotes the space of all vectors in \BbbR n

containing only positive entries. Also, throughout this work, we write ``\leq "" for the
componentwise order on \BbbR n.

Convex reformulation of the Calder\'on problem. Let ``\preceq "" denote the semidefinite
(or Loewner) order on the space of self-adjoint operators in \scrL (L2

\diamond (\Sigma )), i.e., for all
A=A\ast \in \scrL (L2

\diamond (\Sigma )) and B =B\ast \in \scrL (L2
\diamond (\Sigma )),

A\preceq B denotes that

\int 
\Sigma 

g(B  - A)g ds\geq 0 for all g \in L2
\diamond (\Sigma ).

Note that, for a compact self-adjoint operator A \in \scrL (L2
\diamond (\Sigma )), the eigenvalues

can only accumulate in zero by the spectral theorem. Hence, A either possesses a
maximal eigenvalue \lambda \mathrm{m}\mathrm{a}\mathrm{x}(A) \geq 0, or zero is the supremum (though not necessarily
the maximum) of the eigenvalues. In the latter case we still write \lambda \mathrm{m}\mathrm{a}\mathrm{x}(A) = 0 for
ease of notation. Thus, for compact self-adjoint A\in \scrL (L2

\diamond (\Sigma )),

(3.2) A \not \preceq 0 if and only if \lambda \mathrm{m}\mathrm{a}\mathrm{x}(A)> 0.

Our first main result is that the Calder\'on problem with infinitely many mea-
surements can be equivalently formulated as a uniquely solvable convex nonlinear
semidefinite program, and to give an error estimate for noisy measurements. Our
arguments also yield unique solvability of the Calder\'on problem and its linearized
version in our setting with finitely many unknowns. We include this as part of our
theorem for the sake of completeness. It should be stressed, though, that uniqueness
is known to hold for general piecewise analytic coefficients; cf. [20, 21] for the nonlin-
ear Calder\'on problem and [16] for the linearized version. For more general results on
the question of uniqueness we refer the reader to the recent uniqueness results cited
in the introduction and the references therein.

Theorem 3.1. There exist c \in \BbbR n
+ and \lambda > 0, so that for all \^\sigma \in [a, b]n and

\^Y := \Lambda (\^\sigma ), the following holds:
(a) The convex semidefinite optimization problem

(3.3) minimize cT\sigma subject to \sigma \in [a, b]n, \Lambda (\sigma )\preceq \^Y ,

possesses a unique minimizer and this minimizer is \^\sigma .
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(b) Given \delta > 0, and a self-adjoint operator

Y \delta \in \scrL (L2
\diamond (\Sigma )), with \| Y \delta  - \^Y \| \scrL (L2

\diamond (\Sigma )) \leq \delta ,

the convex semidefinite optimization problem

(3.4) minimize cT\sigma subject to \sigma \in [a, b]n, \Lambda (\sigma )\preceq Y \delta + \delta I,

possesses a minimizer \sigma \delta . Every such minimizer \sigma \delta fulfills

\| \sigma \delta  - \^\sigma \| c,\infty \leq 2(n - 1)

\lambda 
\delta ,

where \| \cdot \| c,\infty denotes the weighted maximum norm

\| \sigma \| c,\infty := max
j=1,...,n

cj | \sigma j | for all \sigma \in \BbbR n.

Moreover, the nonlinear mapping

\Lambda : \BbbR n
+ \rightarrow \scrL (L2

\diamond (\Sigma ))

is injective, and its Fr\'echet derivative \Lambda \prime (\sigma ) \in \scrL (\BbbR n,\scrL (L2
\diamond (\Sigma ))) is injective for all

\sigma \in \BbbR n
+.

Let us stress that the constants c \in \BbbR n
+ and \lambda > 0 in Theorem 3.1 depend only

on the domain \Omega \subset \BbbR d, the pixel partition P1, . . . , Pn, and the a priori known bounds
b > a > 0. Moreover, note that (3.3) and (3.4) are indeed convex optimization
problems since \Lambda is convex with respect to the Loewner order so that the admissible
sets in (3.3) and (3.4) are closed convex sets (cf. Corollary 4.2). The admissible sets
in (3.3) and (3.4) are also nonempty since, in both cases, they contain \^\sigma .

Remark 3.2. Our arguments also yield the Lipschitz stability result

\| \sigma 1  - \sigma 2\| c,\infty \leq (n - 1)

\lambda 
\| \Lambda (\sigma 1) - \Lambda (\sigma 2)\| \scrL (L2

\diamond (\Sigma )) for all \sigma 1, \sigma 2 \in [a, b]n.

