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GLOBAL UNIQUENESS AND LIPSCHITZ-STABILITY FOR THE
INVERSE ROBIN TRANSMISSION PROBLEM∗

BASTIAN HARRACH† AND HOUCINE MEFTAHI‡

Abstract. In this paper, we consider the inverse problem of detecting a corrosion coefficient
between two layers of a conducting medium from the Neumann-to-Dirichlet map. This inverse prob-
lem is motivated by the description of the index of corrosion in non-destructive testing. We show a
monotonicity estimates between the Robin coefficient and the Neumann-to-Dirichlet operator. We
prove a global uniqueness result and Lipschitz stability estimate and show how to quantify the Lip-
schitz stability constant for a given setting. Our quantification of the Lipschitz constant does not
rely on quantitative unique continuation or analytic estimates of special functions. Instead of deriv-
ing an analytic estimate, we show that the Lipschitz constant for a given setting can be explicitly
calculated from the a priori data by solving finitely many well-posed PDEs. Our arguments rely on
standard (nonquantitative) unique continuation, a Runge approximation property, the monotonicity
result and the method of localized potentials. To solve the problem numerically, we reformulate the
inverse problem into a minimization problem using a least square functional. The reformulation of
the minimization problem as a suitable saddle point problem allows us to obtain the optimality con-
ditions by using differentiability properties of the min-sup formulation. The reconstruction is then
performed by means of the BFGS algorithm. Finally, numerical results are presented to illustrate
the efficiency of the proposed algorithm.
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1. Introduction. This paper is concerned with the inverse problem of detecting
a corrosion contamination between two layers of a nonhomogenous electric conductor.
This problem can be encountered in several areas of engineering such as diffusion
of chemical substances in a given medium, delamination in certain elastic materials
[5, 50].

The corrosion may occur in many different forms, and several models are consid-
ered in the literature [10, 62, 60, 21, 23, 17, 55]. Identifying the Robin parameter from
boundary measurements turns out to be a way to locate the corroded part in a given
medium and possibly evaluate the damage level by electrical impedance tomography
process.

In this work, we consider the mathematical model problem where the corrosion
takes place between two layers of a nonhomogenous medium [10, 62, 60]. The geometry
of the corrosion boundary is assumed to be known in advance, but the coefficient
of corrosion is unknown and is subject to be reconstructed from the Neumann-to-
Dirichlet map. This problem shares similarities with the inverse problem with Robin
condition on the external boundary [21, 23, 17, 55, 24].
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The two major questions for the inverse problem are the uniqueness and stability
of a solution. For the classical mathematical model problem, Chaabane and Jaoua [20]
proved a uniqueness result and local and monotone Lipschitz stability estimate from
boundary measurements, provided that the Robin coefficient is a continuous function
with some negative lower bound. The proof rely on the study of the behavior of the
solution of the forward problem with respect to the Robin coefficient. In [67] Sincich
established a Lipschitz stability estimate from electrostatic boundary measurements
under a further prior assumptions of a piecewise constant Robin coefficient. The
Lipschitz constant behaves exponentially with respect to the portions considered.

For the model problem considered here, a particular uniqueness result for simul-
taneous reconstruction of the conductivity and the Robin coefficient is proven in [10].
The proof is based on integrals representation of the solution of the forward problem
and decomposition on the basis of spherical harmonics.

Several numerical methods have been proposed for the inverse Robin problem in
the context of external boundary corrosion detection [54, 30, 19, 17, 18, 69]. Some
methods are based on the variational approach, such as the Kohn–Vogelius functional
[17, 18], the least square functional [69]. L1-tracking functional is considered in [19],
where the authors prove differentiability using complex analysis techniques. The proof
is strongly related to the positivity and monotonicity of the derivative of the state.
This kind of functional is robust with respect to data outliers but it has not been
tested numerically. Some numerical results restricted to the case of thin plate are
based on the asymptotic expansion of the solution [54, 30].

In this paper we prove a global uniqueness and Lipschitz stability estimate for
the Robin transmission inverse problem and show how to explicitly calculate the
Lipschitz stability constant for a given setting by solving finitely many well-posed
PDEs. The proof is based on a monotonicity estimates combined with the method
of localized potentials [34] that we derive from a Runge approximation result. For
the numerical solution of the Robin transmission inverse problem, we reformulate the
inverse problem into a minimization problem using a least square functional, and use
a quasi-Newton method which employs the analytic gradient of the cost function and
the approximation of the inverse Hessian is updated by the BFGS scheme [64].

Let us give some more remarks on the relation of this work to previous results.
Monotonicity estimates and localized potentials techniques have been used in different
ways for the study of inverse problems [37, 46, 38, 6, 47, 8, 49, 16, 35, 45, 41, 42, 66]
and several recent works build practical reconstruction methods on monotonicity prop-
erties [70, 40, 48, 43, 61, 71, 31, 32, 33, 68, 72, 44, 75]. But, together with [39, 66],
this is the first work proving a Lipschitz stability result with the relatively simple
technique of monotonicity and localized potentials.

Lipschitz stability for inverse coefficient problems has been studied intensively in
the literature; cf. [57, 1, 52, 53, 22, 4, 7, 11, 59, 58, 12, 67, 73, 74, 15, 14, 63, 3, 13,
9, 2, 65]. Lipschitz stability results are usually based on technically challenging but
constructive approaches involving Carleman estimates or quantitative unique contin-
uation. For some applications these constructive approaches also allowed to quantify
the asymptotic behavior of the stability constants (cf., e.g., [67, Corollary 2.5]). But,
to the knowledge of the authors, no previous work has derived a method to explicitly
determine a Lipschitz stability constant for a given setting.

Our approach on proving Lipschitz stability result differs from these previous
works. We first prove an abstract Lipschitz stability result (in Theorem 2.1) by rela-
tively simple but nonconstructive arguments that are based on standard (nonquantita-
tive) unique continuation, a Runge approximation property, the monotonicity result,
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and the method of localized potentials. Our new approach can easily be extended
to other inverse coefficient problems, and it has already been used to prove unique-
ness and Lipschitz stability in electrical impedance tomography with finitely many
electrodes [39] and to study stability in machine learning reconstruction algorithms
[66].

To quantify the Lipschitz stability constant, we then develop a new method (in
Theorem 5.2) that allows to explicitly calculate the Lipschitz constant for a given
setting by solving a finite number of well-posed PDEs. Again, we do not use quanti-
tative unique continuation arguments and do not require analytic estimates of special
functions. We still work with special solutions (the localized potentials), but instead
of deriving analytic expressions and estimates, we show how to calculate certain local-
ized potentials by solving a finite number of PDEs and then show how to calculate the
Lipschitz constant from these solutions. This might be considered a new paradigm for
deriving Lipschitz stability constants that is less elegant than previous results since we
do not obtain any analytic estimates. However, our new approach allows to explicitly
calculate Lipschitz stability constants for a given setting which may be important to
quantify the achievable resolution and noise robustness in practical applications.

