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MONOTONICITY AND ENCLOSURE METHODS FOR THE
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Abstract. We show that the convex hull of a monotone perturbation of a homogeneous back-
ground conductivity in the p-conductivity equation is determined by knowledge of the nonlinear
Dirichlet--Neumann operator. We give two independent proofs: one is based on the monotonicity
method and the other on the enclosure method. Our results are constructive and require no jump
or smoothness properties on the conductivity perturbation or its support.
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1. Introduction. We consider the shape reconstruction problem for nonlinear
partial differential equations of p-Laplace type. More precisely, we are interested in
identifying the shape and location of an unknown inclusion from boundary voltage
to current measurements. Assume \Omega \subset \BbbR n, n \geq 2, to be a bounded open set with
conductivity \sigma \in L\infty 

+ (\Omega ), where

L\infty 
+ (\Omega ) = \{ f \in L\infty (\Omega ) ; ess inf f > 0\} .

We assume that the conductivity is constant (taken to be 1 for simplicity) outside an
unknown inclusion D, so that the inclusion is the set

D = supp(\sigma  - 1).

We study the problem of detecting inclusions from boundary measurements for the
p-conductivity equation

(1.1)

\Biggl\{ 
div(\sigma (x) | \nabla u| p - 2 \nabla u) = 0 in \Omega ,

u = f on \partial \Omega ,

where the exponent p is in the range 1 < p < \infty . Given a Dirichlet boundary condition
f \in W 1,p(\Omega )/W 1,p

0 (\Omega ), the forward problem (1.1) is well-posed in W 1,p(\Omega ), and the
weak solution minimizes the energy functional

E\sigma (v) :=

\int 
\Omega 

\sigma | \nabla v| p dx
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over all v \in W 1,p(\Omega ) with v  - f \in W 1,p
0 (\Omega ) (see, e.g., [35, 5]).

The boundary voltage to current map, also called the nonlinear Dirichlet--Neumann
(DN) map, is the map

\Lambda \sigma : X \rightarrow X \prime ,

defined formally by

\Lambda \sigma (f) := \sigma | \nabla u| p - 2 \nabla u \cdot \nu | \partial \Omega ,

where X := W 1,p(\Omega )/W 1,p
0 (\Omega ), X \prime is the dual of X, and \nu is the unit outward normal

to \partial \Omega . See section 2.2 for the precise weak definition of \Lambda \sigma .
In the special case p = 2, (1.1) is the well-known conductivity equation appearing

in Calder\'on's inverse problem [7]. This problem has been studied extensively in the
last 35 years; see the survey [42] for recent results. Our problem is an analogue
of the standard Calder\'on problem for nonlinear p-Laplace--type equations. These
appear as models in various physical phenomena, e.g., nonlinear dielectrics, plastic
moulding, electro-rheological and thermo-rheological fluids, fluids governed by a power
law, viscous flows in glaciology, or plasticity. Also, the 0- and 1-Laplacians have
applications in ultrasound modulated electrical impedance tomography (UMEIT) and
current density imaging (CDI). See the references in [6] and [4, section 2.1] for more
details.

Our purpose is to detect the shape and location of the inclusion D from boundary
measurements for the p-conductivity equation (1.1), as encoded by the DN map \Lambda \sigma .
More precisely, we will be able to reconstruct the essential convex hull of D, assuming
that \sigma  - 1 does not change sign. Such a result was proved in [6] for inclusions
having some regularity and sharp jumps at the interface by extending the enclosure
method of Ikehata [29, 27] to this nonlinear model. In this paper we remove all
regularity and interface jump assumptions, and also show that monotonicity-based
shape reconstruction methods [39, 38, 23] work in the nonlinear case and allow us to
find the convex hull of the inclusion.

The following theorem is the main result of this paper. It does not require any
regularity or jump properties for the inclusion, and we obtain this result using both
the monotonicity and the enclosure method. See section 2 for the definition of the
essential convex hull.

Theorem 1.1. Suppose \Omega \subset \BbbR n is a bounded and open set, n \geq 2, and 1 < p <
\infty . Consider a conductivity \sigma \in L\infty 

+ (\Omega ) such that either \sigma \geq 1 almost everywhere or
\sigma \leq 1 almost everywhere. Then we can recover the essential convex hull of supp(\sigma  - 1)
from the DN map \Lambda \sigma , and we can also determine whether \sigma is less than or greater
than 1 almost everywhere.

