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Abstract. In electrical impedance tomography, algorithms based on minimizing a

linearized residual functional have been widely used due to their flexibility and good

performance in practice. However, no rigorous convergence results are available in the

literature yet, and reconstructions tend to contain ringing artifacts. In this work, we

shall minimize the linearized residual functional under a linear constraint defined by

a monotonicity test, which plays the role of special regularizer. Global convergence

is then established to guarantee that this method is stable under the effects of noise.

Moreover, numerical results show that this method yields good shape reconstructions

under high levels of noise without the appearance of artifacts.

AMS classification scheme numbers: 35R30, 35J25

1. Introduction

Electrical impedance tomography (EIT) is a non-invasive imaging technique which aims

at reconstructing the inner structure of a reference subject from the knowledge of the

current and voltage measurements on the boundary of the subject. Typically, an array

of electrodes are attached to the boundary of the reference subject, then small currents

are applied to some or all of the electrodes and the resulting electric voltages are

measured at the electrodes. These current and voltage measurements on the boundary

of the reference subject are used to estimate the value of the conductivity inside the

subject. The result is an image of the inner structure of the subject due to the fact that

different materials have different conductivities. Compared with computerized X-ray

tomography, EIT is less costly and requires no ionizing radiation; hence, it qualifies

for many clinical applications including lung ventilation (e.g. [10]), brain imaging (e.g.

[37]), breast cancer diagnosis (e.g. [8]), etc. On the other hand, EIT can also be used

for nonclinical purposes such as determining the location of mineral deposits (e.g. [32]),

describing soil structure (e.g. [40]), identifying cracks in non-destructive testing (e.g.

[28]) and so on.

The inverse problem of reconstructing the conductivity from voltage-current-

measurements is known to be highly ill-posed and nonlinear, and reconstructions suffer
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from an enormous sensitivity to modeling and measurement errors. To reduce modeling

errors, one usually concentrates on reconstructing a conductivity change with respect

to a known reference conductivity. Then, the most natural approach is to parametrize

the support of the conductivity change and determine these parameters by an iterative,

nonlinear inverse problems solver. Such iterative methods yield good reconstructions

for a given good initial guess; however, they require expensive computation and have no

convergence results. Non-iterative methods such as the Factorization Method ([17, 18])

and the Monotonicity-based Method ([35, 34, 22, 3]), on the other hand, are rigorously

justified and require no initial guess. However, the reconstructions of both Factorization

Method and Monotonicity-based Method tend to be rather sensitive to measurement

errors when phantom data or real data are applied [4, 21, 39, 11].

In clinical studies, it is common practice to start by linearizing the EIT problem

around a known reference conductivity and minimizing the residual functional of the

linearized equation (herein called linearized residual functional for the sake of brevity).

The resulting problem can be regularized in various ways. For example, [7, 1] considered

the minimization problem of a linearized residual functional with a regularization term,

which is similar to the standard Tikhonov regularization method. The algorithm

proposed in [7, 1] is fast and simple. However, no convergence proofs are available

so far. Besides, one can also use sparsity reconstruction [23, 14, 24]. This is an effective

method to detect piecewise constant inclusions. However, strictly speaking, convergence

to the true conductivity is still an open issue, as it is not clear how to obtain a global

minimizer.

Our new method is also based on minimizing the linearized residual functional.

However, instead of adding a regularization term, we employ a linear constraint defined

by the monotonicity test [22, Theorem 4.1] which plays the role of a special regularizer.

Global convergence of the shape reconstructions is then proved and numerical results

show that this method provides good shape reconstructions even under high levels

of noise. To the authors’ knowledge, this is the first reconstruction method based

on minimizing the residual that has a rigorous global convergence property. For the

question of globally convergent algorithms for other classes of inverse problems, see for

example [36].

The paper is organized as follows. Section 2 presents some preliminaries and

notations. In section 3, we state and prove our theoretical results. Section 4 shows

the numerical experiments and we conclude with a brief discussion in section 5.

2. Preliminaries and notations

We consider a bounded domain Ω in Rn (i.e. Ω is a bounded open connected subset of

Rn), n ≥ 2, with smooth boundary ∂Ω and outer normal vector ν. We assume that Ω

is isotropic so that the electric conductivity σ : Ω→ R is a scalar function, and that σ

is bounded and strictly positive. Inside Ω, the electric potential u : Ω→ R is governed

by the so-called conductivity equation. On the boundary of Ω, u satisfies the Neumann
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condition.

∇ · σ∇u = 0 in Ω, σ∂νu = g on ∂Ω. (1)

In this work, we shall follow the Continuum Model (e.g. [30, Subsection 12.3]), which

assumes that there are no electrodes and that the current density g : ∂Ω→ R is applied

over all ∂Ω. The electric voltage, in this case, can be measured at every point of the

boundary ∂Ω and is denoted by u|∂Ω.

The forward problem of (1) is to determine the potential u for given data σ and

g. The existence of a variational solution u ∈ H1
� (Ω) for this Neumann boundary value

problem is obtained due to the Lax-Milgram Theorem, while the uniqueness (up to an

additive constant) is straight-forward. The forward problem of (1) is well-posed in the

sense that the potential u depends continuously on the Neumann data g. To guarantee

that u is uniquely defined, one would require furthermore that the solution u has zero

integral mean, i.e.
∫
∂Ω
u ds = 0.

The unique solvability of the forward problem (1) guarantees the existence of the

Neumann-to-Dirichlet (NtD) operator Λ(σ), which maps each current g to the voltage

measurement uσg |∂Ω on the boundary:

For each σ ∈ L∞+ (Ω), Λ(σ) : g ∈ L2
�(∂Ω)→ uσg ∈ L2

�(∂Ω).

Here, uσg ∈ H1
� (Ω) is the unique variational solution of the forward problem (1)

corresponding to the conductivity σ and the boundary current g, and uσg |∂Ω is understood

as the trace of uσg on the boundary ∂Ω. L∞+ (Ω) is the subspace of L∞(Ω) with positive

essential infima. H1
� (Ω) and L2

�(∂Ω) denote the spaces of H1- and L2-functions with

vanishing integral mean on ∂Ω.

It is well-known that Λ(σ) is a linear, bounded, compact, self-adjoint, positive

operator from L2
�(∂Ω) to L2

�(∂Ω) (see for example [25, Chapter 5] for two-dimensional

cases). For each g ∈ L2
�(∂Ω) the quadratic form associated with Λ(σ) is:

〈g,Λ(σ)g〉 =

∫
∂Ω

gΛ(σ)g ds =

∫
Ω

σ|∇uσg |2 dx.

The existence of the Fréchet derivative Λ′ of the NtD operator Λ can be found for

example in [29]. Given some direction κ ∈ L∞(Ω), the derivative Λ′(σ)κ ∈ L(L2
�(∂Ω))

is associated with the quadratic form:

〈g, (Λ′(σ)κ)g〉 = −
∫

Ω

κ|∇uσg |2 dx.