The paper is organized as follows. In section 2, we introduce the forward and in-
verse problem, the Neumann-to-Dirichlet operator and formulate our main theoretical
results: a global uniqueness result and a Lipschitz stability estimate. Section 3 and 4
contain the main theoretical tools for this work. In section 3, we prove a Runge ap-
proximation result and based on this result, we prove the global uniqueness theorem.
In section 4, we show a monotonicity result between the Robin coefficient and the
Neumann-to-Dirichlet operator and deduce the existence of localized potential from
the Runge approximation result. Then we prove the Lipschitz stability estimate. Sec-
tion 5 shows how to calculate the Lipschitz stability constant for a given setting. In
section 6, we introduce the minimization problem, we prove the existence of optimal
solution, and we compute the first order optimality condition using the framework
of the min-sup differentiability. In the last section, satisfactory numerical results for
two-dimensional problem are presented to illustrate the efficiency of the method.

2. Problem statement. Let Ω ⊂ Rd (d ≥ 2) be a bounded domain with Lips-
chitz boundary ∂Ω, and let Ω1 be an open subset of Ω such that Ω1 b Ω, Γ := ∂Ω1

is Lipschitz, and Ω2 := Ω \Ω1 is connected. Thus, we have ∂Ω2 = Γ∪ ∂Ω; see Figure
1 for a description of the geometry.

For a piecewise-constant conductivity σ = σ1χΩ1 + σ2χΩ2 , with given σ1, σ2 > 0,
and a Robin parameter γ ∈ L∞+ (Γ), where L∞+ denotes the subset of L∞-functions with
positive essential infima, we consider the following problem with Neumann boundary
data g ∈ L2(∂Ω), 

−div(σ∇u) = 0 in Ω1 ∪ Ω2,

σ2∂νu = g on ∂Ω,

JuK = 0 on Γ,

Jσ∂νuK = γu on Γ,

(2.1)

where ν is the unit normal vector to the interface Γ or ∂Ω pointing outward of Ω1 or
Ω, respectively, and

JuK := u+ − u− with u+ = β0

∣∣
Ω2

(u), u− = β0

∣∣
Ω1

(u),

Jσ∂νuK := σ2∂νu
+ − σ1∂νu

− with ∂νu
+ = β1

∣∣
Ω2

(u), ∂νu
− = β1

∣∣
Ω1

(u).
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Here β0

∣∣
Ωi

: H1(Ωi)→ L2(Γ), β1

∣∣
Ωi

: H(Ωi)→ L2(Γ) are the Dirichlet and Neumann

trace operators and H(Ωi) is a subspace of H1(Ωi) defined by

H(Ωi) :=
{
u ∈ H1(Ωi) : ∆u ∈ L2(Ωi)

}
.

In (2.1), u represents the electric potential, g the prescribed current density on the
external boundary ∂Ω, while γ is called the corrosion coefficient and describes the
presence of corrosion damage on Γ.

Fig. 1. The domain Ω = Ω1 ∪ Γ ∪ Ω2.

The Neumann problem (2.1) is equivalent to the variational formulation of finding
u ∈ H1(Ω) such that∫

Ω

σ∇u · ∇w dx+

∫
Γ

γuw ds =

∫
∂Ω

gw ds for all w ∈ H1(Ω).(2.2)

Using the Riesz representation theorem (or the Lax–Milgram Theorem), it is easily
seen that (2.2) is uniquely solvable and that the solution depends continuously on
g ∈ L2(∂Ω) and γ ∈ L∞+ (Ω). When dealing with different Robin coefficients or

Neumann data, we also denote the solution by u
(g)
γ .

We denote by Λ(γ) the so-called Neumann-to-Dirichlet map:

Λ(γ) : L2(∂Ω) −→ L2(∂Ω)

g 7−→ u|∂Ω,

where u is solution to (2.1). The physical interpretation of the Neumann-to-Dirichlet
(ND) map Λ(γ) is knowledge of the resulting voltages distributions on the boundary
of Ω corresponding to all possible current distributions on the boundary. Thus the
inverse problem we are concerned with is the following:

Find the parameter γ from the knowledge of the map Λ(γ).(2.3)

There are several aspects of this inverse problem which are interesting both for math-
ematical theory and practical applications.

• Uniqueness. If Λ(γ1) = Λ(γ2), show that γ1 = γ2.
• Stability. If Λ(γ1) is close to Λ(γ2), show that γ1 and γ2 are close (in a suitable

sense).
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• Reconstruction. Given the boundary measurements Λγ , find a procedure to
reconstruct the Robin parameter γ.

• Partial data. If S is a subset of ∂Ω and if Λ(γ1)g|S = Λ(γ2)g|S for all
boundary currents g, show that γ1 = γ2.

In this work, we will concentrate on the first three aspects. Note however that our
theoretical results on uniqueness and stability also hold with the same proofs when
currents are applied on an arbitrarily small open subset S ⊆ ∂Ω (with ∂Ω \ S kept
insulated) and voltages are measured on the same subset S.

We will show a monotonicity result,

γ1 ≤ γ2 implies Λ(γ1) ≥ Λ(γ2) in the sense of quadratic forms,

and using Runge approximation and localized potentials, we deduce the following
uniqueness and stability results for determining γ from Λ(γ).

Theorem 2.1 (uniqueness). For γ1, γ2 ∈ L∞+ (Γ),

Λ(γ1) = Λ(γ2) if and only if γ1 = γ2.

Theorem 2.2 (Lipschitz stability). Let A be a finite dimensional subspace of
L∞(Γ). Given constants b > a > 0, we define

A[a,b] := {γ ∈ A : a ≤ γ(x) ≤ b for x ∈ Γ (a.e.)} .

Then there exists a constant C > 0 such that for all γ1, γ2 ∈ A[a,b], we have

‖γ1 − γ2‖L∞(Γ) ≤ C‖Λ(γ1)− Λ(γ2)‖∗,

where ‖.‖∗ is the natural operator norm in L(L2(∂Ω)).

Theorem 2.1 and 2.2 will be proven in the following two sections. Note that Theorem
2.2 obviously implies Theorem 2.1 by setting A := span{γ1, γ2} and choosing a, b > 0
so that γ1, γ2 ∈ A[a,b]. Nevertheless we give an independent proof of Theorem 2.1
since it is short and simple.

3. Runge approximation and uniqueness. We will deduce the uniqueness
Theorem 2.1 from the following Runge approximation result.

Theorem 3.1 (Runge approximation). Let γ ∈ L∞+ (Γ). For all f ∈ L2(Γ) there

exists a sequence (gn)n∈N ⊂ L2(∂Ω) such that the corresponding solutions u(gn) of
(2.1) with boundary data gn, n ∈ N, fulfill

u(gn)|Γ → f in L2(Γ).

Proof. We introduce the operator

A : L2(Γ)→ L2(∂Ω), f 7→ Af := v|∂Ω,

where v ∈ H1(Ω) solves∫
Ω

σ∇v · ∇w dx+

∫
Γ

γvw ds =

∫
Γ

fw ds for all w ∈ H1(Ω).(3.1)

Let g ∈ L2(∂Ω) and u ∈ H1(Ω) be the corresponding solution of problem (2.1).
Then the adjoint operator of A is characterized by∫

Γ

(A∗g) f ds =

∫
∂Ω

(Af) g ds =

∫
∂Ω

vg ds =

∫
Ω

∇u · ∇v dx+

∫
Γ

γuv ds

=

∫
Γ

fu ds, for all f ∈ L2(Γ),
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which shows that A∗ : L2(∂Ω) → L2(Γ) fulfills A∗g = u|Γ. The assertion follows if
we can show that A∗ has dense range, which is equivalent to A being injective.