3.3. The case of finitely many measurements. The equivalent convex
reformulation is also possible for the case of finitely many measurements. Let
g1, g2, . . . \subseteq L2

\diamond (\Sigma ) be given with dense span in L2
\diamond (\Sigma ). For some number of mea-

surements m\in \BbbN , we assume that we can measure the Galerkin projection of \Lambda (\sigma ) to
the span of \{ g1, . . . , gm\} , i.e., that we can measure

\int 
\Sigma 
gj\Lambda (\sigma )gk ds for all j, k= 1, . . . ,m.

Accordingly, we define the matrix-valued forward operator

(3.5) Fm : \BbbR n
+ \rightarrow \BbbS m \subset \BbbR m\times m, F (\sigma ) :=

\biggl( \int 
\Sigma 

gj\Lambda (\sigma )gk ds

\biggr) 
j,k=1,...,m

,

where \BbbS m \subset \BbbR m\times m denotes the space of symmetric matrices.
Then, the problem of reconstructing an unknown conductivity on a fixed parti-

tion with known bounds from finitely many measurements can be formulated as the
problem to

reconstruct \sigma \in [a, b]n \subset \BbbR n
+ from Fm(\sigma )\in \BbbS m.

As in the infinite-dimensional case, we write ``\preceq "" for the Loewner order on the space
of symmetric matrices \BbbS m, i.e., for all A,B \in \BbbS m,

A\preceq B denotes that xT (B  - A)x\geq 0 for all x\in \BbbR m.
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Also, for A\in \BbbS m, the largest eigenvalue is denoted by \lambda \mathrm{m}\mathrm{a}\mathrm{x}(A), and we have that

A \not \preceq 0 if and only if \lambda \mathrm{m}\mathrm{a}\mathrm{x}(A)> 0.

Our second main result is that also the Calder\'on problem with finitely many
measurements can be equivalently reformulated as a uniquely solvable convex non-
linear semidefinite program, provided that sufficiently many measurements are being
taken. Again, our arguments also yield unique solvability of the Calder\'on problem
and its linearized version, and we include this as part of our theorem for the sake
of completeness. Note that this uniqueness result has already been shown in [11] by
arguments closely related to those in this work.

Theorem 3.3. If the number of measurements m \in \BbbN is sufficiently large, then
the following hold:

(a) The nonlinear mapping

Fm : [a, b]n \rightarrow \BbbS m \subseteq \BbbR m\times m

is injective on [a, b]n, and its Fr\'echet derivative F \prime (\sigma )\in \scrL (\BbbR n
+,\BbbS m) is injective

for all \sigma \in [a, b]n.
(b) There exist c \in \BbbR n

+ and \lambda > 0, so that for all \^\sigma \in [a, b]n and \^Y := Fm(\^\sigma ), the
following holds:
(i) The convex semidefinite optimization problem

(3.6) minimize cT\sigma subject to \sigma \in [a, b]n, Fm(\sigma )\preceq \^Y ,

possesses a unique minimizer and this minimizer is \^\sigma .
(ii) Given \delta > 0 and Y \delta \in \BbbS m with \| Y \delta  - \^Y \| 2 \leq \delta , the convex semidefinite

optimization problem

(3.7) minimize cT\sigma subject to \sigma \in [a, b]n, Fm(\sigma )\preceq Y \delta + \delta I,

possesses a minimizer \sigma \delta . Every such minimizer \sigma \delta fulfills

\| \sigma \delta  - \^\sigma \| c,\infty \leq 2(n - 1)

\lambda 
\delta ,

where the weighted maximum norm \| \cdot \| c,\infty is defined as in Theorem 3.1.

The constants c \in \BbbR n
+ and \lambda > 0 and also the number of measurements in Theo-

rem 3.3 depend only on the domain \Omega \subset \BbbR d, the pixel partition P1, . . . , Pn, and the a
priori known bounds b > a> 0. Also, as in the case of infinitely many measurements,
(3.6) and (3.7) are linear optimization problems over nonempty, closed, and convex
feasibility sets, and our arguments also yield the Lipschitz stability result

(3.8) \| \sigma 1  - \sigma 2\| c,\infty \leq (n - 1)

\lambda 
\| Fm(\sigma 1) - Fm(\sigma 2)\| 2 for all \sigma 1, \sigma 2 \in [a, b]n.

4. Proof of the main results. In the following, the jth unit vector is denoted
by ej \in \BbbR n. We write 1 := (1,1, . . . ,1)T \in \BbbR n for the vector containing only ones, and
we write e\prime j := 1  - ej for the vector containing ones in all entries except the jth. We

furthermore split e\prime j = e+j + e - j , where

e+j :=
\sum 

i=j+1,...,n

ei and e - j :=
\sum 

i=1,...,j - 1

ei.

