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Abstract. For the detection of hidden objects by low-frequency electromagnetic

imaging the Linear Sampling Method works remarkably well despite the fact that

the rigorous mathematical justification is still incomplete. In this work, we give an

explanation for this good performance by showing that in the low-frequency limit the

measurement operator fulfills the assumptions for the fully justified variant of the

Linear Sampling Method, the so-called Factorization Method. We also show how the

method has to be modified in the physically relevant case of electromagnetic imaging

with divergence-free currents. We present numerical results to illustrate our findings,

and to show that similar performance can be expected for the case of conducting

objects and layered backgrounds.
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1. Introduction

For the detection of buried landmines the most frequently used devices are standard off-

the-shelf metal detectors. These detectors generate (and measure) an electromagnetic

field which changes in the vicinity of metallic or magnetic objects. Such a change then

triggers (on a more or less heuristic basis) an acoustic signal to indicate that there might

be a buried landmine underneath. To improve the reliability of these devices, however,

it is necessary to extract more information about the shape and position of magnetic,

dielectric or conducting inhomogeneities out of the signal.

Standard metal detectors work with very low frequencies around 20kHz, which

corresponds to a wavelength of approximately 15km, while the typical objects of interest

are only a few centimeters in size. The problem can therefore be expected to be

severely ill-posed, much like electrical impedance tomography (EIT), which can also be

considered as a problem of detecting inhomogeneities using waves of infinite wavelength;

cf., e.g., Lassas [28] or Cheney, Isaacson and Newell [9]. Because of this, we investigate

new non-iterative methods that have recently been used with some success in EIT, but

also in inverse scattering, namely the Linear Sampling Method and the Factorization

Method.

The Linear Sampling Method was developed under the name simple method by

Colton and Kirsch in [11]. In this seminal work it was used to detect a scatterer from

far field measurements for the Helmholtz equation, and it has since then been applied to

a variety of different problems. As a starting point for the interested reader we refer to

the recent review article [12] by Colton and Kress, and the many references therein. The

method requires measurements for a range of excitations, or to put it in another way,

it uses the (typically linear) measurement operator, called Mω
s below, as given data. A

somewhat unusual but useful way of formulating the method is based on a factorization

of this operator into a product of two operators

Mω
s = LG, (1.1)

where the range of the operator L (the set of so-called virtual measurements) uniquely

determines the shape and the position of the scatterer Ω. An immediate consequence

of (1.1) is the range inclusion R(Mω
s ) ⊆ R(L), from which one can then deduce that a

(possibly empty) subset of Ω can be located from the measurements Mω
s .

For the same problem as in [11] Kirsch developed in [22] a variant of the Linear

Sampling Method, for which he could rigorously prove that it reconstructs Ω, and not

only a subset. This so-called Factorization Method makes use of a factorization of Mω
s

into L, its adjoint L∗, and a third operator, to show a range identity of the form

R(L) = R(|Mω
s |

1/2), (1.2)

so that R(L) and thus Ω can be determined from the measurements Mω
s . The

Factorization Method was generalized to applications in EIT by Brühl and Hanke in

[5, 6, 20] and in electrostatics by Hähner in [21]. It was successfully applied to several

other situations, from which we like to point out two that have immediate relations to
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this work, namely harmonic vector fields by Kress in [26, 27] and far-field electromagnetic

measurements by Kirsch in [23]. Further applications, and a framework for general real

elliptic equations, that we shall utilize later on, can be found in [15].

For the problem of near-field electromagnetic measurements that we consider here,

a range identity like (1.2) does not appear to be in reach. In [24], Kirsch proposes to

overcome this difficulty by using the measurements to simulate incoming fields. However,

according to the numerical results in [18], the original Linear Sampling Method also

seems to detect the scatterer, and not only a subset, in this particular setting. In

this work we try to give an explanation for this good performance by showing that in

the low-frequency limit the measurements are essentially electrostatic measurements, for

which the Factorization Method can be shown to work, at least for excitations with non-

vanishing divergence as they have been used in [18]. Although this analysis explains

the success of the Linear Sampling Method to some extent, it also reveals that the

method will fail in the practically relevant case of divergence-free currents, where no

electrostatic effects are present. We therefore study the low-frequency asymptotics also

for this case, and derive an appropriate modification of the method for the resulting

magnetostatic limit. We have to stress, though, that our methods require very accurate

multistatic measurements of the electromagnetic field for multiple different excitations,

cf. Section 2, which can not be realized using a single off-the-shelf metal detector. Thus

the applicability to field measurements still needs to be investigated.

Throughout this work we restrict ourselves to the case of penetrable dielectric or

magnetic non-conducting objects in a homogeneous background. However, in the last

section we will also comment on the expected effects of a layered background and of

conducting objects, and show some numerical examples for these cases as well.

The outline of this paper is as follows. In Section 2 we describe our model of a metal

detector and define the measurement operatorMω
s . In Section 3 we derive the theoretical

foundations for the Linear Sampling Method for penetrable objects. Sections 4 and 5 are

devoted to the Factorization Method for the electrostatic and the magnetostatic limits

of Mω
s , respectively. In Section 6 we finally comment on layered media and conducting

materials.