To prove this, let v|∂Ω = Af = 0 with v ∈ H1(Ω) solving (3.1). Since (3.1) also
implies that σ2∂νv|∂Ω = 0, and Ω2 is connected, it follows by unique continuation
that v|Ω2 = 0 and thus v+|Γ = 0. Since v ∈ H1(Ω) this also implies that v−|Γ = 0,
and together with (3.1) we obtain that v|Ω1

∈ H1(Ω1) solves

∇ · (σ1∇v) = 0 in Ω1

with homogeneous Dirichlet boundary data v|∂Ω1
= 0. Hence, v|Ω1

= 0, so that
v = 0 almost everywhere in Ω. From (3.1) it then follows that

∫
Γ
fw ds = 0 for all

w ∈ H1(Ω) and thus f = 0.

Proof of Theorem 2.1. For Robin parameters γ1, γ2 ∈ L∞+ (Γ) and Neumann data
g, h ∈ L2(∂Ω) we denote the corresponding solutions of (2.1) by ug1, uh1 , ug2, and uh2 ,
respectively.

The variational formulation (2.2) yields the Alessandrini-type equality∫
∂Ω

h (Λ(γ2)− Λ(γ1)) g ds

=

∫
∂Ω

hΛ(γ2)g ds−
∫
∂Ω

gΛ(γ1)h ds =

∫
∂Ω

hug2 ds−
∫
∂Ω

guh1 ds

=

∫
Ω

σ∇uh1 · ∇u
g
2 dx+

∫
Γ

γ1u
h
1u

g
2 ds−

(∫
Ω

σ∇ug2 · ∇uh1 dx+

∫
Γ

γ2u
g
2u
h
1 ds

)
=

∫
Γ

(γ1 − γ2)uh1u
g
2 ds.

This shows that Λ(γ1) = Λ(γ2) implies that∫
Γ

(γ1 − γ2)uh1u
g
2 ds = 0 for all g, h ∈ L2(∂Ω).

Using the Runge approximation result in Theorem 3.1, this yields that (γ1−γ2)uh1 = 0
(a.e.) in Γ for all h ∈ L2(∂Ω), and using Theorem 3.1 again, this implies γ1 = γ2.

4. Monotonicity, localized potentials, and Lipschitz stability. To prove
the Lipschitz stability result in Theorem 2.2, we first show a monotonicity estimate
between the Robin coefficient and the ND operator and deduce the existence of
localized potentials from the Runge approximation result in the last section. The
idea of the following monotonicity estimate stems from the works of Ikehata [51] and
Kang, Seo, and Sheen [56], and the proof is analogue to [46, Lemma 2.1]; cf. also the
other references to monotonicity-based methods in the introduction.

Lemma 4.1 (monotonicity estimate). Let γ1, γ2 ∈ L∞+ (Γ) be two Robin parame-
ters, let g ∈ L2(∂Ω) be an applied boundary current, and let u2 := ugγ2 ∈ H

1(Ω) solve
(2.1) for the boundary current g and the Robin parameter γ2. Then∫

Γ

(γ1 − γ2)u2
2 ds ≥

∫
∂Ω

g (Λ(γ2)− Λ(γ1)) g ds ≥
∫

Γ

(
γ2 −

γ2
2

γ1

)
u2

2 ds.(4.1)

Proof. Let u1 := ugγ1 ∈ H
1(Ω). From the variational equation, we deduce∫

Ω

σ∇u1 · ∇u2 dx+

∫
Γ

γ1u1u2 ds =

∫
∂Ω

gΛ(γ2)g ds =

∫
Ω

σ|∇u2|2 dx+

∫
Γ

γ2u
2
2 ds.
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Thus ∫
Ω

σ|∇(u1 − u2)|2 dx+

∫
Γ

γ1(u1 − u2)2 ds

=

∫
Ω

σ|∇u1|2 dx+

∫
Γ

γ1u
2
1 ds+

∫
Ω

σ|∇u2|2 dx+

∫
Γ

γ1u
2
2 ds

− 2

∫
Ω

σ|∇u2|2 dx− 2

∫
Γ

γ2u
2
2 ds

=

∫
∂Ω

gΛ(γ1)g ds−
∫
∂Ω

gΛ(γ2)g ds+

∫
Γ

(γ1 − γ2)u2
2 ds.

Since the left-hand side is nonnegative, the first asserted inequality follows.
Interchanging γ1 and γ2, we get∫
∂Ω

gΛ(γ2)g ds−
∫
∂Ω

gΛ(γ1)g ds

=

∫
Ω

σ|∇(u2 − u1)|2 dx+

∫
Γ

γ2(u2 − u1)2 ds−
∫

Γ

(γ2 − γ1)u2
1 ds

=

∫
Ω

σ|∇(u2 − u1)|2 dx+

∫
Γ

(
γ2u

2
2 − 2γ2u1u2 + γ1u

2
1

)
ds

=

∫
Ω

σ|∇(u2 − u1)|2 dx+

∫
Γ

γ1

(
u1 −

γ2

γ1
u2

)2

ds+

∫
Γ

(
γ2 −

γ2
2

γ1

)
u2

2 ds.

Since the first two integrals on the right-hand side are nonnegative, the second
asserted inequality follows.

Note that we call Lemma 4.1 a monotonicity estimate because of the following
corollary.

Corollary 4.2 (monotonicity). For two Robin parameters γ1, γ2 ∈ L∞+ (Γ)

γ1 ≤ γ2 implies Λ(γ1) ≥ Λ(γ2) in the sense of quadratic forms.(4.2)

Let us stress, however, that Lemma 4.1 holds for any γ1, γ2 ∈ L∞+ (Ω) and does not
require γ1 ≤ γ2 or γ1 ≥ γ2.

The existence of localized potentials [34] follows from the Runge approximation
property as in [41, Corollary 3.5].

Lemma 4.3 (localized potentials). Let γ ∈ L∞+ (Γ), and let M ⊆ Γ be a subset
with positive boundary measure. Then there exists a sequence (gn)n∈N ⊂ L2(∂Ω) such
that the corresponding solutions u(gn) of (2.1) fulfill

lim
n→∞

∫
M

|u(gn)|2 ds =∞ and lim
n→∞

∫
Γ\M
|u(gn)|2 ds = 0.

Proof. Using the Runge approximation property in Theorem 3.1 we find a
sequence g̃n ∈ L2(∂Ω) so that the corresponding solutions u(g̃n) fulfill

u(g̃n)|Γ →
χM∫
M
ds

in L2(Γ).