Note that we use the usual convention of empty sums being zero, so that e+n = 0\in \BbbR n

and e - 1 = 0\in \BbbR n.
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4.1. The case of infinitely many measurements. In this subsection, we will
prove Theorem 3.1, where the measurements are given by the infinite-dimensional
Neumann--Dirichlet- operator \Lambda (\sigma )\in \scrL (L2

\diamond (\Sigma )).
Let us sketch the main ideas and outline the proof first. We will start by summa-

rizing some known results on the monotonicity and convexity of the forward mapping

\Lambda : \BbbR n
+ \rightarrow \scrL (L2

\diamond (\Sigma )).

This will show that the admissible sets of the optimization problems (3.3) and (3.4)
are indeed convex sets. It also yields the monotonicity property that for all \sigma , \tau \in \BbbR n

+,

\tau \geq \sigma implies \Lambda (\tau )\preceq \Lambda (\sigma ).

Using localized potentials arguments in the form of directional derivatives, we then
derive a converse monotonicity result showing that

(4.1) \exists c\in \BbbR n
+ : \Lambda (\tau )\preceq \Lambda (\sigma ) implies cT \tau \geq cT\sigma 

for all \sigma , \tau \in [a, b]n. Clearly, this implies that \^\sigma is a minimizer of the optimization
problem (3.3). By proving a slightly stronger variant of (4.1), we also obtain unique-
ness of the minimizer and the error estimate in Theorem 3.1(b).

Monotonicity, convexity, and localized potentials. We collect several known prop-
erties of the forward mapping in the following lemma. We also rewrite the localized
potentials arguments from [10, 17] as a definiteness property of the directional deriv-
atives of \Lambda . The latter will be the basis for proving a converse monotonicity result in
the next subsection.

Lemma 4.1.
(a) \Lambda is Fr\'echet differentiable with continuous derivative

\Lambda \prime : \BbbR n
+ \rightarrow \scrL (\BbbR n,\scrL (L2

\diamond (\Sigma ))).

\Lambda \prime (\sigma )d \in \scrL (L2
\diamond (\Sigma )) is compact and self-adjoint for all \sigma \in \BbbR n

+ and d \in \BbbR n.
Moreover,

\Lambda \prime (\sigma )d\preceq 0 for all \sigma \in \BbbR n
+, 0\leq d\in \BbbR n,(4.2)

\Lambda (\tau ) - \Lambda (\sigma )\succeq \Lambda \prime (\sigma )(\tau  - \sigma ) for all \sigma , \tau \in \BbbR n
+.(4.3)

(b) \Lambda is monotonically decreasing, i.e., for all \sigma , \tau \in \BbbR n
+,

\sigma \geq \tau implies \Lambda (\sigma )\preceq \Lambda (\tau ).(4.4)

Also, for all \sigma \in \BbbR n
+ and d, \~d\in \BbbR n,

d\geq \~d implies \Lambda \prime (\sigma )d\preceq \Lambda \prime (\sigma ) \~d.(4.5)

(c) \Lambda is convex, i.e., for all \sigma , \tau \in \BbbR n
+ and t\in [0,1],

\Lambda (t\sigma + (1 - t)\tau )\preceq t\Lambda (\sigma ) + (1 - t)\Lambda (\tau ).(4.6)

(d) For all C > 0, j \in \{ 1, . . . , n\} , and \sigma \in \BbbR n
+, it holds that

\Lambda \prime (\sigma )(ej  - Ce+j ) \not \succeq 0.(4.7)
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Proof. It is well known that \Lambda is continuously Fr\'echet differentiable (cf., e.g., [23,
section 2] or [9, Appendix B]). Given some direction d\in \BbbR n, the derivative

\Lambda \prime (\sigma )d : L2
\diamond (\partial \Omega )\rightarrow L2

\diamond (\partial \Omega )

is the self-adjoint compact linear operator associated to the bilinear form\int 
\Sigma 

g (\Lambda \prime (\sigma )d)hds= - 
\int 
\Omega 

d(x)\nabla ug\sigma (x) \cdot \nabla uh\sigma (x)dx,

where, again, we identify d\in \BbbR n with the piecewise constant function

d(x) =
n\sum 

j=1

dj\chi Pj (x) : \Omega \rightarrow \BbbR .

ug\sigma (resp., uh\sigma ) denote the solutions of (3.1) with Neumann boundary data g (resp., h).
Clearly, this implies (4.2). Assertion (4.3) is shown in [16, Lemma 2.1], so that (a) is
proven.

The monotonicity results (4.4) and (4.5) in (b) immediately follow from (4.3) and
(4.2).

The convexity result in (c) follows from (4.3) by a standard argument; cf., e.g.,
[12, Lemma 2].

