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Resolution Guarantees in Electrical Impedance
Tomography

Bastian Harrach, Marcel Ullrich

Abstract—Electrical impedance tomography (EIT) uses
current-voltage measurements on the surface of an imaging
subject to detect conductivity changes or anomalies. EIT is a
promising new technique with great potential in medical imaging
and non-destructive testing. However, in many applications, EIT
suffers from inconsistent reliability due to its enormous sensitivity
to modeling and measurement errors.

In this work, we show that it is principally possible to give
rigorous resolution guarantees in EIT even in the presence
of systematic and random measurement errors. We derive a
constructive criterion to decide whether a desired resolution can
be achieved in a given measurement setup.

Our results cover the case where anomalies of a known
minimal contrast in a subject with imprecisely known back-
ground conductivity are to be detected from noisy measurements
on a number of electrodes with imprecisely known contact
impedances. The considered settings are still idealized in the
sense that the shape of the imaging subject has to be known and
the allowable amount of uncertainty is rather low. Nevertheless,
we believe that this may be a starting point to identify new
applications and to design and optimize measurement setups in
EIT.

Index Terms—Electrical impedance tomography (EIT),
anomaly detection, inclusion detection, complete electrode model,
resolution guarantee, monotonicity method.

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is an imag-
ing technique that uses current-voltage measurements

on the surface of a conductive subject to image its inner
conductivity distribution. From this conductivity image, one
can extract information about the physiological composition
of the subject. An upcoming application of EIT is lung moni-
toring. Since an inflated lung has a lower specific conductivity
than surrounding body tissues, this leads to a visible contrast
in the EIT image. In this work, we will focus on another
promising application, which is the detection of anomalies
(aka inclusions) where the conductivity significantly differs
from an expected background value. There are several relevant
practical scenarios, e.g. the detection of tumors or hemorrhages
in surrounding homogeneous tissue that has a certain conduc-
tivity contrast.

For a further overview of practical applications of EIT
appearing in the fields of medical imaging and material testing
of industrial or building materials, cf. e.g., [1]–[15].

B. Harrach (birth name: Bastian Gebauer) is with the Department of
Mathematics, University of Stuttgart, Germany e-mail: harrach@math.uni-
stuttgart.de

M. Ullrich is with the Department of Mathematics, University of Stuttgart,
Germany e-mail: marcel.ullrich@mathematik.uni-stuttgart.de

EL

U = R[i,j]V

I = IiA

E1

E2

...

Ej

Ei

ω1 ω2 ω3 ω4 ω5 · · ·

ωs

D

Ω

Fig. 1. Measurement setting with inclusions D occupying a subset of a
subject Ω that is decomposed into a partition of subsets ω1, ω2, . . . ⊆ Ω.
Driving a current through the i-th and the L-th electrode, we measure the
corresponding voltage R[i,j] (in mV per applied mA) between the j-th and
the L-th electrode. Repeating this for all i and j we obtain the measurement
matrix R = (R[i,j])i,j=1,...,L−1 ∈ R(L−1)×(L−1).

The reconstruction process in EIT suffers from the funda-
mental ill-posedness of the underlying mathematical inverse
problem which leads to an enormous sensitivity to modeling
and measurement errors. Due to these inherent instability
issues, high resolution EIT imaging remains an extremely
challenging topic. However, several applications would already
greatly benefit from low resolution EIT images, e.g. in the
field of the aforementioned tumor or hemorrhage detection.
For these applications, fast and low-cost monitoring techniques
have to be developed in order to decide which patients should
undergo more extensive diagnosis. For this task, the main
concern seems to be the reliability of EIT images.

In this work, we show that it is principally possible to give
rigorous resolution guarantees in EIT even in the presence
of systematic and random measurement errors. Consider a
measurement setting as in figure 1 where voltage-current
measurements are taken on a number of electrodes attached to
the boundary of an imaging domain Ω. The aim is to detect
whether the domain contains one or several anomalies where
the conductivity differs from some normal background range.