Hence

lim
n→∞

∫
M

|u(g̃n)|2 ds = 1 and lim
n→∞

∫
Γ\M
|u(g̃n)|2 ds = 0,
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so that

gn :=
g̃n(∫

Γ\M ũ2
n ds

)1/4

has the desired property

lim
n→∞

∫
M

|u(gn)|2 ds = lim
n→∞

∫
M
|u(g̃n)|2 ds(∫

Γ\M |u(g̃n)|2 ds
)1/2

=∞,

lim
n→∞

∫
Γ\M
|u(gn)|2 ds = lim

n→∞

(∫
Γ\M
|u(g̃n)|2 ds

)1/2

= 0.

Now, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let A be a finite dimensional subspace of L∞(Γ), b > a >
0, and

γ1, γ2 ∈ A[a,b] = {γ ∈ A : a ≤ γ(x) ≤ b for x ∈ Γ (a.e.)} .

For the ease of notation, we write in the following

‖γ1 − γ2‖ := ‖γ1 − γ2‖L∞(Ω) and ‖g‖ := ‖g‖L2(∂Ω).

Since Λ(γ1) and Λ(γ2) are self-adjoint, we have that

‖Λ(γ2)− Λ(γ1)‖∗

= sup
‖g‖=1

∣∣∣∣∫
∂Ω

g (Λ(γ2)− Λ(γ1)) g ds

∣∣∣∣
= sup
‖g‖=1

max

{∫
∂Ω

g (Λ(γ2)− Λ(γ1)) g ds,

∫
∂Ω

g (Λ(γ1)− Λ(γ2)) g ds

}
.

Using the first inequality in the monotonicity relation (4.1) in Lemma 4.1 in its original
form, and with γ1 and γ2 interchanged, we obtain for all g ∈ L2(∂Ω)∫

∂Ω

g (Λ(γ2)− Λ(γ1)) g ds ≥
∫

Γ

(γ1 − γ2)|u(g)
γ1 |

2,∫
∂Ω

g (Λ(γ1)− Λ(γ2)) g ds ≥
∫

Γ

(γ2 − γ1)|u(g)
γ2 |

2,

where u
(g)
γ1 , u

(g)
γ2 ∈ H1(Ω) denote the solutions of (2.1) with Neumann data g and

Robin parameter γ1 and γ2, respectively. Hence, for γ1 6= γ2, we have

‖Λ(γ2)− Λ(γ1)‖∗
‖γ1 − γ2‖

≥ sup
‖g‖=1

Ψ

(
g,

γ1 − γ2

‖γ1 − γ2‖L∞(Γ)
, γ1, γ2

)
,

where (for g ∈ L2(∂Ω), ζ ∈ A, and κ1, κ2 ∈ A[a,b])

Ψ (g, ζ, κ1, κ2) := max

{∫
Γ

ζ|u(g)
κ1
|2 ds,

∫
Γ

(−ζ)|u(g)
κ2
|2 ds

}
.(4.3)

Introduce the compact set

C =
{
ζ ∈ A : ‖ζ‖L∞(Γ) = 1

}
.(4.4)
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Then, we have

‖Λ(γ2)− Λ(γ1)‖∗
‖γ1 − γ2‖

≥ inf
ζ∈C

κ1,κ2∈A[a,b]

sup
‖g‖=1

Ψ(g, ζ, κ1, κ2).(4.5)

The assertion of Theorem 2.2 follows if we can show that the right-hand side of (4.5)
is positive. Since Ψ is continuous, the function

(ζ, κ1, κ2) 7→ sup
‖g‖=1

Ψ(g, ζ, κ1, κ2)

is semilower continuous, so that it attains its minimum on the compact set C×A[a,b]×
A[a,b]. Hence, to prove Theorem 2.2, it suffices to show that

sup
‖g‖=1

Ψ(g, ζ, κ1, κ2) > 0 for all (ζ, κ1, κ2) ∈ C × A[a,b] ×A[a,b].

To show this, let (ζ, κ1, κ2) ∈ C ×A[a,b]×A[a,b]. Since ‖ζ‖L∞(Γ) = 1, there exists
a subset M ⊆ Γ with positive boundary measure such that either

(a) ζ(x) ≥ 1

2
for all x ∈M, or (b) − ζ(x) ≥ 1

2
for all x ∈M.

In case (a), we use the localized potentials sequence in Lemma 4.3 to obtain a bound-
ary current ĝ ∈ L2(∂Ω) with∫

M

∣∣∣u(ĝ)
κ1

∣∣∣2 ds ≥ 2 and

∫
Γ\M

∣∣∣u(ĝ)
κ1

∣∣∣2 ds ≤ 1

2
,

so that (using again ‖ζ‖L∞(Γ) = 1)

Ψ (ĝ, ζ, κ1, κ2) ≥
∫

Γ

ζ
∣∣∣u(ĝ)
κ1

∣∣∣2 ds ≥ 1

2

∫
M

∣∣∣u(ĝ)
κ1

∣∣∣2 ds− ∫
Γ\M

∣∣∣u(ĝ)
κ1

∣∣∣2 ds ≥ 1

2
.

In case (b), we can analogously use a localized potentials sequence for κ2 and find
ĝ ∈ L2(∂Ω) with

Ψ (ĝ, ζ, κ1, κ2) ≥
∫

Γ

(−ζ)
∣∣∣u(ĝ)
κ2

∣∣∣2 ds ≥ 1

2

∫
M

∣∣∣u(ĝ)
κ2

∣∣∣2 ds− ∫
Γ\M

∣∣∣u(ĝ)
κ2

∣∣∣2 ds ≥ 1

2
.

Hence, in both cases,

sup
‖g‖=1

Ψ(g, ζ, κ1, κ2) ≥ Ψ

(
ĝ

‖ĝ‖
, ζ, κ1, κ2

)
=

1

‖ĝ‖2
Ψ(ĝ, ζ, κ1, κ2) > 0,

so that Theorem 2.2 is proven.

5. Quantitative estimate of the Lipschitz stability constant. Theorem
2.2 shows that there exists a Lipschitz stability constant C > 0 with

‖γ1 − γ2‖L∞(Γ) ≤ C‖Λ(γ1)− Λ(γ2)‖∗ for all γ1, γ2 ∈ A[a,b],

where the constant C > 0 depends on the a priori data only, i.e., on the sets Ω1 and
Ω, the background conductivity σ, the finite dimensional subspace A ⊂ L∞(Ω), and
the a priori bounds b > a > 0.
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Similar results on the existence of Lipschitz stability constants are known for
several inverse coefficient problems; cf. the extensive reference list in the introduction.
Lipschitz stability is often proven by constructive arguments such as quantitative
unique continuation, and for some applications this allows to quantify the asymptotic
behavior of the stability constants (cf., e.g., [67, Corollary 2.5]). However, to the
knowledge of the authors, it is a long-standing unsolved problem how to explicitly
calculate the stability constant from the a priori data.