2. The setting

A simplified model of a standard metal detector is shown in Figure 1. Inside some device

S, a time-harmonic current is driven through a coil of wire, thus generating a primary

electromagnetic field. A second coil of wire serves as a detector for electromagnetic fields

that are scattered back from objects Ω in the vicinity of the device. In order to cancel

out the effects of the primary field the two coils have to be properly arranged close

to each other. Thus, a simple metal detector generates only a single electromagnetic

field (determined by the form of the coil), and the measurements of the scattered field

are in some sense taken at the same location as the excitations (so-called monostatic

measurements). In the following we will work with an idealized device that does not
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S

Ω

Figure 1. Simplified model of a metal detector

have these two restrictions. More precisely, we assume that we can create arbitrarily

shaped surface currents in S and that for every current we can measure the (tangential

component of the) scattered electric field everywhere on S. Of course, such multistatic

measurements cannot be obtained with a single metal detector. However, one can think

of this to be approximately realized with a multiarray of off-the-shelf metal detectors,

cf., e.g., [3, 7, 19].

We now turn to the mathematical description of our setting. Assume that

electromagnetic fields are generated by time-harmonic surface currents with complex

amplitude J and frequency ω in some two-dimensional device S, where

S ⊂ Σ0 := {(x, y, 0) ∈ R3}

is a smoothly bounded, relatively open domain. In the absence of conducting media the

complex amplitudes Eω and Hω of the electric and magnetic components of the fields

are given by Maxwell’s equations

curlHω + iωǫEω = J, −curlEω + iωµHω = 0, (2.1)

together with the radiation condition
∫

∂Bρ

|ν ∧ µHω + ǫEω|2 dσ → 0 for ρ→ ∞. (2.2)

Here ǫ is the dielectricity, µ is the permeability, and Bρ the ball of radius ρ around the

origin with outer normal ν. Throughout the paper, we will assume that ǫ and µ are

constant outside some open bounded set Ω (the scatterer) with smooth boundary ∂Ω

and connected complement R3 \Ω. Applying the usual change of units (cf., e.g., Monk

[29]) we write

ǫ = 1 + ǫ1χΩ(x) and µ = 1 + µ1χΩ(x).

where ǫ1, µ1 ∈ L∞(Ω) have essential infima larger than −1.

The left-hand sides of the equations in (2.1) have to be understood in the

distributional sense for Eω, Hω ∈ L2
loc(R3)3. Then the second equation yields that

Eω ∈ Hloc(curl,R3). Regarding the surface currents J , we assume that

J ∈ TH−1/2(div, S) := {u ∈ TH−1/2(div,Σ0) : u = 0 in Σ0 \ S}.
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TH−1/2(div, S) can be regarded as a subset of the dual space of Hloc(curl,R3) (and

thus as a subset of the space of distributions) using the usual identification between

J ∈ TH−1/2(div, S) and the mapping

ϕ 7→

∫

S

J · ϕ|S dσ, ϕ ∈ Hloc(curl,R3),

where the integral is actually the dual pairing between TH−1/2(div, S) and its dual

TH−1/2(curl, S). It is well known that solutions Eω, Hω of the homogeneous Maxwell’s

equations with constant dielectricity and permeability are analytic vector fields, so that

the integral in (2.2) makes sense for every ball Bρ that is large enough to contain S and

the scatterer Ω. Furthermore, (2.2) is equivalent to

Hω ∧ x− |x|Eω → 0 for |x| → ∞. (2.3)

It is usually convenient to eliminate the magnetic component Hω from (2.1) and

(2.3) which leads to

curl

(

1

µ
curlEω

)

− ω2ǫEω = iωJ (2.4)

and

x ∧ curlEω + |x|iωEω → 0 for |x| → ∞, (2.5)

where we now have to add the assumption that Eω ∈ Hloc(curl,R3).

The solvability of this forward problem can be treated as in [29] by reducing it to

a sufficiently large ball Br and formulating exact non-local boundary conditions on the

artificial boundary ∂Br. This approach leads to a Fredholm problem, so that existence

of a solution is equivalent to its uniqueness. In the following, we will assume that we are

in a situation where this uniqueness is guaranteed, or in other words, that no resonances

occur.

Our idealized detector not only imposes the electric current J but also measures

the tangential component of the induced electric field Eω on S. We therefore introduce

the measurement operator

Mω
t :

{

TH−1/2(div, S)→TH−1/2(curl, S),

J 7→ γτE
ω
t |S := (e3 ∧ E

ω
t ) ∧ e3,

where Eω
t solves (2.4) and (2.5) and e3 := (0, 0, 1)T ∈ R3. Our goal is to determine Ω

from this measurement operator Mω
t . The subscript t stands for measurements of the

total field. We also introduce the measurements of the incoming or primary field, i.e.,

the field that would be generated in the absence of a scatterer

Mω
i : J 7→ γτE

ω
i |S,

where Eω
i solves

curl curlEω
i − ω2Eω

i = iωJ
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and satisfies the radiation condition (2.5). The Linear Sampling Method works with the

difference of these two operators

Mω
s := Mω

t −Mω
i ,

that is with measurements of the so-called secondary or scattered field Eω
s := Eω

t −Eω
i .

3. The Linear Sampling Method

The Linear Sampling Method relates the question whether a point z in the lower half

space R3
− belongs to the scatterer Ω to whether the tangential trace of a certain singular

function Eω
z,d belongs to the range of the measurements R(Mω

s ). To be more precise

let Eω
z,d be the primary electric field of a point current in z directed in some arbitrary

direction d ∈ R3, |d| = 1, i.e., the solution of

curl curlEω
z,d − ω2Eω

z,d = iωδzd

together with the radiation condition (2.5). Using the outgoing fundamental solution of

the Helmholtz equation

Φω(x) :=
1

4π

eiω|x−z|

|x− z|

an explicit expression for Eω
z,d is

Eω
z,d(x) = Φωd+

1

ω2
grad div (Φωd).