We describe a desired resolution by a partition of Ω into
disjoint subsets ω1, ω2, . . . ⊆ Ω. We say that a resolution guar-
antee holds if the measured data contains enough information
to

(a) correctly mark every element ωs that is completely
covered by an anomaly,

(b) correctly mark no element, if there is no anomaly at all.
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In other words, a resolution guarantee ensures that no false
positives are detected in the anomaly-free case, and no false
negatives are detected in the case of inclusions over a certain
size. Let us stress that in this work we aim to characterize
the resolution up to which an anomaly can be detected.
Assumptions (a) and (b) do not guarantee that the shape of a
detected anomaly can be correctly determined up to a certain
resolution. In that sense, the subject of this work might be
called a (resolution-based) detection guarantee.

Whether a certain desired resolution can be guaranteed
will depend on a number of facts, including the number and
position of electrodes, the measurement pattern, the inclusion
contrast, and modeling and measurement errors. The aim of
this work is to derive a validation criterion to evaluate whether
a desired resolution can be guaranteed. We also describe a
simple reconstruction algorithm that implements (a) and (b)
above.

Let us comment on the vast literature on identifiability in
EIT. In the last decades, great theoretical progress has been
made on the question whether two arbitrary conductivities
can be distinguished by idealized noise-free and continuous
measurements (the Calderón-Problem [16], [17]). We refer
to the seminal works [18]–[21], the overview [22] and the
recent breakthroughs for partial boundary data [23], [24].
The distinguishability of conductivities from finite precision
data has been studied in the works of Bates, Gençer, Gisser,
Ider, Isaacson, Kuzuoglu, Lionheart, Newell, Seagar, Paulson,
Pidcock and Yeo [25]–[31]. Also, let us refer to a recent
result of Winkler and Rieder [32] on optimal resolution meshes
and to the works of Kolehmainen, Lassas, Nissinen, Ola and
Kaipio [33], [34] regarding uncertainties in the subject’s shape
and electrode’s contact impedances.

Several reconstruction methods have been proposed for
anomaly or inclusion detection problems, cf., e.g., Potthast
[35] for an overview. Arguably, the most prominent inclu-
sion detection method is the Factorization Method (FM) of
Kirsch, Brühl and Hanke [36]–[38], see [14], [39]–[54] for
the devolopment of the FM in the field of EIT and [55] for
a recent overview. Notably, in the overview [55], the FM
is formulated on the basis of monotonicity-based arguments,
and the recent result [56] indicates that, for EIT, the FM
can be outperformed by monotonicity-based methods first
formulated by Tamburrino and Rubinacci in [57], [58], see
also Tamburrino, Ventre and Rubinacci [59] where the concept
of visible voxels is introduced.

The main new idea of this work is to obtain rigorous
resolution guarantees by treating worst-case scenarios with
monotonicity-based ideas. To the knowledge of the authors,
the results derived herein are the firsts to rigorously quantify
the achievable resolution in the case of realistic electrode
measurements in a setting with imprecisely known background
conductivity, contact impedances and measurement noise. We
believe that this will be useful for designing reliable EIT
systems. Our results may be used to determine whether a
desired resolution can be achieved and to quantify the required
measurement accuracy. Moreover, our results could be the
basis of optimization strategies regarding the resolution, or the
number and positions of electrodes and the driving patterns.

The paper is organized as follows. The measurement set-
ting including systematic and random errors is introduced in
section II. Section III presents a monotonicity relation and
motivates how this relation can be used to design inclusion
detection methods. In section IV, we introduce the concept of
a rigorous resolution guarantee and show how to verify such
guarantees by a simple test. We also derive fast linearized
versions of our tests that allow faster verifications at the
price of underestimating the achievable resolution. Section
V presents some numerical results for the verification of
resolution guarantees of section IV. Section VI contains some
concluding remarks.

II. THE SETTING

The current-voltage measurements can be modeled by the
complete electrode model (CEM) as follows (cf. [60]). Let
Ω ⊆ Rn be a bounded domain with piecewise smooth bound-
ary representing the conductive object and let σ : Ω→ R be
the real valued conductivity distribution inside Ω. We assume
that σ and 1/σ are positive and bounded functions.

Electrodes are attached to the boundary of the object as in
figure 1. Their location is denoted with E1, E2, . . . , EL ⊆ ∂Ω,
and their contact impedances are denoted by a vector with
positive entries

z :=
(
z[1], . . . , z[L]

)
∈ RL.