To prove (d), let j \in \{ 1, . . . , n\} . Then, for all g \in L2
\diamond (\partial \Omega ),

 - 
\int 
\Sigma 

g\Lambda \prime (\sigma )(ej  - Ce+j )g ds=

\int 
Pj

| \nabla ug\sigma | 2 dx - C

\int 
Qj

| \nabla ug\sigma | 2 dx,

where Qj =
\bigcup 

i>j Pi. Since Pj is open and disjoint to Qj , and the complement of Qj

is connected to \Sigma , we can apply the localized potentials result in [17, Thm. 3.6 and
sect. 4.3] to obtain a sequence of boundary currents (gk)k\in \BbbN with\int 

Pj

| \nabla ugk\sigma | 2 dx\rightarrow \infty and

\int 
Qj

| \nabla ugk\sigma | 2 dx\rightarrow 0.

Hence, for sufficiently large k \in \BbbN ,

 - 
\int 
\Sigma 

gk\Lambda 
\prime (\sigma )(ej  - Ce+j )gk ds > 0,

which proves (d).

Corollary 4.2. For every self-adjoint operator Y \in \scrL (L2
\diamond (\Sigma )), the set

\scrC := \{ \sigma \in [a, b]n : \Lambda (\sigma )\preceq Y \} 

is a closed convex set in \BbbR n.

Proof. This follows immediately from the continuity and convexity of \Lambda , which
was shown in parts (a) and (c) of Lemma 4.1.

A converse monotonicity result. We will now utilize the properties of the direc-
tional derivatives (4.7) in order to derive the converse monotonicity result (4.1) (or,
more precisely, a slightly stronger version of it). The following arguments stem from
the ideas of [13, 14], where (4.1) is proven with c := 1. The main technical diffi-
culty compared to these previous works is that the localized potentials results for the
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Calder\'on problem are weaker than those known for the Robin problem considered in
[13, 14]. This corresponds to the fact that (4.7) does not contain the term e - j . We
overcome this difficulty by a compactness and scaling approach.

Lemma 4.3. For all constants C > 0 and j \in \{ 1, . . . , n\} , there exists \delta > 0, so that

 - \Lambda \prime (\sigma )(ej  - \delta e - j  - Ce+j ) \not \preceq 0 for all \sigma \in [a, b]n.(4.8)

Proof. Let C > 0 and j \in \{ 1, . . . , n\} . We define the functions

\varphi : L2
\diamond (\Sigma )\times \BbbR n

+ \rightarrow \BbbR , \varphi (g,\sigma ) := - 
\int 
\Sigma 

g\Lambda \prime (\sigma )(ej  - Ce+j )g ds,

\psi : \BbbR n
+ \rightarrow \BbbR , \psi (\sigma ) := sup

g\in L2
\diamond (\Sigma ), \| g\| =1

\varphi (g,\sigma ).

Then (4.7) implies that \psi (\sigma )> 0 for all \sigma \in \BbbR n
+.

Moreover, \varphi is continuous by Lemma 4.1, so that \psi is lower semicontinuous.
Hence, \psi attains its minimum over the compact set [a, b]n, and it follows that there
exists \epsilon > 0, so that

\psi (\sigma )\geq \epsilon > 0 for all \sigma \in [a, b]n.

By continuity and compactness, we also have that

S := sup
\sigma \in [a,b]n

\| \Lambda \prime (\sigma )e - j \| \scrL (L2
\diamond (\Sigma )) <\infty .

Setting \delta := \epsilon 
2S > 0, we now obtain, for all \sigma \in [a, b]n,

sup
g\in L2

\diamond (\Sigma ), \| g\| =1

\biggl( 
 - 
\int 
\Sigma 

g\Lambda \prime (\sigma )(ej  - \delta e - j  - Ce+j )g ds

\biggr) 
\geq sup

g\in L2
\diamond (\Sigma ), \| g\| =1

\varphi (g,\sigma ) - \delta sup
g\in L2

\diamond (\Sigma ), \| g\| =1

\bigm| \bigm| \bigm| \bigm| \int 
\Sigma 

g
\bigl( 
\Lambda \prime (\sigma )e - j

\bigr) 
g ds

\bigm| \bigm| \bigm| \bigm| 
\geq \psi (\sigma ) - \delta \| \Lambda \prime (\sigma )e - j \| \scrL (L2

\diamond (\Sigma )) \geq \epsilon  - \delta S =
\epsilon 

2
> 0.

This proves (4.8).

Lemma 4.4. There exist

(4.9) 0< \delta 1 \leq \delta 2 \leq \cdot \cdot \cdot \leq \delta n - 1 \leq \delta n := 1,

so that for all \sigma \in [a, b]n and all j \in \{ 1, . . . , n\} ,

(4.10)  - \Lambda \prime (\sigma )D(ej  - (n - 1)e\prime j) \not \preceq 0,

where D \in \BbbR n\times n is the diagonal matrix with diagonal elements \delta 1, . . . , \delta n > 0.