Using these singular functions the scatterer Ω can be determined from the range of

the operator

L : TH−1/2(div, ∂Ω) → TH−1/2(curl, S), ψ 7→ γτE
ω|S

which describes the virtual measurements of applying a magnetic field ψ on the

scatterer’s surface ∂Ω, and measuring the corresponding tangential trace γτE
ω|S of

the solution of the exterior problem

curl curlEω − ω2Eω = 0, ν ∧ curlEω|∂Ω = ψ,

and the radiation condition (2.5).

Theorem 3.1. Let d ∈ R3, |d| = 1 be an arbitrary direction. A point z ∈ R3
− belongs

to Ω if and only if γτE
ω
z,d ∈ R(L).

Proof. In [18, Theorem 6.1] this theorem is proven for the case of magnetic dipole

excitations and measurements of the magnetic field in TL2(S). The present case follows

from interchanging the electric and the magnetic fields and noting that both γτE
ω
z,d and

functions in R(L) are elements of TL2(S).

Since the scattered field Eω
s solves the exterior problem in the definition of L, we

have the factorization

Mω
s = LG, (3.1)
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where G : TH−1/2(div, S) → TH−1/2(div, ∂Ω) maps the applied surface currents J to

ν ∧ curlEω
s |∂Ω. G can also be restricted to TL2(S)∩ TH−1/2(div, S) and then extended

by continuity to a mapping

G : TL2(S) → TH−1/2(div, ∂Ω).

Since also R(L) ⊂ TL2(S), one can as well consider Mω
s as an operator from TL2(S)

to TL2(S). For both realizations of Mω
s , we obtain from Theorem 3.1 and (3.1) the key

result of the Linear Sampling Method:

Corollary 3.2. If γτE
ω
z,d ∈ R(Mω

s ) for some point z ∈ R3
− (and arbitrary direction d)

then z ∈ Ω.

Corollary 3.2 shows that the set of points z ∈ R3
−, for which γτE

ω
z,d ∈ R(Mω

s )

defines a (possibly empty) subset Ω̃ ⊂ Ω. Numerically, one can use this result to choose

a sample of points z ∈ R3
− and test whether γτE

ω
z,d ∈ R(Mω

s ) or not.

A more common formulation of the Linear Sampling Method is obtained by

searching for a solution gz of

Mω
s gz = γτE

ω
z,d, (3.2)

which is an integral equation of the first kind. If the frequency does not correspond to

what is called a transmission eigenvalue of the object (cf. Cakoni, Fares and Haddar

[8] and Kirsch [25]) then Mω
s is a compact, injective operator with dense range, so that

this equation can always be solved approximately to obtain some gz,ǫ with

‖Mω
s gz,ǫ − γτE

ω
z,d‖ < ǫ.

The range condition γτE
ω
z,d ∈ R(Mω

s ) is then equivalent to the question, whether there

exists a sequence of approximate solutions gz,ǫ that stays bounded as ǫ tends to zero.

For z 6∈ Ω̃ this is not possible by the above arguments, so that gz,ǫ is likely to blow up

when z approaches ∂Ω̃.

However, we feel that two conceptual flaws of the method are somewhat disguised

by this more common formulation. The first is that proper regularization (e.g., Tikhonov

regularization) is needed to actually guarantee that a bounded sequence is found. The

second aspect is more fundamental, namely that the distinction between Ω̃ and Ω is

usually ignored in the literature, and this difference is far from being well understood.

We now show some numerical results that we have obtained with the Linear

Sampling Method on simulated forward data. The measurement device is a square

of approximate size 32cm × 32cm located at height z = 5cm (above a virtual ground).

On a 6 × 6 equidistant grid on this device we have imposed tangential point currents

with a frequency of 20kHz and measured the tangential components of the resulting

scattered electric field on the same grid. The scatterer is a dielectric ellipsoid with the

electromagnetic properties of rubber (ǫ1 = 2, µ1 = 0) whose center is located 15cm

below the measurement device. The coordinates of its center are x = 2cm, y = 3cm

and z = −10cm, its half-axes have the lengths 3cm, 2cm and 1cm. Figure 2 shows in

the first row the three-dimensional reconstruction and a horizontal cut at z = −10cm
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Figure 2. Reconstructions with the Linear Sampling Method

for unperturbed simulated forward data, which contains an estimated relative errror

of 0.1%. The second row shows the reconstruction that we obtain after perturbing the

simulated data by a relative error of 1%. The true scatterer is plotted with a lighter color,

resp., a dashed line, while a darker color, resp., a solid line is used for the reconstruction.