The electrodes are assumed to be perfectly conductive.
For each i ∈ {1, 2, . . . , L − 1}, we drive a current Ii

with strength 1 mA through the i-th electrode while keeping
the L-th electrode grounded and all other electrodes insu-
lated (so that the current flows through the grounded L-th
electrode). Then the potential ui inside Ω and the potentials
Ui =

(
U

[1]
i , . . . , U

[L]
i

)
on the electrodes fulfill

∇ · σ∇ui = 0 in Ω,

with boundary conditions∫
El

σ (∇ui) · ν dS = δl,i − δl,L,

ui|El
+ z[l]σ (∇ui) · ν|El

= const. =: U
[l]
i

for l ∈ {1, 2, . . . , L},

σ (∇ui) · ν = 0 on ∂Ω \
L⋃
l=1

El,

and U [L]
i = 0. ν is the outer normal on the boundary of Ω.

For each injected current, we measure the voltage on
E1,. . . ,EL−1 against the grounded L-th electrode. We thus
collect a matrix of measurements

R(σ, z) :=
(
R[i,j](σ, z)

)L−1

i,j=1
:=
(
U

[j]
i

)L−1

i,j=1
∈ R(L−1)2 .

(1)
The matrix R(σ, z) is easily shown to be symmetric.

We consider anomaly detecting problems where we try
to detect regions (the so-called inclusions) in Ω where the
conductivity differs from a normal background range. To allow
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for modeling and measurement errors in this context, we make
the following setting assumptions:

(a) Conductivity distribution σ(x): The true conductivity
distribution is given by an inclusion conductivity σD(x)
inside an inclusion D and by a background conductivity
σB(x) inside Ω \D, i.e.

σ(x) =

{
σD(x), x ∈ D,
σB(x), x ∈ Ω \D.

(b) Background error ε ≥ 0: The background conductivity
approximately agrees with a known positive constant
σ0 > 0,

|σB(x)− σ0| ≤ ε ∀x ∈ Ω \D.

(c) Inclusion conductivity contrast c > 0: We assume that
we know a lower bound on the inclusion contrast, i.e.,
that we know c > 0 with either

(i) σD(x)− σ0 ≥ c ∀x ∈ D,
(ii) σ0 − σD(x) ≥ c ∀x ∈ D.

(d) Contact impedances error γ ≥ 0: We assume that we
approximately know the contact impedances vector z,
i.e. that we know z0 ∈ RL with∣∣∣z[l] − z[l]

0

∣∣∣ ≤ γ ∀l ∈ {1, 2, . . . , L− 1}.

(e) Measurement noise δ ≥ 0: We assume that we can
measure the voltages R(σ, z) up to a noise level δ > 0,
i.e., that we are given Rδ ∈ R(L−1)×(L−1) with

‖R(σ, z)−Rδ‖ ≤ δ.

Possibly replacing Rδ by its symmetric part, we can
assume that Rδ is symmetric.

III. MONOTONICITY

Our results are based on the following monotonicity rela-
tions that extend results of Gisser, Ikehata, Isaacson, Kang,
Newell, Rubinacci, Seo, Sheen, and Tamburrino [29], [57],
[61], [62].

Theorem 1. For i ∈ {1, 2}, let σi : Ω→ R be a conductivity
distribution and zi ∈ RL be a contact impedances vector. Then

σ1 ≤ σ2, z1 ≥ z2 implies R (σ1, z1) ≥ R (σ2, z2) . (2)

The inequalities on the left side of the implication are meant
pointwise. The inequality on the ride side is to be understood
in the sense of matrix definiteness.

Proof. This follows from the more general theorem 2 below.

Theorem 1 yields monotonictiy-based inclusion detection
methods, cf. [57]. To present the main idea, consider the sim-
ple example where σ = 1+χD, where χD is the characteristic
function on D, and the contact impedances vector z ∈ RL is
known exactly.

For a small ball B ⊆ Ω we define a test conductivity τB =
1+χB . From the monotonicity relation of theorem 1 we have
that

B ⊆ D implies R(τB , z) ≥ R(σ, z).

Hence, the union of all test balls B fulfilling R(τB , z) ≥
R(σ, z) is an upper bound of the inclusion D.

In the recent work [56], the authors showed that, for
continuous boundary data, monotonicity methods are actually
capable of reconstructing the exact shape D under rather
general assumptions. Moreover, [56] shows how to replace the
monotonicity tests by fast linearized versions without losing
shape information, see also [63].