Proof.
(a) Set C := n - 1. We will first prove that there exist \delta j , j = 0, . . . , n, that fulfill

(4.9) and

(4.11)  - \Lambda \prime (\sigma )
\bigl( 
\delta jej  - \delta j - 1Ce

 - 
j  - Ce+j

\bigr) 
\not \preceq 0 for all j \in \{ 1, . . . , n\} .

To prove this, we start with j = n and proceed backwards. By Lemma 4.3
there exists 0< \delta with

 - \Lambda \prime (\sigma )
\bigl( 
en  - \delta e - n  - Ce+n

\bigr) 
\not \preceq 0 for all \sigma \in [a, b]n,
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and clearly we can choose \delta \leq C. Setting \delta n := 1 and \delta n - 1 := \delta 
C \leq 1 this

yields that

 - \Lambda \prime (\sigma )
\bigl( 
\delta nen  - \delta n - 1Ce

 - 
n  - Ce+n

\bigr) 
\not \preceq 0 for all \sigma \in [a, b]n,

so that (4.11) is proven for j = n.
Now assume that there exist 0 \leq \delta k - 1 \leq \cdot \cdot \cdot \leq \delta n := 1, so that (4.11) holds
for all j = k, . . . , n with 1 < k \leq n. Using again Lemma 4.3, we then obtain
0< \delta \prime \leq C, so that

 - \Lambda \prime (\sigma )

\biggl( 
ek - 1  - \delta \prime e - k - 1  - 

C

\delta k - 1
e+k - 1

\biggr) 
\not \preceq 0 for all \sigma \in [a, b]n.

With \delta k - 2 :=
\delta k - 1\delta 

\prime 

C \leq \delta k - 1 this yields that

 - \Lambda \prime (\sigma )
\bigl( 
\delta k - 1ek - 1  - \delta k - 2Ce

 - 
k - 1  - Ce+k - 1

\bigr) 
\not \preceq 0,

which proves (4.11) for j = k - 1. Hence, by induction, (4.11) can be fulfilled
for all j \in \{ 1, . . . , n\} .

(b) To see that (4.11) also implies (4.10), note that for j \in \{ 1, . . . , n\} 

Dej = \delta jej , De - j \leq \delta j - 1e
 - 
j , and De+j \leq e+j .

Hence, for all \sigma \in [a, b]n, we obtain from (4.11) and the monotonicity property
(4.5) that

 - \Lambda \prime (\sigma )D(ej  - (n - 1)e\prime j)\succeq  - \Lambda \prime (\sigma )
\bigl( 
\delta jej  - \delta j - 1(n - 1)e - j  - (n - 1)e+j

\bigr) 
\not \preceq 0,

so that (4.10) is proven for j \in \{ 1, . . . , n\} .
Lemma 4.5. Let D \in \BbbR n\times n be a diagonal matrix with entries \delta 1, . . . , \delta n > 0, and

assume that, for some \sigma \in \BbbR n
+,

(4.12) \Lambda \prime (\sigma )D((n - 1)e\prime j  - ej) \not \preceq 0 for all j \in \{ 1, . . . , n\} .

Then

(4.13) \lambda := min
j=1,...,n

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda 
\prime (\sigma )D((n - 1)e\prime j  - ej))> 0,

and, for all d\in \BbbR n,

(4.14) \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda 
\prime (\sigma )d)<

\lambda \| D - 1d\| \infty 

n - 1
implies min

j=1,...,n

dj
\delta j
> - 1

n - 1
max

j=1,...,n

dj
\delta j
.

Proof. Clearly, (4.12) implies \lambda > 0. We now prove (4.14) by contraposition and
assume that there exists an index k \in \{ 1, . . . , n\} with

dk
\delta k

= min
j=1,...,n

dj
\delta j

\leq  - 1

n - 1
max

j=1,...,n

dj
\delta j
.

We have that either

\| D - 1d\| \infty = max
j=1,...,n

dj
\delta j

or \| D - 1d\| \infty = - min
j=1,...,n

dj
\delta j

= - dk
\delta k
,
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and in both cases it follows that

dk
\delta k

\leq  - 1

n - 1
\| D - 1d\| \infty .

This yields

D - 1d\leq  - 1

n - 1
\| D - 1d\| \infty ek + \| D - 1d\| \infty e

\prime 
k =

\| D - 1d\| \infty 

n - 1
((n - 1)e\prime k  - ek) ,

and thus

d\leq \| D - 1d\| \infty 

n - 1
D ((n - 1)e\prime k  - ek) .

Hence, by monotonicity,

\Lambda \prime (\sigma )d\succeq \| D - 1d\| \infty 

n - 1
\Lambda \prime (\sigma )D ((n - 1)e\prime k  - ek)

and we then obtain from (4.13) that

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda 
\prime (\sigma )d)\geq \| D - 1d\| \infty 

n - 1
\lambda ,

so that (4.14) is proven.

From the preceding lemmas, we can now deduce our converse monotonicity result.