The numerical implementation is the same that had been used in [18], where

also a numerical example for an object in a lossy medium is presented. Concerning

implementation details we refer the interested reader to this work and the related

works on factorization and linear sampling methods cited in the introduction. We note,

however, that the implementation relies on calculating an approximate preimage g̃z of

equation (3.2) and checking whether its norm is very large (indicating that (3.2) has

no solution, i.e., γτE
ω
z,d 6∈ R(Mω

s )). This requires the choice of an additional threshold

parameter C∞ > 0 to distinguish points with very large values ‖g̃z‖ ≥ C∞ from those

with small values ‖g̃z‖ < C∞. Although we have stressed that, from a theoretical point

of view, there is no guarantee that the set Ω̃ determined by the Linear Sampling Method

is close to Ω, the choice of the threshold parameter – which up to now is done on an
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empirical level – introduces some ambiguity. Tuning the parameter in an appropriate

way the size of this approximation Ω̃ may increase quite a bit, and with appropriate

calibration the method is capable to reconstruct the true scatterer well. In the following

section, we derive an explanation for this good performance which is based on the fact

that our measurement setup uses a very low frequency.

4. The electrostatic limit

We now examine the asymptotic behavior of our measurements as ω tends to zero.

We will restrict ourselves to a formal argumentation. For a mathematically rigorous

derivation we refer the reader to the work of Ammari and Nédélec in [2], where the

asymptotic expansion is carried out for the similar case of a fixed incoming wave.

We first note that (2.4) implies that

div (ǫEω) =
1

iω
divJ, (4.1)

so that a part of Eω behaves like ω−1 if the applied surface currents are not divergence-

free. If we formally expand Eω into a power series in ω,

Eω =
1

ω
E−1 + E0 +O(ω),

then we obtain from (2.4), (4.1), and (2.5) that E−1 and E0 solve

curl (
1

µ
curlE−1) = 0, div (ǫE−1) =

1

i
divJ, (4.2)

curl (
1

µ
curlE0) = 0, div (ǫE0) = 0, (4.3)

together with radiation conditions for |x| → ∞

|x|E−1 → 0, x ∧ curlE−1 → 0, (4.4)

|x|E0 → 0, x ∧ curlE0 → 0. (4.5)

By multiplying (4.2) with E−1 and a partial integration we conclude that E−1 is

curl-free, so that we can write it as the gradient of a scalar potential

ϕ ∈W 1(R3) := {u : (1 + |x|2)−1/2u ∈ L2(R3),∇u ∈ L2(R3)3},

cf., e.g., Dautray and Lions [13, IX, §1]. From (4.3) and (4.5) we obtain that E0 = 0.

Hence we end up with

Eω =
1

iω
∇ϕ+O(ω), (4.6)

where ϕ solves

div (ǫ∇ϕ) = divJ. (4.7)

We can interpret (4.7) as the electrostatic potential ϕ, that is created by the

surface charges divJ . We therefore introduce the measurement operator of electrostatic

measurements

Λt : H−1/2(S) → H1/2(S), ρ 7→ u|S,
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where u solves

div (ǫ∇u) = ρ.

Thus, we obtain from (4.6)

iωMω
t J = γτ∇ϕ|S +O(ω2) = −∇SΛt∇

′
SJ +O(ω2), (4.8)

where

∇S : H1/2(S) → TH−1/2(curl, S)

denotes the surface gradient on S and

−∇′
S : TH−1/2(div, S) → H−1/2(S)

the surface divergence.

Formally, it follows from our expansion that the error term in (4.8) depends

continuously and linearly on J , so that the operator −∇SΛt∇
′
S approximates iωMω

t up

to an error of the order ω2. Analogously to the last section we define the measurement

operators for the primary and secondary electrostatic potential Λi and Λs and obtain

iωMω
s ≈ −∇SΛs∇

′
S +O(ω2).

Thus for low frequencies the measurements are closely related to the electrostatic

measurements Λs for which the Factorization Method is known to work (see Hähner [21]

for the case of a grounded object, or [15] for the penetrating case). Therefore the good

performance of the Linear Sampling Method can be explained by the fact that it agrees

with the Factorization Method up to a term of order ω2 that is below the measurement

error.

It remains to show that the Factorization Method really works for the operator

∇SΛs∇
′
S and that its test functions are the low-frequency limits of those of the Linear

Sampling Method. To this end let LES be the electrostatic virtual measurement operator,

that maps the normal component g of an electrostatic field on the boundary of the

scatterer to the resulting electrostatic potential on the measurement device, i.e.,

LES : H−1/2
⋄ (∂Ω) → H1/2(S), g 7→ u|S,

where the subscript ”⋄” denotes the space of functions with vanishing integral mean on

each connected component of ∂Ω and u ∈W 1(R3 \ Ω) solves

∆u = 0 in R3 \ Ω, ∂νu|∂Ω = g.

Then the points inside the scatterer Ω can be characterized by R(∇SLES) using the low

frequency-limit of Eω
z,d.

Theorem 4.1. Let z ∈ R3
− be a point in the lower half space, let d ∈ R3, |d| = 1 be an

arbitrary direction and let

Ez,d := grad div
d

|x− z|

be the electrostatic field of a dipole in z with direction d. Then

γτEz,d ∈ R(∇SLES) if and only if z ∈ Ω.
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Proof. If z ∈ Ω then obviously

γτEz,d = ∇SLES

(

∂ν(div
d

|x− z|
)|∂Ω

)

∈ R(∇SLES).

Now assume that γτEz,d ∈ R(∇SLES). Then there exists u ∈ W 1(R3 \ Ω) such that

∆u = 0 in R3 \ Ω and

∇Su|S = ∇Sdiv
d

|x− z|
.

u and div d
|x−z|

are harmonic functions in R3 \ (Ω ∪ {z}), so in particular the tangential

compontents of ∇u − ∇div d
|x−z|

are analytic on Σ0 and thus vanish on Σ0. Since

u−div d
|x−z|

is harmonic on R3
+, it follows that u−div d

|x−z|
is constant on R3

+ (actually it

is zero). Now the analyticity on R3 \ (Ω∪{z}) yields that u−div d
|x−z|

must be constant

on R3 \ (Ω ∪ {z}). But u is square integrable in any bounded subset of R3 \ Ω, while

div d
|x−z|

is only square integrable if z ∈ Ω.