The inverse problem of (1) is to determine the conductivity σ from the knowledge

of the NtD operator Λ(σ). Obviously, Λ(σ) depends on σ nonlinearly, and like many

other nonlinear inverse problems, this is an ill-posed problem. In fact, it is known

that small amounts of noise or model errors may cause poor spatial resolution. The

reader is referred to Mueller and Siltanen’s book [30] for further explanation about the

nonlinearity and the ill-posedness of this inverse problem.

The uniqueness of solutions of the inverse problem (1) has been investigated for

different classes of conductivities and dimensions immediately following Calderon’s
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pioneer paper [6] in 1980, for example, Kohn and Vogelius [27] for piecewise analytic

conductivities, Sylvester and Uhlmann [33] for C2-conductivities in dimension n ≥ 3,

Nachman [31] for W 2,p-conductivities in dimension n = 2, Astala and Päivärinta [2] for

L∞-conductivities in dimension n = 2.

In the next section, we shall propose a regularization scheme to construct an

approximate solution and prove stability in the presence of noise.

3. Theoretical results

In this work, we need the definiteness assumption, i.e. either σ ≥ σ0 a.e. Ω or σ ≤ σ0

a.e. Ω. For the sake of simplicity, we shall assume that the background conductivity

σ0 ≡ 1 and that the conductivity of the investigated subject is defined by σ := 1 +γχD,

where the open set D denotes the unknown inclusions. We assume furthermore that

γ ∈ L∞+ (D) and that D ⊂ Ω has a connected complement. The goal of EIT is to

determine the inclusions’ shape D from the knowledge of the NtD operators Λ(σ) and

Λ(1). Notice that our method also works for inhomogeneous background conductivity.

3.1. Exact data

We start by describing our method for exact data. The idea of this method is inspired

by a result of Seo and one of the authors in [20]. It is proved that, if κ is an exact

solution of the linearized equation

Λ′(1)κ = Λ(σ)− Λ(1)

then the support of κ coincides with D. However, it is not clear in general whether such

an exact solution exists. In addition, one cannot get a similar result for noisy data. It

is natural to ask whether minimizing the residual functional

r(κ) := Λ(σ)− Λ(1)− Λ′(1)κ

under appropriate regularization can yield a solution κ with correct support. In this

work, we can prove that this is indeed possible. More precisely, denote by {ḡ1, . . . , ḡN}
the N given injected currents which are assumed to form an orthonormal subset of

L2
�(∂Ω), we can replace r(κ) by the matrix (〈ḡi, r(κ)ḡj〉)Ni,j=1 and minimize this N -by-N

matrix under the Frobenius norm:

min
κ∈A⊂L∞(Ω)

‖R(κ)‖F , (2)

where R(κ) stands for the matrix (〈ḡi, r(κ)ḡj〉)Ni,j=1, ‖ · ‖F denotes the Frobenius norm

andA is an admissible set of conductivity change κ. Since there is no hope to reconstruct

the conductivity change at every point inside Ω from the knowledge of a finite number of

measurements, it is reasonable to restrict A to the class of piecewise constant functions.
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More precisely, the admissible conductivity change κ is assumed to be constant on a

fixed partition {Pk}Pk=1 of the bounded domain Ω:

κ(x) =
P∑
k=1

akχPk(x),

where the ak’s are real constants and each Pk is assumed to be open, ∪Pk=1P k = Ω, Ω\Pk
is connected and Pk ∩ Pl = ∅ for k 6= l. Notice that, this partition is not unique, and

any minimizer κ̄ of (2) as well as any reconstruction shape (that is, the support of some

minimizer κ̄) depend heavily on the choice of this partition.

Remark 3.1. g It is well-known that r(κ) is a linear, bounded, compact, self-adjoint

operator from L2
�(∂Ω) to L2

�(∂Ω). Perhaps a reasonable choice of an appropriate norm

to minimize r(κ) is the operator norm. In fact, all of the following theoretical results

remain true for the operator norm. The numerical results for the operator norm can

be easily obtained by considering the equivalent problem of minimizing the maximum

eigenvalue of an approximate matrix of r(κ).

Another commonly used norm is the Hilbert-Schmidt norm. Nevertheless, we could

not minimize r(κ) under the Hilbert-Schmidt norm, since it is not clear whether or not

r(κ) belongs to the class of Hilbert-Schmidt operators.

The idea of using the Frobenius norm comes from the fact that in realistic models,

one always applies a finite number of currents g on the boundary; and hence, only a

finite number of measurements Λ(σ)g are known.

Problem (2) was actually considered decades ago in clinical EIT such as [7].

Typically, one usually adds a regularization term into the minimization functional,

similar to the standard Tikhonov regularization method. By this method, good shape

reconstructions with real-time implementation can be obtained. However, no rigorous

convergence results have been established so far, and the reconstructions usually contain

ringing artifacts.

In the present paper, we do not follow the standard Tikhonow regularization

method. Instead, we use a linear constraint defined by the monotonicity test [22] as

a special regularizer.

A linear constraint defined by the monotonicity test

A lower bound for an admissible conductivity change κ is, in fact, due to the fact that

σ ≥ 1. An upper bound for κ, on the contrary, is numerically defined by the idea of the

monotonicity test [22] as follows:

[22, Example 4.4] has proved that, for σ̃ = 1 + χD and for every ball B

B ⊆ D if and only if Λ(1) +
1

2
Λ′(1)χB ≥ Λ(σ̃).

We will show in the proof of Lemma 3.4 that for any real constant a satisfying

0 < a ≤ 1− 1
1+infD γ

, it holds that

(i) If Pk ⊆ D then Λ(1)− Λ(σ) + αΛ′(1)χPk ≥ 0 in quadratic sense for (at least) all α ∈ [0, a].
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(ii) If Pk * D then Λ(1)− Λ(σ) + αΛ′(1)χPk 6≥ 0 in quadratic sense for all α > 0.

We see that, when γ ≡ 1, we have a = 1
2

and in this case, a is actually the number 1
2

in

[22, Example 4.4]. Although the formula of a depends heavily on the inclusion contrast

γ, in many applications a bound for γ is known a-priori.

For each pixel Pk, the biggest coefficient βk such that

Λ(1)− Λ(σ) + αΛ′(1)χPk ≥ 0 ∀α ∈ [0, βk] (3)

then satisfies:

• βk ≥ a > 0 if Pk ⊆ D.

• βk = 0 if Pk * D.

This motivates the constraint 0 ≤ κ ≤ βk on each pixel Pk. Note that βk is allowed

to be ∞. Our following theory, therefore, requires us to use a stronger upper bound

min(a, βk) where a plays the role of a special regularizer. Since a is smaller than the

true contrast γ, this seems “over-constrained”, but we will show that the minimizer of

this over-constrained problem possesses the correct support. Thus, we can define the

admissible set A as follows:

A :=

{
κ ∈ L∞(Ω) : κ =

P∑
k=1

akχPk , ak ∈ R, 0 ≤ ak ≤ min(a, βk)

}
.