We cannot expect exact shape reconstruction in settings
with a finite number of electrodes and imprecisely known
contact impedances and background conductivities. However,
monotonicity-based arguments will allow us to characterize the
achievable resolution in such settings. For this, we formulate
a quantitative version of theorem 1:

Theorem 2. For i ∈ {1, 2}, let σi : Ω → R be a
conductivity distribution and zi ∈ RL be a contact impedances
vector. Given w ∈ RL−1, let (vi, Vi) be the corresponding
potentials resulting from driving a current of wj through the j-
th electrode, respectively. (Note that this implies a current flux
of −

∑L
l=1 wl through the grounded L-th electrode.) Then,

∫
Ω

(σ1 − σ2) |∇v2|2 dx

+

L∑
l=1

(
1

z
[l]
1

− 1

z
[l]
2

)∫
El

(
v2 − V [l]

2

)2

ds

≥ wT (R (σ2, z2)−R (σ1, z1))w

≥
∫

Ω

σ2

σ1
(σ1 − σ2) |∇v2|2 dx

+

L∑
l=1

z
[l]
1

z
[l]
2

(
1

z
[l]
1

− 1

z
[l]
2

)∫
El

(
v2 − V [l]

2

)2

ds.

Proof. From the variational formulation of the CEM (cf., e.g.,
[60]), we obtain for i, j ∈ {1, 2},

wTVj =

∫
Ω

σi∇vi · ∇vjdx

+

L∑
l=1

1

z
[l]
i

∫
El

(
vi − V [l]

i

)(
vj − V [l]

j

)
ds

=: Bi((vi, Vi), (vj , Vj)).

and, by linearity, we have that

Vj = R(σj , zj)w, j ∈ {1, 2}.
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Hence, it holds that

wT (R (σ2, z2)−R (σ1, z1))w

= wT (V2 − V1)

= 2B1 ((v1, V1) , (v2, V2))−B2 ((v2, V2) , (v2, V2))

−B1 ((v1, V1) , (v1, V1))

= −
∫

Ω

σ1 |∇ (v1 − v2)|2 dx

−
L∑
l=1

1

z
[l]
1

∫
El

((
v1 − V [l]

1

)
−
(
v2 − V [l]

2

))2

ds

+

∫
Ω

(σ1 − σ2) |∇v2|2 dx

+

L∑
l=1

(
1

z
[l]
1

− 1

z
[l]
2

)∫
El

(
v2 − V [l]

2

)2

ds.

Since the first two summands are non-negative, the first
inequality of the theorem follows.

Interchanging the pairs (σ1, z1) and (σ2, z2) and applying

σ2 |∇ (v2 − v1)|2 + (σ1 − σ2) |∇v1|2

= σ1

∣∣∣∣∇v1 −
σ2

σ1
∇v2

∣∣∣∣2 +
σ2

σ1
(σ1 − σ2) |∇v2|2

and
1

z
[l]
2

((
v2 − V [l]

2

)
−
(
v1 − V [l]

1

))2

+

(
1

z
[l]
1

− 1

z
[l]
2

)(
v1 − V [l]

1

)2

=
1

z
[l]
1

((
v1 − V [l]

1

)
− z

[l]
1

z
[l]
2

(
v2 − V [l]

2

))2

+
z

[l]
1

z
[l]
2

(
1

z
[l]
1

− 1

z
[l]
2

)(
v2 − V [l]

2

)2

yields

wT (R (σ2, z2)−R (σ1, z1))w

=

∫
Ω

σ1

∣∣∣∣∇v1 −
σ2

σ1
∇v2

∣∣∣∣2 dx+

∫
Ω

σ2

σ1
(σ1 − σ2) |∇v2|2 dx

+

L∑
l=1

∫
El

1

z
[l]
1

((
v1 − V [l]

1

)
− z

[l]
1

z
[l]
2

(
v2 − V [l]

2

))2

ds

+

L∑
l=1

∫
El

z
[l]
1

z
[l]
2

(
1

z
[l]
1

− 1

z
[l]
2

)(
v2 − V [l]

2

)2

ds.

Since the last two summands are non-negative, the second
inequality of the theorem is proven.

IV. RESOLUTION GUARANTEES

In this section we introduce the concept of rigorous resolu-
tion guarantees and show how to verify such guarantees by a
simple test. We consider the setting described in section II.