For the electrostatic measurements a factorization result that relates Λs to LES is

already known.

Theorem 4.2. Λs can be factorized into

Λs = LESFL
′
ES,

with a symmetric operator F : H
1/2
⋄ (∂Ω) → H

−1/2
⋄ (∂Ω). If ǫ1 < 0 (in the sense of

essential supremum) then F is coercive, if ǫ1 > 0 (in the sense of essential infimum)

then −F is coercive.

Proof. This is shown for closed surfaces in [15, Sect. 4.4] and holds with the same proof

also in the present case.

Theorem 4.3. Let ǫ1 < 0 or ǫ1 > 0 and denote by

ι : TH−1/2(div, S) → TH−1/2(curl, S)

the Riesz isomorphism that identifies the Hilbert space TH−1/2(div, S) with its dual.

Then

R(|∇SΛs∇
′
Sι

−1|1/2) = R(∇SLES).

Proof. This follows from the standard functional analytic arguments for the

Factorization Method (cf., e.g., [15, Lemma 3.5]).

Just like Mω
s the operator ∇SΛs∇

′
S can also be considered as a mapping from

TL2(S) to TL2(S), so that it seems more natural to take the square root in this space

instead of using the above Riesz isomorphism. The following functional analytic result

shows that our range test can indeed be formulated this way.
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Theorem 4.4. Let V , W be two Hilbert spaces such that V ∩W is dense in V as well

as in W . Furthermore let

A : V → V ′ and B : W → W ′

be two continuous, symmetric and positive linear operators, that coincide on V ∩W .

Then for every y ∈ V ′ ∩W ′ we have

y ∈ R((Aι−1
V )1/2) if and only if y ∈ R((Bι−1

W )1/2),

where ιV and ιW are the Riesz isomorphisms that identify V and V ′, and W and W ′,

respectively.

Proof. We first note that because of the denseness of V ∩W , the spaces V ′ and W ′ can

both be identified with subspaces of the larger space (V ∩W )′, so that it makes sense

to speak of V ′ ∩W ′.

Let y ∈ V ′∩W ′. A well-known functional analytic result (cf., e.g., [14, Lemma 3.4]

for an elementary proof) is that y ∈ R((Aι−1
V )1/2) is equivalent to the existence of a

C > 0 such that

〈y, x〉 ≤ C ‖((Aι−1
V )1/2)′x‖ for all x ∈ V.

Since both sides are continuous with respect to x ∈ V , this is equivalent to

〈y, x〉 ≤ C ‖((Aι−1
V )1/2)′x‖ = C〈A′x, x〉 = C〈B′x, x〉 = C ‖((Bι−1

W )1/2)′x‖

for all x ∈ V ∩W . From the continuity with respect to x ∈W this is now equivalent to

〈y, x〉 ≤ C ‖((Bι−1
W )1/2)′x‖ for all x ∈W,

and thus to y ∈ R((Bι−1
W )1/2).

Since the traces of the singular test functions γτEz,d are elements of TL2(S) as well

as of TH−1/2(curl, S) we obtain from Theorem 4.3 and 4.4 the following.

Corollary 4.5. Let ǫ1 < 0 or ǫ1 > 0. For every point z ∈ R3
− and every direction

d ∈ R3, |d| = 1

γτEz,d ∈ R(|∇SΛs∇
′
S|

1/2) if and only if z ∈ Ω,

where the square root is taken with respect to TL2(S).

Thus Ω can be found by considering Mω
s as an approximation to ∇SΛs∇

′
S and by

testing for a sample of points z ∈ R3
− whether γτEz,d ∈ R(|Mω

s |
1/2). The numerical

results that we have achieved with the factorization method on the same forward data

as in Section 3 are shown in Figure 3 (using the same color and line codes as in Figure 2).

Note that the test function Ez,d is essentially the same as Eω
z,d for low frequencies. A

more substantial difference to the Linear Sampling Method in Section 3 is the use of

the square root operator |Mω
s |

1/2 instead of Mω
s . Nonetheless, we have observed that

a suitable calibration of the threshold in the Linear Sampling Method, cf. Section 3,

yields reconstructions of about the same quality as the Factorization Method. (Again

we refer to [18] for the details of this implementation.) However, the method described
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Figure 3. Reconstructions with the Factorization Method for electrostatics

in this Section is based on the rigorously justified Factorization Method, thus giving

an explanation for the previously observed good performance of the Linear Sampling

Method.

5. The magnetostatic limit

In the last section we compared the Linear Sampling Method to the Factorization

Method for the electrostatic limit. This requires the use of applied currents with non-

zero divergence, i.e., the presence of surface charges. In practical situations one will

have to work with divergence-free currents, e.g., currents that are applied along closed

coils. We show in this section how the argumentation and especially the test functions

must be modified to deal with this situation.

For divergence-free currents the terms E−1 and E0 from the formal asymptotic

expansion of Eω in Section 4 vanish, and so

Eω = ωE1 + ω2E2 +O(ω3).