Here comes our main result.

Theorem 3.2. Consider the minimization problem

min
κ∈A
‖R(κ)‖F . (4)

The following statements hold true:

(i) Problem (4) admits a unique minimizer κ̂.

(ii) supp κ̂ and D agree up to the pixel partition, i.e. for any pixel Pk

Pk ⊂ supp κ̂ if and only if Pk ⊂ D.

Moreover, κ̂ =
∑P

k=1 min(a, βk)χPk .

Remark 3.3. (i) Notice that βk is defined via the infinite-dimensional NtD operator

Λ and does not involve the finite-dimensional matrix R.

(ii) Theorem 3.2 holds regardless the number N of applied boundary currents.

(iii) We would like to emphasize that the goal of our method is to show an approximation

of the size and the location of the inclusion D, not the value of the conductivity σ

inside D. Indeed, as we can see from the above theorem, the support of the unique

minimizer κ̂ agrees with D up to pixels, while the value of κ̂ is always smaller than

σ − σ0.

(iv) [29, Theorem 4.3] has proved that Λ′(1) is injective if there are enough boundary

currents (that is, if N is sufficiently large). In that case, it is obvious to see that

R(κ) is also injective. This fact together with the fact that the square Frobenius

norm is strictly convex imply κ 7→ ‖R(κ)‖2
F is strictly convex.
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Before proving Theorem 3.2, we need the following lemmas.

Lemma 3.4. For any pixel Pk, Pk ⊆ D if and only if βk > 0.

One special case of Lemma 3.4 has been proved in [22, Example 4.4]. We have

slightly modified the proof there to fit with our notations and settings.

Proof of Lemma 3.4. Step 1: We shall check that, Pk ⊆ D implies βk > 0. Indeed,

employing the following monotonicity principle (see e.g. [22, Lemma 3.1])

〈g, (Λ(σ2)− Λ(σ1))g〉 ≥
∫

Ω

σ2

σ1

(σ1 − σ2)|∇u2|2 dx

for σ1 := σ and σ2 := 1, we get the following inequalities for all pixels Pk, all α ∈ [0, a]

and all g ∈ L2
�(∂Ω):

〈g, (Λ(σ)− Λ(1)− Λ′(1)αχPk)g〉 ≤ −
∫

Ω

(
1− 1

σ

)
|∇u0

g|2 dx+

∫
Ω

αχPk |∇u0
g|2 ≤

≤ −
∫
D

(
1− 1

σ

)
|∇u0

g|2 dx+

∫
Pk

a |∇u0
g|2 dx ≤ 0.

Here u0
g is the unique solution of the forward problem (1) when the conductivity is

chosen to be 1. The last inequality holds due to the fact that a ≤ 1− 1
1+infD γ

≤ 1− 1
σ

in D and that Pk lies inside D.

Step 2: If βk > 0, we will show that Pk ⊆ D by contradiction: Assume that βk > 0

and Pk * D. Applying the following monotonicity principle [22, Lemma 3.1]

Λ(σ1)− Λ(σ2) ≥ Λ′(σ2)(σ1 − σ2),

where we choose σ1 := σ, σ2 := 1, and taking into account the definition of βk in (3), we

obtain

0 ≥ Λ(σ)− Λ(1)− Λ′(1)βkχPk ≥ Λ′(1)(σ − 1)− Λ′(1)βkχPk .

Thus, for all g ∈ L2
�(∂Ω):∫

Pk

βk|∇u0
g|2 dx ≤

∫
Ω

(σ − 1)|∇u0
g|2 dx ≤

∫
D

C|∇u0
g|2 dx (5)

with some positive constant C.

On the other hand, applying localized potential (see e.g. [22, Theorem 3.6] and

[12] for the origin of this idea), we can find a sequence {gm} ⊂ L2
�(∂Ω) such that the

solutions {u0
m} ⊂ H1

� (Ω) of the forward problem (1) (when the conductivity is chosen

to be 1 and boundary currents g = gm) fulfill

lim
m→∞

∫
Pk

|∇u0
m|2 dx =∞, and lim

m→∞

∫
D

|∇u0
m|2 dx = 0.

This contradicts (5).

Lemma 3.5. For all pixels Pk, denote by Sk the matrix (−〈ḡi,Λ′(1)χPk ḡj〉)Ni,j=1. Then

Sk is a positive definite matrix.
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Proof of Lemma 3.5. For all x = (x1, . . . , xN)> ∈ RN , we have

x>Sk x = −
N∑

i,j=1

xixj 〈ḡi,Λ′(1)χPk ḡj〉 = −〈ḡ,Λ′(1)χPk ḡ〉 =

∫
Pk

|∇u0
ḡ|2 dx ≥ 0,

where ḡ =
∑N

i=1 xiḡi. This means that Sk is a positive semi-definite symmetric matrix

in RN×N . We shall prove that Sk is, in fact, a positive definite matrix by showing that∫
Pk

|∇u0
g|2 dx > 0 for all g ∈ L2

�(∂Ω), ‖g‖L2
�(∂Ω) 6= 0. (6)

Assuming, by contradiction, that there exists g̃ ∈ L2
�(∂Ω), ‖g̃‖L2

�(∂Ω) 6= 0 such that∫
Pk

|∇u0
g̃|2 dx = 0.

Since Pk is open, there exists an open ball B ⊆ Pk. It holds that u0
g̃ = c a.e. B, where

c is some real constant. This fact can be obtained in many different ways, for example,

by the Poincaré’s inequality.

On the other hand, u(x) = c is a solution of the forward problem (1) with

conductivity 1 and homogeneous Neumann boundary data. Therefore, u0
g̃−c is a solution

of (1) when the conductivity is 1 and the Neumann boundary is g̃. Moreover, we have

proved that u0
g̃ − c = 0 a.e. in an open ball B ⊂ Ω, the unique continuation principle

implies that u0
g̃ − c = 0 a.e. Ω, and hence g̃ = 0 a.e. ∂Ω. This contradiction implies

that (6) holds.

Now we are in the position to prove our main result.

Proof of Theorem 3.2. (i) Existence of minimizer: Since the functional

κ 7→ ‖R(κ)‖2
F :=

N∑
i,j=1

〈ḡi, r(κ)ḡj〉2

is continuous, it admits a minimizer in the compact set A. Uniqueness obviously follows

when we have proven (ii).

(ii) Step 1: Denote by χi := χPi . We shall check that, for all κ =
∑P

k=1 αkχk
satisfying 0 ≤ αk ≤ min(a, βk), it holds that r(κ) ≤ 0 in quadratic sense.