Definition 3. An inclusion detection method that yields a
reconstruction DR to the true inclusion D is said to fulfill
a resolution guarantee with respect to a partition (ωs)

N
s=1 if

(i) ωs ⊆ D implies ωs ⊆ DR for s ∈ {1, 2, . . . , N}
(i.e., every element that is covered by the inclusion will
correctly be marked in the reconstruction), and

(ii) D = ∅ implies DR = ∅ (i.e., if there is no inclusion then
no element will be marked in the reconstruction).

E1

E2

E3

E4

E5

E6

...

ω1 ω2 ω3 ω4 ω5 · · ·

ωs

D

Ω

Fig. 2. Setting with a sample inclusion and resolution.

Hence, if a resolution guarantee holds true then no false
positives are detected in the anomaly-free case, and no false
negatives are detected in the case of inclusions over a certain
size.

Obviously, a resolution guarantee will not hold true for ar-
bitrarily fine partitions. The achievable resolution will depend
on the number of electrodes, the inclusion’s contrast, the back-
ground error, contact impedances error, and the measurement
noise, cf. section II(a)-(e).

We will derive a simple test to verify whether a resolution
guarantee holds true for a given partition. To this end, we first
consider the case of inclusions that are more conductive than
the background. The analogous results for less conductive in-
clusions are summarized in section IV-C. We use the following
notations:

σBmin := σ0 − ε,
σBmax := σ0 + ε,

σDmin := σ0 + c,

zmin := z0 − γ(1, 1, . . . , 1),

zmax := z0 + γ(1, 1, . . . , 1).

A. Verification of resolution guarantees
To verify whether a resolution guarantee holds in a given

setting, we will apply the following monotonicity-based inclu-
sion detection method. In the following, we denote the set of
eigenvalues of a symmetric square matrix A by eig(A) and
we write A1 ≥ A2 (or A2 ≤ A1) if the difference A1 − A2

of two symmetric square matrices is positive definite, i.e. if
A1 −A2 possesses only non-negative eigenvalues.

Algorithm 4. Mark each resolution element ωs for which

R(τs, zmax) + δId ≥ Rδ, (3)

where

τs := σBminχΩ\ωs
+ σDminχωs

, s ∈ {1, 2, . . . , N}. (4)
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Then the reconstruction DR is given by the union of the
marked resolution elements.

Theorem 5. The reconstruction of algorithm 4 fulfils the
resolution guarantee if

µ < −2δ ≤ 0 (5)

with

µ :=
N

max
s=1

(min (eig (R(τs, zmax)−R(σBmax, zmin))))) .

(6)

Proof. First, let ωs ⊆ D. Then, τs ≤ σ and zmax ≥ z.
Theorem 1 implies that

R(σ, z) ≤ R(τs, zmax).

Hence, R(τs, zmax) + δId ≥ Rδ , so that ωs will be marked by
algorithm 4. This shows that part (i) of the resolution guarantee
is satisfied.

To show part (ii) of the resolution guarantee, assume
that D = ∅ and DR 6= ∅. Then there must be an index
s ∈ {1, 2, . . . , N} with

R(τs, zmax) + δId ≥ Rδ.

Using Theorem 1 we obtain

−2δId ≤ R(τs, zmax)− (δId +Rδ)

≤ R(τs, zmax)−R(σ, z)

≤ R(τs, zmax)−R(σBmax, zmin),

and thus µ ≥ −2δ.

Theorem 5 gives a rigorous yet conceptually simple criterion
to check whether a given resolution guarantee is valid or not.
Given a partition (ωs)

N
s=1, and bounds on the background

and contact impedance error, we obtain µ from calculating
R(τs, zmax) and R(σBmax, zmin) by solving the partial differ-
ential equations of the complete electrode model. If this yields
a negative value for µ, then the resolution guarantee holds true
up to a measurement error of δ < −µ/2.