In addition, we give an alternative proof for the boundary determination result
of Salo and Zhong [35, Theorem 1.1]. We use an enclosure-type method to recover
a continuous conductivity on the boundary of a strictly convex domain, whereas [35]
considers domains with C1 boundary with no convexity assumptions.

Theorem 1.2. Let \Omega \subset \BbbR n be bounded, open, and strictly convex. Let \sigma 1, \sigma 2 be
positive continuous functions on \Omega . If \Lambda \sigma 1

= \Lambda \sigma 2
, then \sigma 1| \partial \Omega = \sigma 2| \partial \Omega .

We now give some additional details and introductory remarks on the monoto-
nicity and the enclosure methods. The monotonicity method is based on the mono-
tonicity relation

(1.2) \sigma 1 \geq \sigma 0 =\Rightarrow \Lambda \sigma 1
\geq \Lambda \sigma 0

.
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On the left-hand side of (1.2), \sigma 1 \geq \sigma 0 is to be understood pointwise almost every-
where. In the case p = 2, the DN maps are linear, and \Lambda \sigma 1

\geq \Lambda \sigma 0
can be understood

in the sense of operator definiteness (the Loewner partial order). Monotonicity re-
lations such as (1.2) allow us to constructively determine inclusions by choosing a
small test set B and a contrast level \alpha and by checking whether the DN map for
the test conductivity 1 + \alpha \chi B is larger or smaller than \Lambda \sigma . This approach has been
proposed and numerically tested by Tamburrino and Rubinacci [38, 39]. To show that
test sets B outside the true inclusion will not give false positive results in the mono-
tonicity method, one requires a nontrivial converse of the implication (1.2), which
has been shown by Harrach and Ullrich [23] using the concept of localized poten-
tials [13]. Monotonicity-based reconstruction methods have been intensively stud-
ied and successfully applied to simulated and real measurement data for the p = 2
case [17, 19, 10, 11, 12, 20] and to other imaging modalities [18, 37, 40, 31, 41].
Monotonicity-based arguments have also been used to prove theoretical uniqueness
results [15, 22, 16, 1, 24, 2, 25, 21].

In this work, we utilize that for p \not = 2, the monotonicity relation (1.2) is still valid
when \Lambda \sigma 1 \geq \Lambda \sigma 0 is understood in the sense of a preorder defined by the associated
quadratic forms; see Lemma 2.9 and the beginning of section 3. Using special Wolff
solutions we can then prove a converse of the implication (1.2), showing that the
union of measure theoretic interiors of balls B \in \scrB marked by the monotonicity
method generates the essential convex hull of the inclusion,

conv(supp(| \sigma  - 1| )) = conv

\Biggl( \bigcup 
B\in \scrB 

B\circ 

\Biggr) 
.

See Theorem 3.1 and Corollary 3.2. Reconstructing a piecewise real-analytic conduc-
tivity with the monotonicity method requires the ability to focus the energy of the
solution to an arbitrary subset, as done, for example, by Ikehata [28] and Harrach [13].
These tools, and in particular the Runge approximation property, are not yet known
for the p-Laplace equation.

The enclosure method uses specific exponential solutions, or complex geometrical
optics (CGO)-type solutions, for the conductivity equation as test functions to detect
the convex hull of the inclusion D. This method is based on analyzing the behavior
of the indicator function, defined via the DN map and the exponential solutions, to
see whether or not the level set of the phase function touches the boundary of the
inclusion. The indicator function is given by

I(t, \tau ) = \tau  - p

\int 
\partial \Omega 

(\Lambda \sigma  - \Lambda 1)(f\tau )f\tau dS,

where t and \tau are parameters and f\tau are boundary values of the exponential Wolff
solutions given in section 2. Now consider a half-space H \subset \BbbR n so that the energy of
the Wolff solution concentrates in H when the parameter \tau becomes large. Then we
observe the following facts for the indicator function. For large \tau , if H does not meet
D in a set of positive measure, then

I(t, \tau ) \rightarrow 0,

and if H meets D in a set of positive measure, then we have

| I(t, \tau )| \rightarrow \infty .
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Many earlier works on the enclosure method consider hyperplanes which barely touch
the inclusion D, whereas in this work we consider the situations where, roughly,
either H \cap D has positive measure or dist (H,D) > 0.