Notice that a ≤ 1 − 1
σ

in D. In the same manner as the proof of Lemma 3.4, we

can write

〈g, (Λ(σ)− Λ(1)− Λ′(1)κ)g〉 ≤ −
∫
D

a|∇u0
g|2 dx+

P∑
k=1

∫
Pk

αk|∇u0
g|2 dx

for any g ∈ L2
�(∂Ω).

If αk > 0, we have βk ≥ αk > 0. By Lemma 3.4, it holds that Pk ⊆ D. Taking into

account that αk ≤ a and that Pi ∩ Pj 6= ∅ for i 6= j, we get that 〈g, r(κ)g〉 ≤ 0 for any

g ∈ L2
�(∂Ω).

Step 2: Let κ̂ =
∑P

k=1 α̂kχk be a minimizer of (4). We prove that suppκ̂ ⊆ D.
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Indeed, if α̂k > 0, it follows from Step 1 and the monotonicity of Λ′(1) that

Λ(σ)− Λ(1)− Λ′(1)α̂kχk ≤ Λ(σ)− Λ(1)− Λ′(1)κ̂ ≤ 0.

This implies βk > 0. Thanks to Lemma 3.4, we have Pk ⊆ D.

Step 3: If κ̂ =
∑P

k=1 α̂kχk is a minimizer of (4), then κ̂ =
∑P

k=1 min(a, βk)χk.

Indeed, it holds that κ̂ ≤
∑P

k=1 min(a, βk)χk. If there exists a pixel Pk such that

κ̂(x) < min{a, βk} in Pk, we can choose h > 0 such that κ̂ + hχk = min(a, βk) in Pk.

We will show that

‖R(κ̂+ hχk)‖F < ‖R(κ̂)‖F (7)

which contradicts the minimality of κ̂.

Let λ1(κ̂) ≥ λ2(κ̂) ≥ . . . ≥ λN(κ̂) be N eigenvalues of R(κ̂) and λ1(κ̂ + hχk) ≥
λ2(κ̂ + hχk) ≥ . . . ≥ λN(κ̂ + hχk) be N eigenvalues of R(κ̂ + hχk). Since R(κ̂) and

R(κ̂ + hχk) are both symmetric, all of their eigenvalues are real. By the definition of

the Frobenius norm, we get

‖R(κ̂+ hχk)‖2
F − ‖R(κ̂)‖2

F =
N∑
i=1

|λi(κ̂+ hχk)|2 −
N∑
i=1

|λi(κ̂)|2 =

=
N∑
i=1

(λi(κ̂+ hχk) + λi(κ̂)) · (λi(κ̂+ hχk)− λi(κ̂)) . (8)

Thanks to Step 1, r(κ̂) ≤ 0 and r(κ̂ + hχk) ≤ 0 in the quadratic sense. Thus, for all

x = (x1, . . . , xN)> ∈ RN , we have

x>R(κ̂) x =
N∑

i,j=1

xixj 〈ḡi, r(κ̂)ḡj〉 = 〈ḡ, r(κ̂)ḡ〉 ≤ 0,

where ḡ =
∑N

i=1 xiḡi. This means that −R(κ̂) is a positive semi-definite symmetric

matrix in RN×N . It is well-known that all eigenvalues of a positive semi-definite

symmetric matrix should be non-negative. Thus,

λi(κ̂) ≤ 0 for all i ∈ {1, . . . , N}. (9)

In the same manner, −R(κ̂ + hχk) is also a positive semi-definite symmetric matrix.

Hence,

λi(κ̂+ hχk) ≤ 0 for all i ∈ {1, . . . , N}. (10)

On the other hand, Lemma 3.5 claims that Sk is a positive definite matrix. Thus, all N

eigenvalues λ1(Sk) ≥ . . . ≥ λN(Sk) of Sk are positive. Since

R(κ̂+ hχk) = R(κ̂) + hSk.

and the matrices R(κ̂ + hχk),R(κ̂) and Sk are all symmetric, we can apply Weyl’s

Inequalities [5, Theorem III.2.1] to get

λi(κ̂+ hχk) ≥ λi(κ̂) + hλN(Sk) > λi(κ̂) for all i ∈ {1, . . . , N}. (11)

In summary, (8), (9), (10) and (11) imply (7). This ends the proof of Step 3.
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Step 4: If Pk ⊆ D, then Pk ⊆ suppκ̂. Indeed, since κ̂ is a minimizer of (4), Step

3 implies that κ̂ =
∑P

k=1 min(a, βk)χk. Since Pk ⊆ D, it follows from Lemma 3.4 that

min(a, βk) > 0. Thus, Pk ⊆ suppκ̂.

In conclusion, problem (4) admits a unique minimizer κ̂ =
∑P

k=1 min(a, βk)χk. This

minimizer fulfills

κ̂ =

{
a in Pk, if Pk lies inside D,

0 in Pk, if Pk does not lie inside D.

3.2. Convergence for noisy data

In the presence of noise, we denote by δ the noise level. Similarly as above, we call Rδ(κ)

the N -by-N matrix
(〈
ḡi, r

δ(κ)ḡj
〉)N

i,j=1
, where the residual for noisy data now reads

rδ(κ) := Λδ(σ)− Λ(1)− Λ′(1)κ,

and the error is bounded from above by δ in the operator norm, i.e.

‖Λδ(σ)− Λ(σ)‖L(L2
�(∂Ω)) ≤ δ.

When we replace the exact data Λ(σ) by the noisy data Λδ(σ), we have to change the

definition of the biggest coefficient βk, too. To this end, we need the following lemma:

Lemma 3.6. For any bounded linear operator T on a real Hilbert space H:

(i) (Square Root Lemma) If T is positive, i.e. T is self-adjoint and 〈x, Tx〉 ≥ 0 for

all x ∈ H, then there exists a unique bounded linear positive operator U on H such

that U2 = T . Moreover, U commutes with every bounded linear operator which

commutes with T . We call U the positive square root of T and denote by U =
√
T .

(ii) (Absolute value of a bounded linear operator) The modulus of T

|T | :=
√
T ∗T

is a positive operator, where T ∗ is the adjoint operator of T . Moreover, |T |
commutes with every bounded linear operator which commutes with T ∗T .

(iii) (Positive decomposition) If T is self-adjoint, then there exists a unique pair of

bounded positive operators T+ and T− such that T = T+ − T−, T+T− = 0, T+ and

T− commute with each other and with T . Moreover, |T | = T+ + T−.

(iv) If T is positive, then |T | = T .

(v) If T is self-adjoint, then T ≤ |T | in quadratic sense.

(vi) For any bounded linear operators A,B on a real Hilbert space H:

‖|A| − |B|‖2
L(H) ≤

(
‖A‖L(H) + ‖B‖L(H)

)
‖A−B‖L(H). (12)

Consequently, the absolute value of operators is continuous w.r.t. the operator

norm.
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Proof of Lemma 3.6. (i) This famous fact can be proved either by means of classical

functional analysis (see, for example, [38, Appendix]) or by using C∗-algebra

techniques ([9, Proposition 4.33]).