B. Fast linearized verification of resolution guarantees

Checking the criterion in Theorem 5 for a partition with N
elements, requires the solution of N + 1 forward problems. A
less accurate but considerably faster test can be obtained by
replacing the monotonicity tests in algorithm 4

R(τs, zmax) + δId ≥ Rδ,

with their linearized approximations

R(σBmin, zmax) + λR′(σBmin, zmax)(χωs
) + δId ≥ Rδ, (7)

where λ ∈ R is a suitably chosen contrast level (as defined in
the algorithms 7 and 11),

R′ (σBmin, zmax) (χωs
) = −

(∫
ωs

∇ui · ∇uj dx

)L−1

i,j=1

, (8)

and ui is the solution of the complete electrode model in-
troduced in in section II with interior conductivity σBmin and

contact impedances zmax. One can interpret R′ as the Fréchet-
derivative of the measurements with respect to the interior
conductivity distribution, cf., e.g., Lionheart [8] or Lechleiter
and Rieder [64], but we will not require this in the following.

Remark 6. The matrix R′ (σBmin, zmax) (χωs) can be ex-
pressed in terms of the sensitivity matrix S that is frequently
being used in FEM-based EIT solvers (cf., e.g., [65] for a
recent work in the context of inclusion detection).

Let (qr)
p
r=1 be the elements of a FEM discretization of the

considered domain Ω. The sensitivity matrix S ∈ R(L−1)2×p

is given by

S =

 S1

...
SL−1

 , (9)

with

Sj =
(
S

[i,r]
j

)
=

(
−
∫
qr

∇ui · ∇uj dx

)
∈ RL−1×p. (10)

If each element ωs in the resolution partition is a union of
elements qr of the FEM-discretization, then the entries of R′

can be obtained from summing up the corresponding entries
of S,

R′ (σBmin, zmax) (χωs) =

 ∑
r: qr⊆ωs

S
[i,r]
j

L−1

i,j=1

. (11)

To choose the parameter λ we require the additional knowl-
edge of a global bound σmax with

σ(x) ≤ σmax ∀x ∈ Ω. (12)

Algorithm 7. Mark each resolution element ωs for which

Ts + δId ≥ Rδ, (13)

where

Ts := R(σBmin, zmax) + λR′(σBmin, zmax)(χωs
), (14)

λ := (c+ ε)
σBmin

σmax
, s ∈ {1, 2, . . . , N}. (15)

Then the reconstruction DR is given by the union of the
marked resolution elements.

Theorem 8. The reconstruction of algorithm 7 fulfils the
resolution guarantee if

µ < −2δ ≤ 0 (16)

with

µ :=
N

max
s=1

(min(eig(Ts −R(σBmax, zmin)))). (17)

Proof. First, let ωs ⊆ D. Given a vector w ∈ RL−1, let uw
be the inner potential in a body with interior conductivity
σBmin and contact impedances zmax that results from driving
a current of wj through the j-th electrode, respectively.

Theorem 2 yields that

wT (R(σBmin, zmax)−R(σ, zmax))w

≥
∫

Ω

σBmin

σ
(σ − σBmin)|∇uw|2dx,
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and since ωs ⊆ D implies σ−σBmin ≥ (c+ε)χωs
, it follows

that

R(σBmin, zmax)−R(σ, zmax) ≥ −λR′(σBmin, zmax)(χωs)

Hence, we obtain from theorem 1 that

Ts + δId

= R(σBmin, zmax) + λR′(σBmin, zmax)(χωs) + δId

≥ R(σ, zmax) + δId ≥ R(σ, z) + δId

≥ Rδ.

Hence, ωs will be marked, which shows that part (i) of the
resolution guarantee is satisfied.

The proof of part (ii) of the resolution guarantee is com-
pletely analogous to the proof of part (ii) in theorem 5.

C. Verification for less conductive inclusions

The theory and the results are almost the same in the case
that we consider inclusions that are less conductive than the
background. In that case we set

σDmax := σ0 − c < σBmin (18)

and consider the following algorithm.

Algorithm 9. Mark each resolution element ωs for which

R(τs, zmin)− δId ≤ Rδ, (19)

where

τs := σBmaxχΩ\ωs
+ σDmaxχωs

, s ∈ {1, 2, . . . , N}.

Then the reconstruction DR is given by the union of the
marked resolution elements.

Theorem 10. The reconstruction of algorithm 9 fulfils the
Resolution guarantee if

µ > 2δ ≥ 0 (20)

with

µ :=
N

min
s=1

(max (eig (R(τs, zmin)−R(σBmin, zmax)))) .

Proof. The proof of part (i) of the resolution guarantee is
analogous to the proof of part (i) in theorem 5.