For practical purposes it is highly desirable to know the Lipschitz stability con-
stant C > 0 for a given setting. Inverse coefficient problems are usually extremely
ill-posed and only become well-posed (e.g., in the sense of Lipschitz stability as con-
sidered herein) when the unknown coefficient can a priori be restricted to belong to
a compact subset (e.g., the set of piecewise constant functions on a given resolution
with a priori known upper and lower bounds). Choosing a finer resolution leads to a
less stable, more noise-sensitive, reconstruction problem. Hence, a quantitative eval-
uation of the Lipschitz stability constant might help in estimating what resolution
is practically feasible; cf. [48] for results on a related problem concerning inclusion
detection in electrical impedance tomography.

In this section, we show that monotonicity arguments allow a quantitative esti-
mation of the Lipschitz stability constant by a relatively simple implementation that
requires solving a finite number of well-posed PDEs. To the knowledge of the authors,
this is the first result on quantifying the Lipschitz stability constants for given a priori
data.

For the ease of presentation, we restrict ourself to the case that A consists of
piecewise constant functions on a given partition Γ =

⋃M
m=1 Γm into finitely many

subsetes Γm ⊆ Γ with positive boundary measure, i.e.,

A := {γ =

M∑
m=1

γmχΓm with γ1, . . . , γM ∈ R} ⊂ L∞(Γ),

and, for b > a > 0, A[a,b] is the subset of those γ ∈ A with a ≤ γm ≤ b for all
m = 1, . . . ,M . The authors believe that the following approach can also be extended
to other finite-dimensional subspaces A ⊆ L∞(Ω).

For our quantitative estimate of the Lipschitz stability constant, we require a
finite number of localized potentials and show how to compute them.

Lemma 5.1. For m = 1, . . . ,M , and k = 1, . . . ,K with K := [4( ba − 1)] + 1, we
define the Robin coefficient functions

γ(km) ∈ L∞+ (Γ) by setting γ(km) :=

{
(k + 5)a4 on Γm,
a
2 , else.

(a) There exist boundary data g(km) ∈ L2(∂Ω) so that the corresponding solutions
ukm ∈ H1(Ω) of (2.1) with γ = γ(km) and g = g(km) fulfill

1

2

∫
Γm

|ukm|2 ds−
(

2b

a
− 1

)∫
Γ\Γm

|ukm|2 ds ≥ 1;(5.1)

(b) g(km) ∈ L2(∂Ω) can be calculated by solving a finite number of well-posed
PDEs.

Proof. Note that γ(km) ∈ A ∩ L∞+ (Γ) but γ(km) 6∈ A[a,b]. (a) immediately follows
from the localized potentials result in Lemma 4.3. To prove (b), we use a similar
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approach as in the construction of localized potentials in [34, Theorem 2.10]. For
m ∈ {1, . . . ,M}, and k ∈ {1, . . . ,K}, we introduce as in the proof of Theorem 3.1

A : L2(Γ)→ L2(∂Ω), f 7→ Af := v|∂Ω,

where v ∈ H1(Ω) solves∫
Ω

σ∇v · ∇w dx+

∫
Γ

γ(km)vw ds =

∫
Γ

fw ds for all w ∈ H1(Ω),

which is the variational form of the PDE
−div(σ∇v) = 0 in Ω1 ∪ Ω2,

σ∂νv = 0 on ∂Ω,

JvK = 0 on Γ,

Jσ∂νvK = γ(km)v − f on Γ.

(5.2)

We have shown in the proof of Theorem 3.1 that the adjoint of A is given by

A∗ : L2(∂Ω)→ L2(Γ), A∗g = u|Γ,

where u solves (2.1) with γ = γ(km) and that A∗ has dense range.
Solving the ill-posed linear equation

A∗g
!
= 4χΓm

with the conjugate gradient (CGNE) method (cf., e.g., [29, section 7], or the recent
book [36, III.15]) requires an application of A and A∗ in each iteration step, i.e., one
well-posed PDE solution of (2.1) and (5.2) each. Since 4χΓm ∈ R(A∗), the CGNE
method is known to yield a (possibly unbounded) sequence of iterates (gn)n∈N ⊂
L2(∂Ω) for which the residua converge to zero, i.e.,

A∗gn → 4χΓm
.

Hence, the solutions u(n) ∈ H1(Ω) of (2.1) with γ = γ(km) and g = gn fulfill

1

2

∫
Γm

|u(n)|2 ds−
(

2b

a
− 1

)∫
Γ\Γm

|u(n)|2 ds→ 2,

so that after finitely many iteration steps, (5.1) is fulfilled.

We can now formulate our quantitative estimate of the Lipschitz stability con-
stant. For the following theorem note that the functions g(km) (defined in Lemma 5.1)
depend only on the a priori data (i.e., on the sets Ω1 and Ω, the background conduc-
tivity σ, the finite dimensional subspace of piecewise constant functions A ⊂ L∞(Ω),
and the a priori bounds b > a > 0) and that g(km) can be explicitly calculated from
the a priori data by solving a finite number of well-posed PDEs.

Theorem 5.2. Let g(km) ∈ L2(∂Ω) be defined as in Lemma 5.1. Set

G := max{‖g(km)‖2 : k = 1, . . . ,K, m = 1, . . . ,M}.

Then

‖γ1 − γ2‖L∞(Γ) ≤
1

G
‖Λ(γ1)− Λ(γ2)‖∗ for all γ1, γ2 ∈ A[a,b].(5.3)
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Proof. We will first formulate an useful monotonicity-based inequality that allows
us to modify the Robin coefficient in certain integral energy expressions (in (a)). We
then use it (in (b)) to estimate energy expressions for arbitrary Robin coefficients
γ ∈ A[a,b] by similar expressions that only involve the finitely many special Robin

coefficients γ(km) defined in Lemma 5.1. From this we can then prove Theorem 5.2.
(a) For all g ∈ L2(∂Ω), γ ∈ L∞+ (Γ) and δ ∈ L∞(Γ) with γ + δ ∈ L∞+ (Γ),∫

Γ

δ|ugγ |2 ds ≥
∫

Γ

δ|ugγ+δ|
2 ds.(5.4)

This follows from the first inequality in Lemma 4.1 with γ2 := γ + δ and
γ1 := γ, and from using the same inequality again with interchanged roles of
γ1 and γ2.

(b) Let m ∈ {1, . . . ,M} and γ ∈ A[a,b]. Since K (defined in Lemma 5.1) fulfills
b < (K + 4)a4 , there exists k ∈ {1, . . . ,K} so that γm := γ|Γm ∈ [a, b] fulfills

(k + 3)
a

4
≤ γm < (k + 4)

a

4
.

Using (5.4), a
4 < (k + 5)a4 − γm ≤

a
2 , and −a2 ≥

a
2 − γ ≥

a
2 − b, we obtain

(with γ(km), g(km), and ukm defined as in Lemma 5.1)∫
Γm

|ug
(km)

γ |2 ds−
∫

Γ\Γm

|ug
(km)

γ |2 ds

=
2

a

(∫
Γm

a

2
|ug

(km)

γ |2 ds−
∫

Γ\Γm

a

2
|ug

(km)

γ |2 ds

)

≥ 2

a

(∫
Γm

((k + 5)
a

4
− γm)|ug

(km)

γ |2 ds+

∫
Γ\Γm

(a
2
− γ
)
|ug

(km)

γ |2 ds

)

=
2

a

∫
Γ

(γ(km) − γ)|ug
(km)

γ |2 ds ≥ 2

a

∫
Γ

(γ(km) − γ)|ukm|2 ds

=
2

a

(∫
Γm

((k + 5)
a

4
− γm)|ukm|2 ds+

∫
Γ\Γm

(a
2
− γ
)
|ukm|2 ds

)

≥ 2

a

(∫
Γm

a

4
|ukm|2 ds+

∫
Γ\Γm

(a
2
− b
)
|ukm|2 ds

)

≥ 1

2

∫
Γm

|ukm|2 ds−
(

2b

a
− 1

)∫
Γ\Γm

|ukm|2 ds ≥ 1.