We prove our main result, Theorem 1.1, with both the monotonicity and the
enclosure methods. The enclosure method for linear equations allows one to identify
various shapes by using CGO solutions with different phase functions. See, for in-
stance, [26, 30, 36], which concern the use of linear phase functions, and [33], where
spherical phase functions are used to reconstruct nonconvex parts of the obstacle.
The work [32] uses the enclosure method with CGO solutions with polynomial phases,
where the energy is concentrated inside a cone, and in this case it is possible to ap-
proximate the exact shape of certain types of obstacles. In [9], the authors propose
a set of CGO solutions for the linear Schr\"odinger equation with all possible different
phases. So, using all of these different phases, it might be possible to approximate the
obstacle up to some obstructions. Therefore, the enclosure method heavily depends
on the CGO solutions and their blow-up properties on a specific region, depending on
the phase functions we choose.

On the other hand, monotonicity-based shape reconstruction methods depend
on constructing solutions which blow up in suitable regions. Harrach [13] was able
to produce such solutions for the linear conductivity equation. These solutions are
known as localized potentials, and they can be used to determine the exact shape of
the inclusion also in certain cases where the inclusion has indefinite sign. However,
the existence of such solutions is proved by linear functional analysis (this involves a
duality argument and the unique continuation principle), and it is not known whether
localized potentials exist in the present nonlinear model. We will replace the localized
potentials by Wolff-type solutions for the p-Laplace equation. These solutions will
have very large energy on one side of a given hyperplane, with very small energy on
the other side. We will use this phenomenon to establish a version of the monotonicity
method in the nonlinear case.

In the present work we implement these two methods to reconstruct the essential
convex hull of the inclusion. This is the first application of monotonicity-based shape
reconstruction methods to nonlinear equations; see Theorem 3.1. We reach the same
conclusion with the enclosure method; see Theorem 4.1. In contrast to many previous
works, we do not assume any regularity assumptions on the boundary of the inclusion
or any jump conditions for the conductivity.

Unlike for the linear case, comparatively little is known for inverse problems re-
lated to the p-Laplace equation. The first boundary determination result is due to
Salo and Zhong [35], and boundary determination for the normal derivative of the
conductivity was shown by Brander [3]. Recently, under monotonicity assumptions
on the conductivity, an interior uniqueness result has been given by Guo, Kar, and
Salo [14]. This result is not constructive, but it is not restricted to constant back-
ground conductivity. Brander, Kar, and Salo [6] detect the convex hull of an inclusion
D when the conductivity \sigma satisfies \sigma = 1 in \Omega \setminus D and \sigma \geq 1+\varepsilon > 1 in D or \sigma < 1 - \varepsilon 
in D. In particular, the conductivity \sigma has a jump discontinuity along the interface
\partial D. The work [5] considers the inclusion detection problem for models with zero or
infinite conductivity. For an introduction to the p-Calder\'on problem, see the thesis
of Brander [4].

This paper is organized as follows. In section 2, we discuss the essential con-
vex hull and Wolff solutions required for the main results. Section 3 introduces the
monotonicity-based shape reconstruction method for the p-Laplace equation. In sec-
tion 4, we justify the enclosure method under the present assumptions. Finally, we
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establish the boundary determination result for strictly convex domains in section 5.

2. Notation and preliminaries. Throughout this work let \Omega \subset \BbbR n be open
and bounded and suppose that the conductivity satisfies \sigma \in L\infty 

+ (\Omega ;\BbbR ), where
L\infty 
+ (\Omega ;\BbbR ) := \{ f \in L\infty (\Omega ;\BbbR ); ess inf f > 0\} . We can assume that \Omega is connected with-

out loss of generality.

2.1. Essential support and convexity. We summarize some basic facts on the
(essential) support and its (closed essential) convex hull. Here and in the following,
measure theoretical terms (such as measurable, almost everywhere, or null set) are
always used with respect to the n-dimensional Lebesgue measure, which we denote by
m. For elementary facts concerning convexity and half-spaces see, for example, [34].

Definition 2.1 (essential support). The (essential) support supp f of a mea-
surable function f : \Omega \rightarrow \BbbR is the complement of the union of all open sets O \subseteq \Omega 
where f | O = 0 almost everywhere.

Definition 2.2 (measure theoretic interior). The measure theoretic interior A\circ 

of a measurable set A is the set of all points x \in A with density 1, i.e.,

lim
\epsilon \rightarrow 0

m(A \cap B\epsilon (x))

m(B\epsilon (x))
= 1.

Definition 2.3 (closed half-space). For \rho \in \BbbR n and t \in \BbbR , we define the closed
half-space

H\rho ,t := \{ x \in \BbbR n : x \cdot \rho \leq t\} .