To show part (ii) of the resolution guarantee, assume
that D = ∅ and DR 6= ∅. Then there must be an index
i ∈ {1, 2, . . . , N} with

R(τs, zmin)− δId ≤ Rδ ≤ R(σ, z) + δId.

Using theorem 1 we obtain

R(τs, zmin)− 2δId ≤ R(σBmin, zmax),

and thus µ ≤ 2δ.

Algorithm 11. Mark each resolution element ωs for which

Ts − δId ≤ Rδ, (21)

where

Ts := R(σBmax, zmin) +R′(σBmax, zmin)(λχωs
), (22)

λ := −(c+ ε), s ∈ {1, 2, . . . , N}. (23)

Then the reconstruction DR is given by the union of the
marked resolution elements.

Theorem 12. The reconstruction of algorithm 11 fulfils the
resolution guarantee if

µ > 2δ ≥ 0 (24)

with

µ :=
N

min
s=1

(max (eig (Ts −R(σBmin, zmax)))) . (25)

Proof. First, let ωs ⊆ D. Given a vector w ∈ RL−1, let uw be
the inner potential in a body with interior conductivity σBmax

and contact impedances zmin that results from driving a current
of wj through the j-th electrode, respectively. As in the proof
of theorem 8 we obtain by applying theorem 1 and 2:

wT (R(σBmax, zmin)− δId−Rδ)w ≤ λ
∫
D

|∇uw|2 dx.

This yields
Ts − δId ≤ Rδ.

Hence, ωs will be marked, which shows that part (i) of the
resolution guarantee is satisfied.

The proof of part (ii) of the resolution guarantee is com-
pletely analogue to the proof of part (ii) in theorem 10.

V. NUMERICAL RESULTS

The numerical results in this section are generated with
MATLAB R© and the commercial FEM-software COMSOL R©.

In all examples, we used the measurement setup explained
in figure 1. Conductivities and contact impedances are given
in Siemens/meter (S/m) and Ohmsquaremeter (Ωm2), re-
spectively. The unit of length is meter (m). Currents and
voltages are measured in milliampere (mA) and millivolt
(mV), respectively.

A. Results for academic examples

We consider two measurement setups (see fig. 3 and 4).
For both settings, we assume that the background conductivity
is approximately σ0 = 1 and the contact impedances are
approximately z0 = (1, 1, . . . , 1) ∈ RL. The inclusions
conductivity contrast is assumed to be c = 10.

The results for figure 3 using our non-linearised verification
procedure in theorem 5 are presented in table I. Table II shows
the results for figure 3 obtained from the linearized verification
procedure in theorem 8 under the additional assumption that
σDmax = 15 is an upper bound on the inclusion contrast.

TABLE I
RG VALIDATION FOR FIGURE 3 (NON-LINEARIZED).

background error ε: contact imped. error γ: abs. meas. noise δ:
0% 0% 0.13

0.25% 0% 0.11
0% 0.25% 0.10

0.25% 0.25% 0.088
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Fig. 3. Ω = [−1, 1]2 and 36 electrodes are covering 50% of the boundary.
The first electrode E1 is the lowermost one on the right boundary edge and
the electrodes are numbered counter-clockwise.

Fig. 4. Ω = [−1, 1]2 and 8 electrodes are covering 25% of the lower
boundary edge. The electrodes are numbered from the left to the right.

TABLE II
RG VALIDATION FOR FIGURE 3 (LINEARIZED).

background error ε: contact imped. error γ: abs. meas. noise δ:
0% 0% 0.051

0.25% 0% 0.035
0% 0.25% 0.025

0.25% 0.25% 0.013

The desired resolution shown in the second measurement
setup in figure 4 is particularly ambitious. Using the non-
linearised verification method it is not possible to guaran-
tee the shown resolution. Under the additional assumption
σDmax = 12 on the upper bound of the inclusion contrast, the
resolution can be guaranteed using the linearized validation
method up to the errors given in table III.