This shows that for all γ ∈ A[a,b] and all m ∈ {1, . . . ,M}

sup
‖g‖=1

(∫
Γm

|ugγ |2 ds−
∫

Γ\Γm

|ugγ |2 ds

)
(5.5)

= sup
06=g∈L2(∂Ω)

1

‖g‖2

(∫
Γm

|ugγ |2 ds−
∫

Γ\Γm

|ugγ |2 ds

)
≥ 1

G
.

(c) It remains to show that (5.5) implies (5.3). With Ψ and C defined in (4.3)
and (4.4) in the proof of Theorem 2.2, it suffices to show that

sup
‖g‖=1

Ψ(g, ζ, κ1, κ2) ≥ 1

G
for all (ζ, κ1, κ2) ∈ C × A[a,b] ×A[a,b].(5.6)
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Since A contains only piecewise-constant functions, for every ζ ∈ C there
must exist a boundary part Γm with either

ζ|Γm
= 1, or ζ|Γm

= −1,

and in both cases −1 ≤ ζ|Γ\Γm
≤ 1. Hence, using (4.3) and (5.5), we obtain

for the case ζ|Γm = 1

sup
‖g‖=1

Ψ(g, ζ, κ1, κ2) ≥ sup
‖g‖=1

∫
Γ

ζ|u(g)
κ1
|2 ds

≥ sup
‖g‖=1

(∫
Γm

|ugκ1
|2 ds−

∫
Γ\Γm

|ugκ1
|2 ds

)
≥ 1

G
,

and for the case ζ|Γm
= −1

sup
‖g‖=1

Ψ(g, ζ, κ1, κ2) ≥ sup
‖g‖=1

∫
Γ

(−ζ)|u(g)
κ2
|2 ds

≥ sup
‖g‖=1

(∫
Γm

|ugκ2
|2 ds−

∫
Γ\Γm

|ugκ2
|2 ds

)
≥ 1

G
,

so that (5.6) and thus (5.3) is proven.

6. The minimization problem. In order to solve numerically the inverse prob-
lem (2.3), we consider only Robin coefficients in the admissible set

Pad := {γ ∈ C(Γ) : 0 < c0 ≤ γ(x) ≤ c1 for x ∈ Γ, where c0, c1 are constants}

and study the following minimization problem,

min
γ∈Pad

J(γ) =
1

2

∫
∂Ω

(u(γ)− ua)2 ds+
λ

2

∫
Γ

γ2 ds,(6.1)

where u(γ) solves the variational equation (2.2), ua is the measured data, and λ
is a regularization parameter that must be chosen by the user. It is obvious that
the optimization problem (6.1) is equivalent to the inverse problem (2.3) when the
data ua are exact and the regularization parameter λ = 0. When the data ua are
contaminated with measurement errors, the inverse problem (2.3) may not have a
solution. However, the optimization problem (6.1) has always a solution, and it may
not be equivalent to the solution of the inverse problem.

Theorem 6.1. The minimization problem (6.1) has at least one solution.

Proof. It is clear that inf J(γ) is finite over the admissible set Pad. Therefore
there exists a minimizing sequence γn such that

lim
n→+∞

J(γn) = inf
γ∈Pad

J(γ).

The sequence γn is bounded by the Banach–Alaoglu theorem; there exists a subse-
quence still denoted γn such that

lim
n→∞

γn = γ∗ weak-* in L∞(Γ).
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By definition u(γn) satisfies∫
Ω

σ∇u(γn) · ∇v dx+

∫
Γ

γnu(γn)v ds =

∫
∂Ω

gv ds ∀v ∈ H1(Ω).(6.2)

Taking v = u(γn) in (6.2), we obtain∫
Ω

σ|∇u(γn)|2 dx+

∫
Γ

γnu(γn)2 ds =

∫
∂Ω

gu(γn) ds.

Using the fact that ‖u‖2 := ‖∇u‖2L2(Ω) + ‖u‖2L2(Γ) is a norm on H1(Ω) equivalent to

the natural norm (cf. [62]) and from the trace theorem, we deduce the existence of a
constant c > 0 such that

‖u(γn)‖H1(Ω) ≤ c‖g‖L2(∂Ω).

This implies that u(γn) is uniformly bounded independent of n. Therefore there exists
a subsequence of u(γn) still denoted u(γn) such that

lim
n→∞

u(γn) = u∗ weakly in H1(Ω).

As the embedding of H1(Ω) into L2(Ω) is compact, we also have

lim
n→∞

u(γn) = u∗ strongly in L2(Ω).

Now the strong convergence of u(γn) in L2(Γ) and the weak-* convergence of γn in
L∞(Γ) yield that

lim
n→∞

∫
Γ

γnu(γn)v ds =

∫
Γ

γ∗u∗v ds.

Letting n go to infinity in (6.2), we conclude that u∗ satisfies∫
Ω

σ∇u∗n · ∇v dx+

∫
Γ

γ∗u∗v ds =

∫
∂Ω

gv ds for all v ∈ H1(Ω).

Due to the uniqueness of the weak limit, we get u(γ∗) = u∗. This means that

lim
n→∞

u(γn) = u(γ∗) weakly in H1(Ω) and strongly in L2(Ω).

Using the lower semicontinuity of the L2-norm yields

J(γ∗) ≤ lim inf
n→∞

J(γn) = J(γ),

which concludes the proof.

In what follows we focus on the computation of the derivative of the function J .

6.1. Derivative by the min-sup differentiability. We introduce the
Lagrangian functional

G(γ, ϕ, ψ) = J(γ, ϕ) +

∫
Ω

σ∇ϕ · ∇ψ dx+

∫
Γ

γϕψ ds−
∫
∂Ω

gψ ds for all ϕ,ψ ∈ H1(Ω).

Then, it is easy to check that

J(γ, u(Γ)) = min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(γ, ϕ, ψ),
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since

sup
ψ∈H1(Ω)

G(Γ, ϕ, ψ) =

{
J(γ, u(γ)) if ϕ = u(γ),

+∞, otherwise.