For E1 and E2 we obtain from (2.4), (4.1), and (2.5)

curl (
1

µ
curlE1) = iJ, div (ǫE1) = 0, (5.1)

curl (
1

µ
curlE2) = 0, div (ǫE2) = 0, (5.2)

with the radiation conditions for |x| → ∞

|x|E1 → 0, x ∧ curlE1 → 0, (5.3)

|x|E2 → 0, x ∧ curlE2 → 0. (5.4)

We conclude that E2 = 0, so that

Eω = iωE +O(ω3),
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where E = −iE1 solves

curl (
1

µ
curlE) = J, div (ǫE) = 0. (5.5)

This can be interpreted as the magnetostatic field curlE, resp. its vector potential

E, that is created by (stationary) currents J . To define the magnetostatic measurements

Mt, we denote by TL2
⋄(S) the subspace of divergence-free currents in TL2(S) and let

Mt : TL2
⋄(S) → TL2

⋄(S)′

be the operator that maps an applied current J to the tangential trace γτE of the

solution E ∈W 1(R3)3 of (5.5). The dual space TL2
⋄(S)′ is the quotient space of TL2(S)

modulo the closure of the space of tangential traces of gradient fields on S with respect

to TL2(S). This corresponds to the fact that gradient fields are integrated to zero along

closed coils. Another consequence of factoring out gradient fields is that Mt does not

change if div (ǫE) = 0 is replaced by divE = 0 in (5.5), so that the measurements do

not depend on the dielectricity, just like the electrostatic measurements did not depend

on the permeability.

Analogously to the two previous sections we define Mi as measurements without

an object and Ms as the difference of Mt and Mi. Then our formal asymptotic analysis

suggests that up to a relative error of the order of ω2

Mω
s ≈ iωMs.

We note that this asymptotic result can not only be made rigorous but it can also

be shown that (even without further smoothness assumptions on µ1 and ǫ1) Maxwell’s

equations are uniquely solvable for sufficiently small frequencies ω, see [17]. This justifies

our somewhat sloppy assumption of being in a situation where uniqueness is guaranteed.

We now proceed along the lines of the last section and introduce the magnetostatic

virtual measurement operator

LMS : ψ 7→ γτE, (5.6)

where E solves

curl curlE = 0 in R3 \ Ω, (5.7)

divE = 0 in R3 \ Ω, (5.8)

ν ∧ curlE|∂Ω = ψ, (5.9)

ν · E|∂Ω = 0. (5.10)

The choice of adequate function spaces for LMS is more involved than in the previous

sections. For this reason the proofs of the following three theorems can be found in the

Appendix.

Theorem 5.1. Equations (5.6)–(5.10) define a continuous linear operator

LMS : TH−1/2
⋄ (∂Ω) → TL2

⋄(S)′,

where TH
−1/2
⋄ (∂Ω) is the closure of

−−→
curl∂Ω(H1/2(∂Ω)) in TH−1/2(∂Ω),

−−→
curl∂Ω denoting

the surface curl (cf., e.g., Cessenat [10, Chp. 2]).
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The points inside the scatterer can now be characterized using (a vector potential

of) the magnetic field of a magnetic dipole in a point z with direction d,

Gz,d(x) := curl
d

|x− z|
.

Theorem 5.2. Let z ∈ R3
− and d ∈ R3, |d| = 1 be an arbitrary direction. Then

γτGz,d ∈ R(LMS) if and only if z ∈ Ω.

Our magnetostatic measurements are closely related to the vector harmonic

equations for which Kress has proven in [26, 27] that the Factorization Method works.

We now show that this is also the case here, i.e., that we can calculate the range of LMS

from our measurements Ms.

Theorem 5.3. Let µ1 < 0 or µ1 > 0 and ι denote the Riesz isomorphism from TL2
⋄(S)

to its dual. Then

R(|Msι
−1|1/2) = R(L).

Identifying TL2
⋄(S) with its dual we finally conclude from Theorem 5.2 and 5.3 the

following.

Corollary 5.4. Let µ1 < 0 or µ1 > 0. For every point z ∈ R3
− and every direction

d ∈ R3, |d| = 1,

γτGz,d ∈ R(|Ms|
1/2) if and only if z ∈ Ω.

Thus in the case of divergence-free currents we can locate Ω by considering Mω
s

as an approximation to the magnetostatic measurements Ms, and consequently use the

magnetostatic singular function Gz,d for the range tests.

We have tested this method numerically with a similar setting as in the two previous

sections. Divergence-free currents with a frequency of 20kHz have been simulated by

imposing normal magnetic dipoles on an equidistant 12× 12 grid of normal excitations

on the same measurement device S as in Section 3. Note that in comparison to the

previously used 6×6 grid of tangential excitations, this increases the number of discrete

measurements from a 72× 72 matrix to a 144× 144 matrix, which we have observed to

be necessary to obtain a comparable quality to the previous sections. This may indicate

a higher degree of ill-posedness for the magnetostatic setting than for the electrostatic

one, however, such a conclusion should be treated with care as the data are different,

too.

The scatterer is the same ellipsoid as in the two previous sections, but we now

use a ferromagnetic material with the permeability of iron (ǫ1 = 0, µ1 = 299) and a

diamagnetic material with the permeability of copper (ǫ1 = 0, µ1 = −6.4 · 10−6).