TABLE III
RG VALIDATION FOR FIGURE 4 (LINEARIZED).

background error ε: contact imped. error γ: abs. meas. noise δ:
0% 0% 0.026

0.05% 0% 0.022
0% 0.05% 0.0036

0.05% 0.05% 0.0022

B. Results using physiologically relevant parameters

The following setting is motivated by the idea of detecting
hemorrhages inside fatty tissue. The resolution partition and

the electrodes are concentrated to the lower half of a circle-
shaped object Ω. We used physiological parameter values
based on the overview about electric properties of tissue [66].
We assume that the background conductivity is approximately
σ0 = 0.03. The inclusion minimal conductivity contrast is
c = 0.43 − 0.03 = 0.4 and the upper bound of the inclusion
conductivity is σDmax = 0.7.

Since realistic values for contact impedances are typically
much smaller than 1 (cf. [67]), we assume the contact imped-
ance on each electrode to be approximately 0.01.

The results for figure 5 using our non-linearized verification
procedure in theorem 5 are presented in table IV. Table V
shows the results for figure 5 obtained from the linearized
verification procedure in theorem 8.

Fig. 5. Ω is a disk with diameter of 0.05 and 8 electrodes are covering 47%
of the lower half of the boundary. The electrodes are numbered from the left
to the right. The resolution partition covers the lower half of the disk.

TABLE IV
RG VALIDATION FOR FIGURE 5 (NON-LINEARIZED)

background error ε: contact imped. error γ: abs. meas. noise δ:
0% 0% 4.4
5% 0% 0.7
0% 5% 4.1
5% 5% 0.6

TABLE V
RG VALIDATION FOR FIGURE 5 (LINEARIZED)

background error ε: contact imped. error γ: abs. meas. noise δ:
0% 0% 1.8
1% 0% 0.7
0% 1% 1.8
1% 1% 0.7

C. Reconstruction guarantees in a region of interest

Our results can be extended to the case where certain areas
should be excluded from the region of interest, e.g., if their
background range is known to be violated. As an example, we
will add to the setting in section V-B an area ωI consisting
of bone and blood beside fat with a conductivity range of
(0.01, 0.7), cf. [66].

The theory in IV-A can be extended as follows: Let

σ(x) ∈ (σImin, σImax) ∀x ∈ ωI
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be the bounds for the conductivity in the area that is to be
excluded from the region of interest. We apply algorithm 4
with the following changes: τs in (4) is replaced by

τs := σBminχΩ\(ωs∪ωI) + σDminχωs
+ σIminχωI

(26)

and σBmax in (6) is replaced by

σBmaxχΩ\ωI
+ σImaxχωI

. (27)

Then, analogously to the result in theorem 5, we obtain a
reconstruction guarantee where every element covered by the
inclusion will be correctly marked, and no element will be
marked if there is no anomaly outside of ωI .

We tested this variant on the setting shown in figure 6 where
ωI is assumed to consist of bone and blood beside fat with a
conductivity range of (0.01, 0.7). The results are presented in
table VI.

ωI

Fig. 6. Ω is a disk with diameter of 0.05 and 8 electrodes are covering 47%
of the lower half of the boundary. The electrodes are numbered from the left
to the right. The resolution partition covers the lower half of the disk. The
area ωI allows the presence of bone and blood beside fat.

TABLE VI
RG (EXTENDED VERSION) VALIDATION FOR FIGURE 6

background error ε: contact imped. error γ: abs. meas. noise δ:
0% 0% 2.6
5% 0% 0.3
0% 5% 2.4
5% 5% 0.2

VI. CONCLUSION AND DISCUSSION

We have introduced a rigorous concept of resolution for
anomaly detection and showed that it is principally possible to
rigorously guarantee a certain resolution even for settings that
include both, systematic modeling (background and contact
impedance) errors and general (e.g., measurement) errors.

We have derived a constructive method to evaluate the
amount of errors up to which a given desired resolution can
be guaranteed. We have also derived a linearized variant of
our method that allows fast validation of resolution guarantees
(while still yielding rigorous results). In that context let us
stress that somewhat surprisingly the linearized variant does
not seem to be always inferior to the non-linearized variant as
the last example in section V shows.

Our results may be used to determine whether a desired
resolution can be achieved and to quantify the required mea-
surement accuracy. Moreover, our results could be the basis of

optimization strategies regarding the resolution, or the number
and positions of electrodes and the driving patterns.

It would be interesting to extend our approach to explicitly
address other systematic errors, e.g. including the imaging
domain shape and the electrodes position.

We believe that further investigation and experimental jus-
tification of the concept of resolution guarantees could help
improving the reliability of EIT-based anomaly detection.
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