(ii) For all x ∈ H, it holds that

〈x, T ∗Tx〉 = 〈Tx, Tx〉 ≥ 0 and 〈x, T ∗Tx〉 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 .

Hence, T ∗T is a positive operator. Thanks to (i), T ∗T has a unique positive square

root
√
T ∗T , which commutes with every bounded linear operator commuting with

T ∗T .

(iii) We shall prove this fact by using techniques in C∗-algebra. Indeed, since T is

self-adjoint, it is normal. Hence, the Gelfand map Γ establishes a ∗-isometric

isomorphism between the space of continuous functions on σ(T ) (here σ(T ) denotes

the spectrum of T ) and the C∗-algebra C∗ (see, e.g. [9, Theorem 2.31]). Define by

f+(x) = max(x, 0) and f−(x) = −min(x, 0),

then both f+ and f− are continuous positive functions on σ(T ). Thus, T+ :=

f+(T ) = Γ(f+) and T− := f−(T ) = Γ(f−) are well-defined positive operators on the

space of bounded linear operators B(H). Moreover, T+ and T− commute with each

other and with T . Since f+ and f− satisfy

f+(x)− f−(x) = x, f+(x) + f−(x) = |x|, f+(x)f−(x) = 0

for all x, it follows that the two positive operators T+ and T− satisfy

T+ − T− = T, T+ + T− = |T |, T+T− = 0.

On the other hand, we also have

‖T+‖L(H) = sup
x∈σ(T )

|f+(x)| ≤ sup
x∈σ(T )

|x| = ‖T‖L(H).

By the same way, one can prove that T− is also a bounded operator. It remains to

show that the pair (T+, T−) is unique. Indeed, if T = A−B where A,B are positive

bounded operators satisfying AB = 0, then T 2 = A2 +B2 = (A+B)2. Thus A+B

is the unique square root of T 2, i.e. A + B = |T |. Hence, A = (|T | + T )/2 = T+

and B = (|T | − T )/2 = T−. The uniqueness holds.

(iv) Since T is positive, it holds that T 2 = T ∗T . Thanks to (i), T is a unique positive

square roof of T ∗T , i.e. T =
√
T ∗T . On the other hand, by (ii),

√
T ∗T = |T |.

Thus, T = |T |.
(vi) First we prove that, for any linear, bounded, positive operators U, V on a real

Hilbert space H, it holds that

‖U − V ‖2
L(H) ≤ ‖U2 − V 2‖L(H). (13)

The above inequality had been proved in [26, Theorem 1]. We shall recite the proof

here for the reader’s convenience.

Denote by W := U−V then W is linear bounded self-adjoint operator on H. Hence

‖W‖L(H) = sup
‖g‖H=1

|〈g,Wg〉| .
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Thus, we can find a sequence {gn} ⊂ H such that

‖g‖H = 1 and | 〈gn,Wgn〉 | ↑ ‖W‖L(H) as n→∞.

Denote by t := ‖W‖L(H), we have

‖U2 − V 2‖L(H) = ‖UW +WV ‖L(H) ≥ |〈gn, (UW +WV )gn〉|
= |〈gn, U(W − t)gn〉+ 〈(W − t)gn, V gn〉+ t 〈gn, (U + V )gn〉|
≥ t 〈gn, (U + V )gn〉 − |〈gn, U(W − t)gn〉| − |〈(W − t)gn, V gn〉| . (14)

Since both U and V are positive operators, we have U + V ≥ ±W . Thus,

〈gn, (U + V )gn〉 ≥ |〈gn,Wgn〉| for all n. (15)

On the other hand, Wgn → tgn as n→∞ because

‖Wgn − tgn‖2
L(H) = 〈Wgn − tgn,Wgn − tgn〉 = ‖Wgn‖2 − 2t 〈gn,Wgn〉+ t2

≤ 2t2 − 2t 〈gn,Wgn〉 .

Combining (14), (15) and taking n→∞, we get (13).

Thanks to (13), for all bounded linear operators A and B we have

‖|A| − |B|‖2
L(H) ≤ ‖|A|2 − |B|2‖L(H) = ‖A∗A−B∗B‖L(H)

≤ ‖A∗‖L(H)‖A−B‖L(H) + ‖A∗ −B∗‖L(H)‖B‖L(H)

=
(
‖A‖L(H) + ‖B‖L(H)

)
‖A−B‖L(H).

Back to our issues, since V := Λ(1) − Λ(σ) is a linear bounded positive operator,

Lemma 3.6 yields that |V | = V . The monotonicity test (3) can be rewritten as

|V |+ αΛ′(1)χPk ≥ 0 for all α ∈ [0, βk]. (16)

When replacing the exact data Λ(σ) by the noisy data Λδ(σ), the above inequality does

not hold in general for all Pk ⊆ D. Indeed, since the operator in the left-hand side of

(16) is compact, it has eigenvalues arbitrarily close to zero. A small noise will make these

eigenvalues a little bit negative which can make the βk defined in (16) zero everywhere.

Hence, we replace the test (16) with

|V δ|+ αΛ′(1)χk ≥ −δI (17)

where V δ := Λ(1)−Λδ(σ) and I is the identity operator from L2
�(∂Ω) to L2

�(∂Ω). Since

we can always redefine the data V δ by defining V δ := (V δ + (V δ)∗)/2, without loss of

generality, we can assume that V δ is self-adjoint.

We then define βδk as the biggest coefficient such that inequality (17) holds for all

α ∈ [0, βδk]. We see that, min(a, βδk) will still be a inside the inclusions but possibly a

little bit larger than 0 outside. More precisely, we have the following lemma:

Lemma 3.7. Assume that ‖Λδ(σ)−Λ(σ)‖L(L2
�(∂Ω)) ≤ δ, then for every pixel Pk, it holds

that βk ≤ βδk for all δ > 0.
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Proof of Lemma 3.7. It is sufficient to check that βk satisfies (17). Indeed, since the

operator V − V δ is linear, bounded and self-adjoint, we have for all ‖g‖L2
�(∂Ω) = 1:∣∣〈g, (V − V δ)g

〉∣∣ ≤ ‖V − V δ‖L(L2
�(∂Ω)) = ‖Λδ(σ)− Λ(σ)‖L(L2

�(∂Ω)) ≤ δ.

Now for any g̃ ∈ L2
�(∂Ω), if ‖g̃‖L2

�(∂Ω) 6= 0, then∣∣〈g̃, (V − V δ)g̃
〉∣∣ = ‖g̃‖2

∣∣∣∣〈 g̃

‖g̃‖
, (V − V δ)

g̃

‖g̃‖

〉∣∣∣∣ ≤ δ‖g̃‖2.