Corollary 4.6. There exist c\in \BbbR n
+ and \lambda > 0, so that the following holds:

(a) For all \sigma \in [a, b]n and d\in \BbbR n,

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda 
\prime (\sigma )d)<

\lambda \| d\| c,\infty 

n - 1
implies cT d> 0,

and thus, a fortiori, for d \not = 0,

\Lambda \prime (\sigma )d\preceq 0 implies cT d> 0.

(b) For all \sigma , \tau \in [a, b]n,

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda (\tau ) - \Lambda (\sigma ))<
\lambda \| \tau  - \sigma \| c,\infty 

n - 1
implies cT \tau > cT\sigma ,

and thus, a fortiori, for \sigma \not = \tau ,

\Lambda (\tau )\preceq \Lambda (\sigma ) implies cT \tau > cT\sigma .

(c) The nonlinear forward mapping \Lambda : \BbbR n
+ \rightarrow \scrL (L2

\diamond (\Sigma )) is injective.
(d) For all \sigma \in \BbbR n

+, the linearized forward mapping \Lambda \prime (\sigma ) \in \scrL (\BbbR n,\scrL (L2
\diamond (\Sigma ))) is

injective.

Proof. Lemma 4.4 yields a diagonal matrix D \in \BbbR n\times n with diagonal elements
\delta 1, . . . , \delta n > 0, so that

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda 
\prime (\sigma )D((n - 1)e\prime j  - ej))> 0 for all \sigma \in [a, b]n, j = 1, . . . , n.

Since

\sigma \mapsto \rightarrow min
j=1,...,n

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda 
\prime (\sigma )D((n - 1)e\prime j  - ej))
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is a continuous mapping from [a, b]n \rightarrow \BbbR , we obtain by compactness that

\exists \lambda > 0 : min
j=1,...,n

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda 
\prime (\sigma )D((n - 1)e\prime j  - ej))\geq \lambda for all \sigma \in [a, b]n.

Setting cT :=
\bigl( 

1
\delta 1

. . . 1
\delta n

\bigr) 
, (a) follows from Lemma 4.5.

(b) follows from (a) as the convexity property (4.3) yields that

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda 
\prime (\sigma )(\tau  - \sigma ))\leq \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda (\tau ) - \Lambda (\sigma )) for all \sigma , \tau \in [a, b]n.

Clearly, (b) implies injectivity of \Lambda : [a, b]n \rightarrow \scrL (L2
\diamond (\Sigma )). Since this holds for

arbitrary large intervals [a, b]n, we obtain injectivity on all of \BbbR n
+, so that (c) is

proven. Likewise, (d) follows from (a).

Proof of Theorem 3.1 and Remark 3.2. We can now prove Theorem 3.1 with
c\in \BbbR n

+ and \lambda > 0 as given by Corollary 4.6. First note that Corollary 4.2 ensures that
(3.3) and (3.4) are linear optimization problems on convex sets.

Let \^\sigma \in [a, b]n and \^Y := \Lambda (\^\sigma ). Then \^\sigma is feasible for the optimization problem
(3.3). For every other feasible \sigma \in [a, b]n, \sigma \not = \^\sigma , the feasibility yields that \Lambda (\sigma )\preceq \^Y =
\Lambda (\^\sigma ), so that cT\sigma > cT \^\sigma by Corollary 4.6(b). Hence, \^\sigma is the unique minimizer of the
convex semidefinite optimization problem (3.3), and thus (a) is proven.

To prove (b), let \delta > 0, and Y \delta \in \scrL (L2
\diamond (\Sigma )) be self-adjoint with \| Y \delta  - \^Y \| \scrL (L2

\diamond (\Sigma )) \leq 
\delta . Since the constraint set of (3.4) is nonempty and compact, and the cost function
is continuous, there exists a minimizer \sigma \delta . Since also \^\sigma is feasible for (3.4), it follows
that cT\sigma \delta \leq cT \^\sigma . By contraposition of Corollary 4.6(b) we obtain that

\lambda \| \sigma \delta  - \^\sigma \| c,\delta 

n - 1
\leq \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\Lambda (\sigma 

\delta ) - \Lambda (\^\sigma ))\leq \lambda \mathrm{m}\mathrm{a}\mathrm{x}(Y
\delta + \delta I  - \^Y )\leq 2\delta .

Hence, (b) follows, and the same argument also yields the Lipschitz stability result in
Remark 3.2. The injectivity results are proven in Corollary 4.6(c) and (d).