It is easily shown that the functional G is convex continuous with respect to ϕ and
concave continuous with respect to ψ. Therefore, according to Ekeland and Temam
[28], the functional G has a saddle point (u, v) if and only if (u, v) solves the following
system:

∂ψG(γ, u, v; ψ̂) = 0,

∂ϕG(γ, u, v; ϕ̂) = 0

for all ψ̂ ∈ H1(Ω) and ϕ̂ ∈ H1(Ω). This yields that G has a saddle point (u, v),
where the state u is the unique solution of (2.2) and the adjoint state v = v(γ) is the
solution of the following adjoint problem:∫

Ω

σ∇v · ∇v̂ dx+

∫
Γ

γvv̂ ds+

∫
∂Ω

(u− ua)v̂ ds = 0 for all v̂ ∈ H1(Ω).(6.3)

Summarizing the above, we have obtained the following.

Theorem 6.2. The functional J(γ, u(γ)) is given as

J(γ, u(γ)) = min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(γ, ϕ, ψ).(6.4)

The unique saddle point for G is given by (u, v).

Theorem 6.3. The functional J is Gateaux differentiable, and its Gateaux deriva-
tive at γ ∈ C(Γ) in the direction γ̂ is given by

DγJ(γ, u(γ); γ̂) =

∫
Γ

γ̂ (uv + λγ) ds.(6.5)

Proof. Let γt = γ+tγ̂, where γ̂ ∈ C(Γ) and t ∈ R is a sufficiently small parameter.
Under the hypotheses of Theorem 9.1, we have

DγJ(γ, u(γ); γ̂) = ∂tG(γt, u(γt), v(γt))
∣∣∣
t=0

,

where

G(γt, ϕ, ψ) = J(γ, ϕ) +

∫
Ω

σ∇ϕ · ∇ψ dx+

∫
Γ

γtϕψ ds−
∫
∂Ω

gψ ds,

and

∂tG(γt, u, v)
∣∣∣
t=0

=

∫
Γ

γ̂ (uv + λγ) ds.

From the above equation yields (6.5). To end the proof, we should verify the four
assumptions (H1)− (H4) of Theorem 9.1 given in the appendix. As in Theorem 9.1,
introduce the sets

X(t) :=

{
xt ∈ H1(Ω) : sup

y∈H1(Ω)

G(t, xt, y) = inf
x∈H1(Ω)

sup
y∈H1(Ω)

G(t, x, y)

}
,

Y (t) :=

{
yt ∈ H1(Ω) : inf

x∈H1(Ω)
G(t, x, yt) = sup

y∈H1(Ω)

inf
x∈H1(Ω)

G(t, x, y)

}
;
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we obtain

for all t ∈ [0, ε] S(t) = X(t)× Y (t) = {u(γt), v(γt)} 6= ∅,

and assumption (H1) is satisfied.
Assumption (H2): The partial derivative ∂tG(t, ϕ, ψ) exists everywhere in [0, ε) and
the condition (H2) is satisfied.
Assumptions (H3) and (H4): We show first the boundedness of (u(γt), v(γt)). Let
w = u(γt) in the variational equation∫

Ω

σ∇u(γt) · ∇w dx+

∫
Γ

γtu(γt)w ds =

∫
∂Ω

gv ds for all w ∈ H1(Ω).(6.6)

We get

min(σ1, σ2)‖∇u(γt)‖2L2(Ω) + c0‖u(γt)‖2L2(Γ) ≤ ‖g‖L2(∂Ω)‖u(γt)‖L2(∂Ω).

Using the fact that ‖u‖2 := ‖∇u‖2L2(Ω) + ‖u‖2L2(Γ) is a norm on H1(Ω) equivalent to
the natural norm and from the trace theorem, there exists c > 0, depending only on
Ω such that

‖u(γt)‖H1(Ω) ≤ c‖g‖L2(∂Ω),

which yields

sup
t∈[0,ε)

‖u(γt)‖H1(Ω) ≤ c‖g‖L2(∂Ω).

We apply the same technique to the variational equation∫
Ω

σ∇v(γt) · ∇v̂ dx+

∫
Γ

γtv(γt)v̂ ds+

∫
∂Ω

(u(γt)− ua)v̂ ds = 0(6.7)

for all v̂ ∈ H1(Ω), and we are able to show that the function v(γt) is bounded.
The next step is to show the continuity with respect to t of the vector (u(γt), v(γt)).
Subtracting (6.6) at t > 0 and t = 0 and choosing w = u(γ)− u(γt) yields∫

Ω

σ|∇(u(γ)− u(γt))|2 dx+

∫
Γ

γ(u(γ)− u(γt))
2 ds =

∫
Γ

(γt − γ)u(γt)(u(γ)− u(γt))

≤ ‖γt − γ‖L∞(Γ)‖u(γt)‖L2(Γ)‖u(γ)− u(γt)‖L2(Γ).

Furthermore due to the boundedness of u(γt), we obtain

‖u(γt)− u(γ)‖H1(Ω) ≤ c‖γt − γ‖L∞(Γ).

Due to the strong continuity of γt as a function of t, one deduces that u(γt) → u(γ)
in H1(Ω) as t→ 0. Concerning the continuity of v(γt), one may show from (6.7) that
v(γt)→ v(γ) in H1(Ω). Finally in view of the strong continuity of

(t, ϕ)→ ∂tG(γt, ϕ, ψ), (t, ψ)→ ∂tG(γt, ϕ, ψ),

assumptions (H3) and (H4) are verified.
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7. Implementation details and numerical examples. In the following nu-
merical examples, the domain Ω under consideration is the unit disk centered at the
origin and the boundary Γ is given by

Γ =
{

(x1, x2) ∈ R2 : x2
1 + x2

2 = 0.52
}
.

The domain Ω is discretized using a Delaunay triangular mesh. A standard finite
element method with piecewise finite elements is applied to compute numerically
the state and the adjoint state for our problem. The exact data ua are computed
synthetically by solving the direct problem (2.1). In the real world, the data ua are
experimentally acquired and thus always contaminated by errors. In our numerical
examples the simulated noise data are generated using the following formula:

ũa(x1, x2) = ua(x1, x2) (1 + εδ) on ∂Ω,

where δ is a normal distributed random variable and ε indicates the level of noise. For
our examples, the random variable δ is realized using the Matlab function randn().
The conductivity σ is taken to be

σ = 2χΩ1
+ χΩ2

.

We use the BFGS algorithm to solve the minimization problem (6.1). This quasi-
Newton method is well adapted to such problem.

7.1. Numerical examples. For the following numerical examples, we include
both reconstruction from noiseless and noisy data. The regularization parameter λ is
set to zero because it does not seem to play an indispensable role in our numerical
experiments.

Figure 2 shows the monotonicity relation between the Robin coefficient γ and the
ND operator Λ(γ).

(a) (b)

Fig. 2. Monotonicity of the ND operator gi → Λ(γ)gi. In (a) γ1 = exp(− cos(θ)) ≤ γ2 =
exp(− cos(θ)) + 1, θ ∈ [0, 2π]. In (b), 〈Λ(γ1)gi, gi〉 ≥ 〈Λ(γ2)gi, gi〉 with gi = sin(iθ), i = 1, . . . , 10.
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7.1.1. Example 1. In this example, we use three measurements corresponding
to the following fluxes:

g1(θ) = cos(θ), g2(θ) = sin(θ), and g3(θ) = cos2(θ)− sin2(θ) on ∂Ω.