Figure 4 shows the three-dimensional reconstruction and a horizontal cut at

z = −10cm for the ferromagnetic case (top row) and the diamagnetic case (second

row). Again, the true scatterer is plotted with a lighter color, resp., a dashed line, while

a darker color, resp., a solid line is used for the reconstruction. The quality of the results

is comparable to each other and to that of the electrostatic case.
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Figure 4. Reconstructions with the Factorization Method for magnetostatics

6. Outlook on layered background and conducting objects

So far, our theory does not cover the important cases of conducting objects and of

objects in a layered background. In this section we try to justify why we expect that

the theory can (at least partly) be extended to these cases and show some promising

numerical examples. We restrict ourselves to the practically relevant case of divergence-

free currents studied in Section 5.

Concerning the case of a layered background we recall that we have seen in Section 5,

that for low frequencies the measurements became independent of the dielectricity ǫ.

Consequently, the Factorization Method in Section 5 does also work if the object is

hidden in some other (unknown!) dielectric medium, e.g., if a magnetic object is buried

in humid earth. Though our asymptotic analysis was based on the assumption that ǫ

equals 1 outside some bounded domain, we expect that this also holds for the case of a

layered medium, i.e., when ǫ 6= 1 in a half space below the measurement device S.

Concerning objects with a finite conductivity σ on the other side, Maxwell’s

equation (2.4) has to be supplemented with a term describing the induced currents
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Figure 5. Reconstruction of a conducting diamagnetic object in a dielectric halfspace

in the object, i.e.,

curl

(

1

µ
curlEω

)

− ω2ǫEω = iω(J + σEω).

In [1], Ammari, Buffa and Nédélec showed that for low frequencies the (inverse) Fourier

transform of Eω, i.e., the time-dependent electric field, can be approximated by the

solution E(x, t) of

∂t(σE) − curl

(

1

µ
curlE

)

= −∂tJ , (6.1)

where J is the (inverse) Fourier transform of J , i.e., the time-dependent applied

currents. Equation (6.1) is parabolic inside the object (where σ > 0) and elliptic

outside (where σ = 0). The physical interpretation of (6.1) is that inside the object the

electric field takes some time to build up due to eddy currents, while on the outside it

almost instantly reaches a stationary state. A scalar model problem for this situation is

to consider the temperature u of a domain with no (or very low) heat capacity (c ≈ 0)

that has inclusions with a high heat capacity c > 0, i.e.,

∂t(cu) − div (κ gradu) = 0,

cf. [16] for a rigorous derivation of this model. Within this model the inclusions take

some time to heat up, while the background medium is always in a state of thermal

equilibrium. Under the assumption that the thermal conductivity κ of the inclusions is

higher than that of the background, it was shown in [14] that the Factorization Method

also works for this parabolic-elliptic situation. The magnetostatic analog to the thermal

conductivity κ is the term 1/µ. We expect that the arguments in [14] can be extended

to the vector-valued case considered in this work, so that the method in Section 5 can

also be used to detect diamagnetic, conducting objects (e.g. copper).

Figure 5 shows the numerical reconstruction for the method and the geometry from

Section 5 applied to an ellipsoidal diamagnetic conducting scatterer with the properties
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of copper (ǫ1 = 0, µ1 = −6.4 · 10−6, σ = 5.8 · 107) in a dielectric halfspace with the

dielectriciy of air (ǫ = 1 for z > 0), resp., humid earth (ǫ = 29 for z < 0). Color and

line codes are the same as in all previous figures, and the results again have comparable

quality.

7. Conclusion

Our theoretical results and numerical examples show that the Factorization Method

can be used to detect objects from electromagnetic measurements in the low-frequency

regime. These results can also be used to explain the good performance of the Linear

Sampling Method near the electrostatic limit observed earlier. Moreover, they reveal

necessary modifications for the physically relevant setting near the magnetostatic limit.

Numerical results suggest that the method can also be used to find conducting objects

in a dielectric layered background.

Our results are derived for an idealized setting with multistatic measurements, and

their relevance for practical applications depends heavily on the accuracy with which

measurements can be taken in real life. Still, we believe that this work demonstrates

a promising potential of sampling methods for a severely ill-posed problem in low-

frequency electromagnetic imaging. To support our argument we refer interested readers

to the recent work [4] where the Factorization Method has been applied successfully to

laboratory data for a similar problem in electrical impedance tomography.
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Appendix

Proof of Theorem 5.1. Denote by W 1
⋄ (R3\Ω)3 the space of all W 1(R3\Ω)3-functions

with vanishing divergence and vanishing normal component on ∂Ω. An equivalent

variational formulation for (5.7)–(5.10) is that E ∈W 1
⋄ (R3 \ Ω)3 solves

aQ(E, v) :=

∫R3\Ω

curlE · curl v dx =

∫

∂Ω

ψ · γτv|∂Ω dσ, (A.1)

for all v ∈ W 1
⋄ (R3 \ Ω)3, where the integral on the right hand side is again actually

the dual pairing between TH−1/2(div, ∂Ω) and TH−1/2(curl, ∂Ω). In the proof of

Theorem 5.3 below we will make use of the general framework for the Factorization
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Method developed in [15] and the notations therein. It is in view of this notations that

we introduce Q := R3 \ Ω, and add an index Q for quantities associated with this set.

Due to our choice of TH
−1/2
⋄ (∂Ω) both sides of (A.1) vanish if v is curl-free. Thus (A.1)

is also well-defined on the quotient space

H(Q) := W 1
⋄ (R3 \ Ω)3/{u ∈W 1

⋄ (R3 \ Ω)3 : curl u = 0}.