Thus, V δ−V ≥ −δI in quadratic sense. Besides, Lemma 3.6 implies |V δ| ≥ V δ. Hence,

|V δ|+ βkΛ
′(1)χk ≥ V δ + βkΛ

′(1)χk = V + βkΛ
′(1)χk + V δ − V ≥ −δI.

As a consequence of Lemma 3.7, it holds that

1. If Pk lies inside D, then βδk ≥ a.

2. If βδk = 0, then Pk does not lie inside D.

We end this section by proving the following stability result:

Theorem 3.8. Consider the minimization problem

min
κ∈Aδ
‖Rδ(κ)‖F (18)

where Rδ(κ) represents the N-by-N matrix
(〈
ḡi, r

δ(κ)ḡj
〉)N

i,j=1
, and the admissible set

for noisy data is defined by

Aδ :=

{
κ ∈ L∞(Ω) : κ =

P∑
k=1

akχPk , ak ∈ R, 0 ≤ ak ≤ min(a, βδk)

}
.

The following statements hold true:

(i) Problem (18) admits a minimizer.

(ii) Let κ̂ :=
∑P

k=1 min(a, βk)χk and κ̂δ :=
∑P

k=1 â
δ
kχk be minimizers of problems (4)

and (18) respectively. Then κ̂δ pointwise converges to κ̂ as δ → 0.

Remark 3.9. Same argument as Remark 3.3, we get the strict convexity of κ 7→
‖Rδ(κ)‖2

F when the number N of boundary currents are sufficiently large. Since all

minimizers of (18) minimize ‖Rδ(κ)‖2
F , it holds that (18) has a unique minimizer if N

is sufficiently large.

Proof of Theorem 3.8. (i) The existence of minimizers of (18) is obtained in the same

manner as Theorem 3.2(i). Indeed, since the functional κ 7→ ‖Rδ(κ)‖2
F is continuous,

(18) admits at least one minimizer in the compact set Aδ.
(ii) Step 1: Convergence of a subsequence of κ̂δ

For any fixed k, the sequence {âδk}δ>0 is bounded from below by 0 and from above

by a. By Weierstrass’ Theorem, there exists a subsequence (âδn1 , . . . , â
δn
P ) converging to

some limit (a1, . . . , aP ). Of course, 0 ≤ ak ≤ a for all k = 1, . . . , P .
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Step 2: Upper bound of the limit

We shall check that ak ≤ βk for all k = 1, . . . , P . Indeed, thanks to (12)

‖|V δ| − |V |‖2
L(L2

�(∂Ω)) ≤
(
‖V δ‖L(L2

�(∂Ω)) + ‖V ‖L(L2
�(∂Ω))

)
‖V δ − V ‖L(L2

�(∂Ω))

≤ (2‖V ‖L(L2
�(∂Ω)) + δ)δ.

Thus, |V δ| converges to |V | in the operator norm as δ → 0. Hence, for any fixed k,

|V |+ akΛ
′(1)χk = lim

δn→0

(
|V δn|+ âδnk Λ′(1)χk

)
in the operator norm. It is straight-forward to see that, for any g ∈ L2

�(∂Ω)

〈g, (|V |+ akΛ
′(1)χk)g〉 = lim

δn→0

〈
g, (|V δn|+ âδnk Λ′(1)χk)g

〉
≥ − lim

δn→0
〈g, δng〉 = 0.

Step 3: Minimality of the limit

By Lemma 3.7, min(a, βk) ≤ min(a, βδk) for all k = 1, . . . , P . Thus, κ̂ belongs to

the admissible class of the minimization problem (18) for all δ > 0. By the minimality

of κ̂δ, we get

‖Rδ(κ̂δ)‖F ≤ ‖Rδ(κ̂)‖F . (19)

Denote by κ =
∑P

k=1 akχk, where ak’s are the limits obtained in Step 1. We have that

‖Rδn(κ̂δn)‖2
F =

N∑
i,j=1

〈
ḡi,

(
−V δn −

P∑
k=1

âδnk Λ′(1)χk

)
ḡj

〉2

and

‖R(κ)‖2
F =

N∑
i,j=1

〈
ḡi,

(
−V −

P∑
k=1

akΛ
′(1)χk

)
ḡj

〉2

.

Since V δ converges to V in the operator norm, for all fixed g ∈ L2
�(∂Ω), V δg converges

to V g in L2
�(∂Ω). Taking into account of the fact that âδnk converges to ak for any

k ∈ {1, . . . , P} as δn → 0, it is easy to check that ‖Rδn(κ̂δn)‖F converges to ‖R(κ)‖F
as δn → 0. In the same manner, we can show that ‖Rδn(κ̂)‖F converges to ‖R(κ̂)‖F .

Thus, it follows from (19):

‖R(κ)‖F ≤ ‖R(κ̂)‖F .

Since κ belongs to the admissible class of problem (4), the above inequality implies that

it is in fact a minimizer of (4). By the uniqueness of the minimizer, we obtain κ = κ̂,

that is ak = min(a, βk).

Step 4: Convergence of the whole sequence κ̂δ

We have proved so far that every subsequence of (âδ1, . . . , â
δ
P ) has a convergent

subsubsequence, that converges to the limit l = (min(a, β1), . . . ,min(a, βP )). This

implies the convergence of the whole sequence (âδ1, . . . , â
δ
P ) to l. This ends the proof

of Theorem 3.8.

This is an author-created, un-copyedited version of an article accepted for publication in Inverse Problems. 
The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. 

The Version of Record is available online at http://dx.doi.org/10.1088/0266-5611/32/12/125002.



Enhancing residual-based techniques 15

4. Numerical results

We do the numerical experiment for the case Ω is the unit disk in R2 centered at the

origin. We consider the current density ḡi in the following orthonormal set of L2(∂Ω):{
1√
π

sin(jφ),
1√
π

cos(jφ) | j = 1, . . . , N1

}
, N = 2N1,

here and in the following, we choose N1 = 16 and φ is an angle from the positive x-axis.

We shall follow the notations in Section 3. Denote by Vδ the matrix (
〈
ḡi, V

δḡj
〉
)Ni,j=1.

The minimization matrix Rδ(κ) now reads

Rδ(κ) = −Vδ +
P∑
k=1

akSk,

and we would like to find (a1, . . . , aP ) satisfying the linear constraint 0 ≤ ak ≤ min(a, βδk)

so that ‖Rδ(κ)‖F is minimized.

First, we shall collect the known data Vδ and Sk (k = 1, . . . , P ). Then we calculate

βδk, and finally, minimize Rδ(κ).

(a) (b) (c) (d)

Figure 1. Reconstruction of conductivity change under a linear constraint defined by

the monotonicity test: (a) true distribution of conductivity change; (b) 0.1% relative

noise; (c) 1% relative noise; (d) 10% relative noise.