4.2. The case of finitely many measurements. We will now treat the case
of finitely many measurements. As introduced in subsection 3.3, let g1, g2, . . .\in L2

\diamond (\Sigma )
have dense span in L2

\diamond (\Sigma ), and consider the finite-dimensional forward operator

Fm : \BbbR n
+ \rightarrow \BbbS m \subset \BbbR m\times m, F (\sigma ) :=

\biggl( \int 
\Sigma 

gj\Lambda (\sigma )gk ds

\biggr) 
j,k=1,...,m

,

with m\in \BbbN .
Monotonicity, convexity, and localized potentials. Again, we start by summariz-

ing the monotonicity, convexity, and localized potentials properties of the forward
operator.

Lemma 4.7.
(a) Fm is Fr\'echet differentiable with continuous derivative

F \prime 
m : \BbbR n

+ \rightarrow \scrL (\BbbR n,\BbbR m\times m).

F \prime 
m(\sigma )d\in \BbbR m\times m is symmetric for all \sigma \in \BbbR n

+ and d\in \BbbR n. Moreover,

F \prime 
m(\sigma )d\preceq 0 for all \sigma \in \BbbR n

+, 0\leq d\in \BbbR n,(4.15)

Fm(\tau ) - Fm(\sigma )\succeq F \prime 
m(\sigma )(\tau  - \sigma ) for all \sigma , \tau \in \BbbR n

+.(4.16)
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(b) Fm is monotonically decreasing, i.e., for all \sigma , \tau \in \BbbR n
+,

\sigma \geq \tau implies Fm(\sigma )\preceq Fm(\tau ).(4.17)

Also, for all \sigma \in \BbbR n
+ and d, \~d\in \BbbR n,

d\geq \~d implies F \prime 
m(\sigma )d\preceq F \prime 

m(\sigma ) \~d.(4.18)

(c) Fm is convex, i.e., for all \sigma , \tau \in \BbbR n
+ and t\in [0,1],

Fm(t\sigma + (1 - t)\tau )\preceq tFm(\sigma ) + (1 - t)Fm(\tau ).(4.19)

(d) For all C > 0, there exists M \in \BbbN , so that

F \prime 
m(\sigma )(ej  - Ce+j ) \not \succeq 0 for all \sigma \in [a, b]n, j \in \{ 1, . . . , n\} , m\geq M.(4.20)

Proof. For all \sigma \in [a, b]n, m\in \BbbN , and v \in \BbbR m, we have that

vTFm(\sigma )v=

\int 
\Sigma 

g\Lambda (\sigma )g ds, with g=
m\sum 
j=1

vjgj .

Hence, the monotonicity and convexity properties (a), (b), and (c) immediately carry
over from those of the infinite-dimensional forward operator \Lambda in Lemma 4.1.

To prove (d), it clearly suffices to show that, for all C > 0,

\exists m\in \BbbN : F \prime 
m(\sigma )(ej  - Ce+j ) \not \succeq 0 for all \sigma \in [a, b]n, j \in \{ 1, . . . , n\} .

We argue by contradiction and assume that there exists C > 0, so that

for all m\in \BbbN : F \prime 
m(\sigma m)(ejm  - Ce+jm)\succeq 0 for some \sigma m \in [a, b]n, jm \in \{ 1, . . . , n\} .

(4.21)

By compactness, after passing to a subsequence, we can assume that \sigma m \rightarrow \sigma and
jm = j for some \sigma \in [a, b]n and j \in \{ 1, . . . , n\} . Since (4.21) also implies that

F \prime 
k(\sigma m)(ejm  - Ce+jm)\succeq 0 for all k \in \BbbN , m\geq k,

it follows by continuity that

F \prime 
k(\sigma )(ej  - Ce+j )\succeq 0 for all k \in \BbbN .

However, since g1, g2, . . .\in L2
\diamond (\Sigma ) have dense span in L2

\diamond (\Sigma ), this would imply that

\Lambda \prime (\sigma )(ej  - Ce+j )\succeq 0,

and thus contradict Lemma 4.1.

As in the infinite-dimensional case, the continuity and convexity properties of the
forward mapping yield that the admissible set of the optimization problems (3.6) and
(3.7) is closed and convex.

Corollary 4.8. For all m\in \BbbN and every symmetric matrix Y \in \BbbR m\times m, the set

\scrC := \{ \sigma \in [a, b]n : Fm(\sigma )\preceq Y \} 

is a closed convex set in \BbbR n.
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Proof. The proof follows from Lemma 4.7.

A converse monotonicity result. We will now show that the converse monotonicity
result in Corollary 4.6 still holds for the case of finitely many (but sufficiently many)
measurements.

Lemma 4.9. There exist c \in \BbbR n
+ and \lambda > 0, so that for sufficiently large m \in \BbbN ,

the following holds:
(a) For all \sigma \in [a, b]n and d\in \BbbR n,

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(F
\prime 
m(\sigma )d)<

\lambda \| d\| c,\infty 

n - 1
implies cT d> 0,

and thus, a fortiori, for d \not = 0,

F \prime 
m(\sigma )d\preceq 0 implies cT d> 0.