A standard result on the relation between gradient, divergence, and curl of a vector

field (cf., e.g., Dautray and Lions [13, IX, §1, Thm. 3, Rem. 1]) yields the existence of

a constant C > 0 such that
∫R3\Ω

|∇v|2 dx ≤

∫R3\Ω

|curl v|2 dx+ C

∫

∂Ω

|γτv|
2 dσ

for all v ∈W 1
⋄ (R3 \Ω)3. Thus, aQ is a compact perturbation of a coercive bilinear form

in W 1
⋄ (R3 \ Ω)3. Since aQ is also positive and its kernel is factored out in H(Q), it

follows that aQ is coercive on H(Q). The assertion now follows from the Lax-Milgram

Theorem. �

Proof of Theorem 5.2. The proof is similar to that of Theorem 4.1. For points z ∈ Ω

we have that

ν ∧ curlGz,d|∂Ω =
−−→
curl∂Ω div

d

|x− z|
∈ TH−1/2

⋄ (∂Ω),

and using a ϕ ∈W 1(R3 \ Ω) with

∆ϕ = 0 and ∂νϕ|∂Ω = ν ·Gz,d|∂Ω

we obtain that Gz,d −∇ϕ solves (5.7)–(5.10). Thus

γτGz,d = LMS (ν ∧ curlGz,d|∂Ω) ∈ R(LMS).

On the other hand if γτGz,d ∈ R(LMS) then there exists a potential E that solves

(5.7)–(5.10) and γτE coincides with γτGz,d in the quotient space TL2
⋄(S)′. From this we

deduce that

w := curl(E −Gz,d)

is a function with harmonic components, whose normal component vanishes on S. By

analytic continuation the normal component has to vanish on the whole of Σ0. We now

use a mirroring argument to show that w has to vanish in the upper half space R3
+. To

this end we define

w̃(x) :=

{

w(x) for x · e3 ≥ 0

α(w(α(x))) for x · e3 < 0
,

where α(x) := x− 2(x · e3)e3. Then one can easily check that

w̃ ∈ L2(R3)3, div w̃ = 0, and curl w̃ = 0,

from which we obtain that w̃ = 0 and thus w|R3
+

= 0. Using analytic continuation again

it follows that w vanishes in R3\(Ω∪{z}), and as in Theorem 4.1 this yields that z ∈ Ω.

�
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Proof of Theorem 5.3. We use the general framework in [15] and therefore adapt

the notations therein. Let H(B) denote the space of divergence-free functions from

W 1(R3)3. aQ and H(Q) are defined as in the proof of Theorem 5.1. H(Ω) is defined

analogously to H(Q) and aΩ,0, aΩ,1 are the bilinear forms

aΩ,0(u, v) =

∫

Ω

curl u · curl v dx,

aΩ,1(u, v) =

∫

Ω

1

µ
curl u · curl v dx, u, v ∈ H(Ω).

With the same arguments as in the proof of Theorem 5.1 it follows that aΩ,0 and aΩ,1

are coercive on H(Ω), assumption (V1) in [15] is fulfilled and for µ1 < 0 resp. µ1 > 0

the difference aΩ,1 − aΩ,0 resp. aΩ,0 − aΩ,1 is coercive on H(Ω).

With Σ := ∂Ω we define H(Σ) as the dual of TH
−1/2
⋄ (∂Ω), i.e., the quotient space

of TH1/2(∂Ω) modulo its subspace of curl∂Ω-free functions and H(S) := TL2
⋄(S)′. The

restrictions E(·) and trace operators γ(·) between these spaces

γQ→S : H(Q) → H(S), EQ : H(B) → H(Q),

γQ→Σ : H(Q) → H(Σ), EΩ : H(B) → H(Ω),

γΩ→Σ : H(Ω) → H(Σ)

are then defined by adding appropriate gradients of harmonic scalar functions to obtain

vanishing normal traces as in the the proof of Theorem 5.2. From [13, IX, §1,Rem. 8]

we obtain that γQ→Σ and γΩ→Σ possess continuous right inverses, so that (V3) in [15]

holds. Since we have already ensured the coerciveness of the bilinear forms, the assertion

follows from [15, Thm. 3.1], if we can also show (V2*) in [15], i.e., that two functions

in H(Q) and H(Ω) can be combined to a function in H(B) if and only if their traces

agree in H(Σ). The fact that

γQ→ΣEQu = γΩ→ΣEΩ for all u ∈ H(B)

immediately follows from the definition of the space H(Σ). For the other implication

we have to show that each vector field u with

u|R3\Ω ∈W 1(R3 \ Ω)3, u|Ω ∈W 1(Ω)3, div u = 0 in R3 \ ∂Ω,

ν · u|∂Ω− = ν · u|∂Ω+ = 0 and curl∂Ω(γτu|∂Ω− − γτu|∂Ω+) = 0

differs from a divergence-free W 1(R3)3-function only by a function with vanishing curl

on R3 \ ∂Ω. This can be proven by choosing u− curl v, where v ∈W 1(R3)3 solves

curl curl v = 0 in R3 \ ∂Ω

and γτ (curl v)|∂Ω− − γτ(curl v)|∂Ω+ = γτu|∂Ω− − γτu|∂Ω+. For the technical details of the

above argumentation we refer to [17]. �
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