4.1. Generating data

We shall calculate Vδ and Sk (k = 1, . . . , P ) with the help of COMSOL, a commercial

finite element software. We remind that Vδ is the difference between two matrices

(a) (b) (c) (d)

Figure 2. Reconstruction of conductivity change with 5% relative noise: (a) constraint

0 ≤ κ ≤ a; (b) constraint 0 ≤ κ ≤
∑P
k=1 β

δ
kχk; (c) without constraint, regularization

term 10−5‖x‖2; (d) in the operator norm, constraint 0 ≤ κ ≤
∑P
k=1 min(a, βδk).
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Figure 3. Reconstruction of conductivity change with 10−11 relative noise: (a) true

distribution of conductivity change; (b) constraint 0 ≤ κ ≤
∑P
k=1 min(a, βδk)χk; (c)

constraint 0 ≤ κ ≤ a.
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Figure 4. Cut of Figure 3 through the x-axis.

(〈ḡi,Λ(1)ḡj〉)Ni,j=1 and (
〈
ḡi,Λ

δ(σ)ḡj
〉
)Ni,j=1; while Sk is the matrix (−〈ḡi,Λ′(1)χkḡj〉)Ni,j=1

corresponding to pixel Pk.

When the conductivity is chosen to be 1, the forward problem (1) becomes the

Laplace equation with Neumann boundary condition ḡj, and admits a unique solution

on the unit disk:

u0
j =


1

j
√
π

sin(jϕ)rj, if ḡj = 1√
π

sin(jϕ),

1

j
√
π

cos(jϕ)rj, if ḡj = 1√
π

cos(jϕ),
(20)
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(a) (b) (c)

Figure 5. Reconstruction of conductivity change with 5% relative noise: (a) using

cvx; (b) using quadprog with “trust-region-reflective”; (c) using quadprog with default

option.

here the pair (r, φ) forms the polar coordinates with respect to the center of Ω.

(〈ḡi,Λ(1)ḡj〉)Ni,j=1 and Sk are uniquely defined via:

〈ḡi,Λ(1)ḡj〉 =

∫
∂Ω

ḡiu
0
j and (Sk)i,j = −〈ḡi,Λ′(1)χkḡj〉 =

∫
Pk

∇u0
i · ∇u0

j .

Instead of calculating (〈ḡi,Λ(1)ḡj〉)Ni,j=1 and (
〈
ḡi,Λ

δ(σ)ḡj
〉
)Ni,j=1 separately, we follow

the method suggested in [13], which first uses COMSOL to compute V and then add noise

to V to obtain Vδ. We have

Vi,j = 〈ḡi, (Λ(1)− Λ(σ))ḡj〉 =

∫
∂Ω

ḡi(u
0
j − uj),

where uj is the unique solution of (1) for conductivity σ and boundary current ḡj.

Denote by dj the difference u0
j − uj, then dj satisfies the following system

∇ ·
(
σ∇dj − (σ − 1)∇u0

j

)
= 0 in Ω,(

σ∇dj − (σ − 1)∇u0
j

)
· ν = 0 on ∂Ω. (21)

This system can be solve by using the Coefficient Form PDE model built by COMSOL.

Notice that, we have to add the constraint
∫
∂Ω
dj = 0 in order to guarantee the

uniqueness of solution of (21).

Under the absolute noise δ, the noisy data Vδ can be obtained from V by

Vδ := V +
E

‖E‖F
δ,

here E is a random matrix in RN×N with uniformly distributed entries between −1 and

1. The Hermitian property of Vδ follows by redefining Vδ := ((Vδ)∗ + Vδ)/2.

4.2. Finding βδk

In numerical experiment, the parameter βδk also depends on the number of boundary

currents N . For that reason, we shall call it βδ,Nk , where the superscript N denotes the

dependence of βδ,Nk on the number of boundary currents.
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The infinite-dimensional operators |V δ| and Λ′(1)χPk in the formula (17) will be

replaced by the N -by-N matrices Vδ and Sk as follows

−αSk ≥ −δI− |Vδ| for all α ∈ [0, βδ,Nk ]. (22)

where the modulus |Vδ| :=
√

(Vδ)∗Vδ in this case is called the absolute value of

matrices.

It is easy to see that βδ,Nk ↓ βδk as N →∞. We shall follow the argument in [19] to

calculate βδ,Nk .

Since δI + |Vδ| is Hermitian positive-definite, the Cholesky decomposition allows

us to decompose it into the product of a lower triangular matrix and its conjugate

transpose, i.e.

δI + |Vδ| = LL∗,

where L is a lower triangle matrix with real and positive diagonal entries. This

decomposition is unique. Moreover, since

0 < det(δI + Vδ) = det(L) det(L∗) = det(L) det(L),

it follows that L is invertible. For each α > 0, we have that

−αSk + δI + |Vδ| = −αSk + LL∗ = L(−αL−1Sk(L
∗)−1 + I)L∗.

Hence, the positive semi-definiteness of −αSk + δI + |Vδ| is equivalent to the positive

semi-definiteness of −αL−1Sk(L
∗)−1 + I.

Since both −L−1Sk(L
∗)−1 and −αL−1Sk(L

∗)−1 + I are Hermitian matrices, we can

apply Weyl’s Inequalities [5, Theorem III.2.1] to obtain

λj(−αL−1Sk(L
∗)−1 + I) = αλj(−L−1Sk(L

∗)−1) + 1, j = 1, . . . , N, (23)

where λ1(a) ≥ . . . ≥ λN(a) denote the N -eigenvalues of some matrix a.

It is known from Lemma 3.5 that Sk is a positive definite matrix. Thus, the

matrix L−1Sk(L
∗)−1 is positive definite, too. This implies λj(−L−1Sk(L

∗)−1) < 0 for

all j = 1, . . . , N . It then follows from (23) that for every j ∈ {1, . . . , N}, the functional

α 7→ λj(−αL−1Sk(L
∗)−1 + I) is decreasing in α. The biggest α that fulfills

λj(−αL−1Sk(L
∗)−1 + I) ≥ 0 for all j = 1, . . . , N

should be

βδ,Nk = − 1

λN(−L−1Sk(L∗)−1)
,

where λN(−L−1Sk(L
∗)−1) is the smallest (most negative) eigenvalue of −L−1Sk(L

∗)−1.

4.3. Minimizing the residual

The minimization problem (18) can be rewritten as follows.

min

{
‖

P∑
k=1

akSk −Vδ‖F : 0 ≤ ak ≤ min(a, βδ,Nk )

}
. (24)
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Since the minimization functional J : (a1, . . . , aP ) 7→ ‖
∑P

k=1 akSk − Vδ‖2
F is convex,

every minimizer should be global minimizer. The existence of the minimizer of (24)

follows the continuity of the minimization functional J and the fact that {ak}Pk=1 is

uniformly bounded.