(b) For all \sigma , \tau \in [a, b]n,

\lambda \mathrm{m}\mathrm{a}\mathrm{x}(Fm(\tau ) - Fm(\sigma ))<
\lambda \| \tau  - \sigma \| c,\infty 

n - 1
implies cT \tau > cT\sigma ,

and thus, a fortiori, for \sigma \not = \tau ,

Fm(\tau )\preceq Fm(\sigma ) implies cT \tau > cT\sigma .

(c) The nonlinear forward mapping Fm : \BbbR n
+ \rightarrow \scrL (L2

\diamond (\Sigma )) is injective.
(d) For all \sigma \in \BbbR n

+, the linearized forward mapping F \prime 
m(\sigma ) \in \scrL (\BbbR n,\scrL (L2

\diamond (\Sigma ))) is
injective.

Proof. Using Lemma 4.4, we obtain a diagonal matrix D \in \BbbR n\times n with diagonal
elements \delta 1, . . . , \delta n > 0, so that for all \sigma \in [a, b]n,

 - \Lambda \prime (\sigma )D(ej  - (n - 1)e\prime j) \not \preceq 0.

By the same compactness argument as in the proof of Lemma 4.7(d), it follows that
there exists M \in \BbbN with

 - F \prime 
m(\sigma )D(ej  - (n - 1)e\prime j) \not \preceq 0 for all m\geq M.

Using compactness again we get that

\lambda := min
\sigma \in [a,b]n

\lambda \mathrm{m}\mathrm{a}\mathrm{x}

\bigl( 
 - F \prime 

M (\sigma )D(ej  - (n - 1)e\prime j)
\bigr) 
> 0,

and thus

\lambda \mathrm{m}\mathrm{a}\mathrm{x}

\bigl( 
 - F \prime 

m(\sigma )D(ej  - (n - 1)e\prime j)
\bigr) 
\geq \lambda for all \sigma \in [a, b]n, m\geq M.

Setting cT :=
\bigl( 

1
\delta 1

\cdot \cdot \cdot 1
\delta n

\bigr) 
and applying Lemma 4.5 with Fm, m \geq M , in place of

\Lambda , assertion (a) follows. Assertions (b)--(d) follow as in Corollary 4.6.

Proof of Theorem 3.3. Theorem 3.3 and the Lipschitz stability result (3.8) now
follow from Lemma 4.9 exactly as in the infinite-dimensional case.

© 2023 Bastian Harrach



CALDER\'ON PROBLEM EQUIVALENT TO CONVEX OPTIMIZATION 5683

5. Conclusions and outlook. We conclude this work with some remarks on
the applicability of our results and possible extensions. The Calder\'on problem is
infamous for its high degree of nonlinearity and ill-posedness. The central point of
this work is to show that the high nonlinearity of the problem does not inevitably lead
to the problem of local convergence (resp., local minima) demonstrated in section 2,
but that convex reformulations are possible. In that sense, our result proves that it is
principally possible to overcome the problem of nonlinearity in the Calder\'on problem
with finitely many unknowns.

Let us stress that this is purely a theoretical existence result and that our proofs
are nonconstructive in three important aspects: We show that there exist a number
of measurements that uniquely determine the unknown conductivity values and allow
for the convex reformulation, but we do not have a constructive method for calculat-
ing the required number of measurements. We show that the problem is equivalent
to minimizing a linear functional under a convex constraint, but we do not have a
constructive method for calculating the vector c \in \BbbR n defining the linear functional.
Also, we derive an error bound for the case of noisy measurements, but we do not
have a constructive method for determining the error bound constant \lambda > 0.

For the simpler, but closely related, nonlinear inverse problem of identifying a
Robin coefficient [15, 13, 14], constructive answers to these three issues are known.
Reference [14] gives an explicit (and easy-to-check) criterion to identify whether the
number of measurements is sufficiently high for uniqueness and convex reformulation,
and to explicitly calculate the stability constant \lambda in the error bound. The crite-
rion is based on checking a definiteness property of certain directional derivatives in
only finitely many evaluation points. A similar approach might be possible for the
Calder\'on problem considered in this work, but the directional derivative arguments
are technically much more involved and the extension of the arguments in [14] is far
from trivial. Moreover, for the Robin problem one can simply choose c := 1, but
this is based on stronger localized potential results that do not hold for the Calder\'on
problem. Finding methods to constructively characterize c for the Calder\'on problem
will be an important topic for further research. With regard to that point, let us,
however, stress again that our result shows that c depends only on the given setting
(i.e., the domain and pixel partition and the upper and lower conductivity bounds)
but not on the unknown solution. Hence, for a fixed given setting, one could try to
determine c in an offline phase, e.g., by calculating Fm(\sigma ) for several samples of \sigma ,
and adapting c to these samples.
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