In this case the cost function J takes the form

J(γ) =

3∑
k=1

∫
∂Ω

(ugkγ )− ugka )2 ds+
λ

2

∫
Γ

γ2 ds,

where ugkγ is the solution to problem (2.1) with respect to the flux gk and ugka is the
corresponding measurement data.

The exact Robin coefficient to be reconstructed is given by

γ(θ) = exp

(
−1

2
cos(θ)

)
, θ ∈ [0, 2π].

Since the cost functional is nonconvex, then it might have some local minima.Therefore
the accuracy of the reconstruction of the Robin coefficients depends on the initial guess
γ0 as depicted in Figure 3. The numerical solution represents reasonable approxima-
tion, and it is stable with respect to a small amount of noise as shown in Figures 4
and 5. Figures 6, 7, 8, 9, 10, 11 show the decrease of cost function J and the L∞-norm
of DJ(γ) in the course of the optimization process.

Fig. 3. Simulation results for Example 1: Reconstruction of the Robin coefficient for two
different initialization γi(θ) = exp(−0.2 cos(θ)) and γi = 1, with level noise ε = 0.

7.1.2. Example 2. In the second example, we consider the following three
fluxes:

g1(θ) = 5 + cos(θ), g2(θ) = 1 + sin(θ), and g3(θ) = 3 + cos2(θ)− sin2(θ) on ∂Ω.

The exact Robin coefficient to be reconstructed is given by

γ(θ) = 1 + cos(θ)2, θ ∈ [0, 2π].

A reasonable reconstruction of the Robin coefficient with noiseless and noisy data can
be seen in Figure 12. Figures 13 and 14 show the decrease of cost function J and the
L∞-norm of DJ(γ) in the course of the optimization process.
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(c) (d)

Fig. 4. Simulation results for Example 1: Reconstruction of the Robin coefficient for two
different initialization γi(θ) = exp(−0.2 cos(θ)) and γi = 1, with level noise ε = 0.01 for (c) and
ε = 0.03 for (d).

(e) (f)

Fig. 5. Simulation results for Example 1: Reconstruction of the Robin coefficient for two
different initialization γi(θ) = exp(−0.2 cos(θ)) and γi = 1, with level noise ε = 0.05 for (e) and
ε = 0.1 for (f).

Fig. 6. Simulation results for Example 1: History of the cost function J(γ) and the L∞-norm
of DJ(γ) in the case of the initialization γi = exp(−0.2 cos(θ)) and the level noise ε = 0.
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Fig. 7. Simulation results for Example 1: History of the cost function J(γ) and the L∞-norm
of DJ(γ) in the case of the initialization γi = 1 and the level noise ε = 0.

Fig. 8. Simulation results for Example 1: History of the objective function J(γ) and the L∞-
norm of DJ(γ) in the case of the initialization γi = exp(−0.2 cos(θ)) and level noise ε = 0.01.

Fig. 9. Simulation results for Example 1: History of the objective function J(γ) and the L∞-
norm of DJ(γ) in the case of the initialization γi = 1 and level noise ε = 0.03.
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Fig. 10. Simulation results for Example 1: History of the objective function J(γ) and the
L∞-norm of DJ(γ) in the case of the initialization γi = exp(−0.2 cos(θ)) and level noise ε = 0.05.

Fig. 11. Simulation results for Example 1: History of the objective function J(γ) and the
L∞-norm of DJ(γ) in the case of the initialization γi = 1 and level noise ε = 0.1.

(g) (h)

Fig. 12. Simulation results for Example 2: Reconstruction of the Robin coefficient with initial-
ization γi = 1, with level noise ε = 0.00 for (g) and ε = 0.05 for (h).
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Fig. 13. Simulation results for Example 2: History of the objective function J(γ) and the
L∞-norm of DJ(γ) in the case of the initialization γi = 1 and level noise ε = 0.0.

Fig. 14. Simulation results for Example 2: History of the objective function J(γ) and the
L∞-norm of DJ(γ) in the case of the initialization γi = 1 and level noise ε = 0.05.

8. Conclusion. We have studied theoretically and numerically the inverse Robin
transmission problem from boundary measurements. More precisely, we proved global
uniqueness and Lipschitz stability. Our proofs rely on monotonicity and localized po-
tentials arguments and seem simpler than the commonly used technique of Carleman
estimates or complex geometrical optics. Notably this is the first work to prove Lip-
schitz stability using monotonicity and localized potentials arguments, and the first
work showing how to explicitly calculate the Lipschitz stability constant for a given
setting.

The inverse problem is recast into a minimization of an output least-square for-
mulation and a technique based on the differentiability of the min-sup is suggested to
drive the first order optimality condition without the derivative of the state solution.
The BFGS method is employed to solve the minimization problem, and numerical re-
sults for two-dimensional problem in the case of noiseless and noisy data are presented
to illustrate the efficiency of the proposed algorithm.
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9. Appendix.

9.1. An abstract differentiability result. In this section we give an abstract
result for differentiating Lagrangian functionals with respect to a parameter. This
result is used to prove Theorem 6.5. We first introduce some notations. Consider the
functional

G : [0, ε]×X × Y → R(9.1)

for some ε > 0 and the Banach spaces X and Y . For each t ∈ [0, ε], define

g(t) = inf
x∈X

sup
y∈Y

G(t, x, y), h(t) = sup
y∈Y

inf
x∈X

G(t, x, y),(9.2)

and the associated sets

X(t) =

{
xt ∈ X : sup

y∈Y
G(t, xt, y) = g(t)

}
,(9.3)

Y (t) =

{
yt ∈ Y : inf

x∈X
G(t, x, yt) = h(t)

}
.(9.4)

Note that inequality h(t) ≤ g(t) holds. If h(t) = g(t), the set of saddle points is
given by

S(t) := X(t)× Y (t).(9.5)

We state now a simplified version of a result from [26] derived from [25] which gives
realistic conditions that allows to differentiate g(t) at t = 0. The main difficulty is
to obtain conditions which allow to exchange the derivative with respect to t and the
inf-sup in (9.2).

Theorem 9.1 (Correa and Seeger [27]). Let X,Y,G and ε be given as above.
Assume that the following conditions hold.

(H1) S(t) 6= ∅ for 0 ≤ t ≤ ε.
(H2) The partial derivative ∂tG(t, x, y) exists for all (t, x, y) ∈ [0, ε]×X × Y .
(H3) For any sequence {tn}n∈N, with tn → 0, there exist a subsequence {tnk

}k∈N
and x0 ∈ X(0), xnk

∈ X(tnk
) such that for all y ∈ Y (0),

lim
t↘0,k→∞

∂tG(t, xnk
, y) = ∂tG(0, x0, y).

(H4) For any sequence {tn}n∈N, with tn → 0, there exist a subsequence {tnk
}k∈N

and y0 ∈ Y (0), ynk
∈ Y (tnk

) such that for all x ∈ X(0),

lim
t↘0,k→∞

∂tG(t, x, ynk
) = ∂tG(0, x, y0).

Then there exists (x0, y0) ∈ X(0)× Y (0) such that

dg

dt
(0) = ∂tG(0, x0, y0).
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