Let κ̂δ,N :=
∑N

k=1 â
δ,N
k χk, where (âδ,N1 , . . . , âδ,NP ) be a minimizer of (24). When N is

large enough, in the same manner as Step 2, proof of Theorem 3.8, we can show that

âδ,Nk ≤ βk for k = 1, . . . , P . Hence, we can follow the proof of Theorem 3.8 to conclude

that κ̂δ,N pointwise converges to the unique minimizer κ̂ of (4) as δ goes to 0 (and N is

large enough).

Problem (24) can be solved either by using cvx, a package for specifying and solving

convex programs [16, 15], or with the MATLAB built-in function quadprog. Notice that

reconstruction images are highly affected by the choice of the minimization algorithms

(see Figure 5 and Table 1).

While cvx allows us to directly work with matrices, quadprog requires us to

rearrange the matrix Vδ into a long vector and define the N2-by-P matrix S whose

kth-column stores the matrix Sk:

Vecδ(i−1)N+j := (Vδ)i,j and S(i−1)N+j,k := (Sk)i,j

for i, j = 1, . . . , N and k = 1, . . . , P. The minimization functional in (24) then becomes

‖
P∑
k=1

akSk −Vδ‖2
F =

∥∥Sa− Vecδ
∥∥2

2

where a = (a1, . . . , aP )>. And we end up with the following quadratic minimization

problem under box constraints:

min
{
‖Sa− Vecδ‖2

2 : ak ∈ R, 0 ≤ ak ≤ min(a, βδ,Nk )
}
.

4.4. Numerical experiments

In our numerical experiments, we plot the support of the minimizer x 7→
∑P

k=1 âkχPk
of the minimization problem (24), where {Pk} is a partition of the unit disk Ω in R2

centered at the origin and is chosen independently of the finite element mesh that is

used for solving the forward problems.

In the first experiment, the true inclusion D includes a small ball B centered at

(−0.4,−0.5) radius 0.1, a rectangle R whose lower-left corner is located at (0.3,−0.65)

and upper-right corner is located at (0.45,−0.4) and an ellipse E centered at (0.1, 0.4),

horizontal semi-axis 0.3, vertical semi-axis 0.1. The reference conductivity σ0 is assumed

to be 1 on Ω. The true conductivity σ is assumed to be 4 on B, 3 on E, 2 on

R and 1 outside D; and is plotted in the first picture of Figure 1. The next three

pictures of Figure 1 show the reconstruction images (aka. the support of the minimizer

x 7→
∑P

k=1 âkχPk of the minimization problem (24)) of our method with respect to

different levels of noise. Figure 1 yields that minimizing the residual under constraint

0 ≤ κ ≤
∑P

k=1 min(a, βδk)χk is not affected much by the noise. Moreover, our method
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Table 1. Minimum value and runtime of pictures in Figure 5.

Algorithm Minimum value Runtime (second)

cvx 0.0126 4818.4263

trust-region-reflective 0.0131 235.2102

interior-point-convex 0.2439 67.2561

produces no artifacts even under high levels of noise. In Figure 2, we consider the

reconstruction images of the minimization residual problem under different constraints,

to see that the upper bound a is essential not only for preventing infinity upper bounds

when βδk = ∞, but also for guaranteeing a good shape reconstruction (figures 1d and

2b). In many applications, a bound for the conductivity change γ is known; hence,

in these cases, the value of a := 1 − 1
1+infD γ

can be calculated a-priori. All of the

reconstruction images showed in Figure 1 and Figure 2 are obtained by using cvx to

minimize the residual (24).

In the second experiment, we consider the true inclusion D as a ball centered at

the origin and with radius 0.1. The reference conductivity σ0 is also assumed to be

1 on Ω. The true conductivity σ is 4 on D and 1 outside; and is plotted in the first

picture of Figure 3. The next two pictures of Figure 3 plot the support of the minimizer

x 7→
∑P

k=1 âkχPk of the minimization problem (24) following the cvx minimization

algorithm when the βδk’s do and do not involve in the box constraint. A cut through

the origin of three pictures of Figure 3 via the x-axis is presented in Figure 4. These

pictures show that the upper bound βδk’s play an important role in the proof of the

theoretical part and makes the reconstructions slightly better when the noise level is

very low (figures 3 and 4).

Figure 5 shows the reconstruction images of the true conductivity in the first

experiment (aka. the first picture of Figure 1) when different minimization algorithms

are applied to solve the minimization (24). Under the constraint 0 ≤ κ ≤∑P
k=1 min(a, βδk)χk and 5% relative noise, the reconstruction image using cvx looks

perfectly well and contains no ringing artifact at all; while the MATLAB built-in function

quadprog with trust-region-reflective Algorithm also yields very good result that

reduces a lot of ringing artifacts compared with the standard Tikhonov approach (the

third picture from the left of Figure 2). However, the MATLAB built-in function quadprog

with default option (in this case interior-point-convex Algorithm) totally fails to

produce an approximation of the true conductivity. The minimum values and the

amount of time taken when solving the minimization problem (24) to produce pictures

in Figure 5 are shown in Table 1. We believe that the trust-region-reflective

Algorithm can be optimized for real-time implementation.

The numerical experiments confirm that minimizing the residual of the linearized

EIT equation under the constraint 0 ≤ κ ≤
∑P

k=1 min(a, βk)χk yields good

approximations to the true conductivity change. The algorithm yields no artifacts and
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produces good shape reconstructions even under high levels of noise. We also expect

the same results for the complete electrode model setting.

All of the above arguments hold if we replace the Frobenius norm in (2) by the

operator norm. However, the numerical results with respect to the Frobenius norm are

nicer (the last picture of Figures 2 and the first picture of Figure 5).

5. Conclusions

The popularly used reconstruction methods based on minimizing the usual linearized

EIT equation are simple and fast for real-time implementation and produce good

reconstruction images. However, these methods have no rigorous convergence results,

and the reconstruction images usually contain ringing artifacts. On the other hand,

monotonicity-based methods allow globally convergent implementation but usually

produce bad images under high levels of noise or when real data are used. Our method

is a combination of the usual minimization problem of the linearized EIT equation and

the monotonicity-based method, which inherits most of the good properties of these two

methods, such as stability under high noise and rigorous global convergence property.

Besides, if the lower and upper bounds of the conductivity are known, all parameters of

our method can be calculated a-priori. Moreover, to the best of our knowledge, this is

the first reconstruction method based on minimizing the residual which has a rigorous

global convergence property. However, we would admit that our method requires the

definiteness assumption, that is, the true conductivity should be either always bigger or

always smaller than the reference conductivity over all the reference body.

In this paper, we establish rigorously theoretical results of our method and provide

a few numerical experiments in an idealistic setting, i.e. the continuum model setting.

In future works, we will apply this method to more realistic models such as the shunt

model or the complete electrode model, which are commonly used models in practice.
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