Definition 2.4 (closed essential convex hull). For a measurable set A \subset \BbbR n,
the (closed essential) convex hull convA is the intersection of all closed half-spaces
H\rho ,t (\rho \in \BbbR n, t \in \BbbR ) such that

(2.1) m (A \setminus H\rho ,t) = 0.

Definition 2.5 (essential convex support function). If A \subseteq \BbbR n is a bounded
measurable set with positive measure, then we define its essential convex support func-
tion hA : Sn - 1 \rightarrow \BbbR of A by

(2.2) hA(\rho ) = inf \{ t \in \BbbR : m (A \setminus H\rho ,t) = 0\} .

Since A has positive measure, the infimum is taken over a nonempty set. The
boundedness of A ensures that the set \{ t \in \BbbR : m (A \setminus H\rho ,t) = 0\} is bounded from
below. We have

t \geq hA(\rho ) =\Rightarrow m(A \setminus \{ x \cdot \rho \leq t\} ) = 0,

t < hA(\rho ) =\Rightarrow m(A \setminus \{ x \cdot \rho \leq t\} ) > 0.

Lemma 2.6.
(a) For a measurable set A, convA is a closed and convex set.
(b) If A is measurable, then the Lebesgue density of A is zero for all points x \in 

A \setminus conv(A). In particular,

A\circ \subseteq conv(A) and A \subseteq conv(A) \cup N with a null set N .

(c) For measurable sets A,B \subseteq \BbbR n and a null set N \subseteq \BbbR n,

B \subseteq conv(A) \cup N implies conv(B) \subseteq conv(A).
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(d) For a measurable function f : \Omega \rightarrow \BbbR , conv(supp f) is the intersection of all
closed half-spaces H\rho ,t with f | \Omega \setminus H\rho ,t

= 0 almost everywhere.

Proof.
(a) The convex hull convA is an intersection of closed and convex half-spaces

and thus is closed and convex.
(b) Let x \in A \setminus conv(A). By Definition 2.4 there exists a closed half-space H\rho ,t

with m(A \setminus H\rho ,t) = 0 and x \not \in H\rho ,t. Since H\rho ,t is closed, B\epsilon (x)\cap H\rho ,t = \emptyset for
all sufficiently small balls B\epsilon (x), so that

m(A \cap B\epsilon (x)) \leq m((H\rho ,t \cap B\epsilon (x)) \cup (A \setminus H\rho ,t))

\leq m(H\rho ,t \cap B\epsilon (x)) +m(A \setminus H\rho ,t) = 0.

This shows that the Lebesgue density of A is zero in x.
In particular, A\circ \subseteq conv(A) and, by the Lebesgue density theorem, m(A \setminus 
convA) = 0.

(c) Let B \subseteq conv(A) \cup N . Then B is a subset of H\rho ,t \cup N for every half-space
H\rho ,t with m (A \setminus H\rho ,t) = 0. Hence, m (B \setminus H\rho ,t) = 0 for all half-spaces H\rho ,t

with m (A \setminus H\rho ,t) = 0; i.e., the set of half-spaces with m (B \setminus H\rho ,t) = 0 is
a superset of those with m (A \setminus H\rho ,t) = 0. Thus the intersection of all half-
spaces with m (B \setminus H\rho ,t) = 0 is a subset of the intersection of all half-spaces
with m (A \setminus H\rho ,t) = 0, which shows conv(B) \subseteq conv(A).

(d) By definition, conv(supp(f)) is the intersection of all closed half-spaces H
for which supp(f) \setminus H is a null set. Hence, it suffices to show that a closed
half-space H fulfills m(supp(f) \setminus H) = 0 if and only if f | \Omega \setminus H = 0 almost
everywhere.
Let O be the union of all open sets on which f is zero almost everywhere.
Then

supp(f) \setminus H = (\Omega \setminus O) \setminus H = \Omega \setminus (H \cup O) = (\Omega \setminus H) \setminus O.

If m(supp(f) \setminus H) = 0, then \Omega \setminus H is a subset of O \cup N with some null
set N , so f | \Omega \setminus H = 0 almost everywhere. On the other hand, if f | \Omega \setminus H = 0
almost everywhere, then \Omega \setminus H \subseteq O \cup N where N is a null set, and thus
(\Omega \setminus H) \setminus O = supp(f) \setminus H is a null set.

2.2. Wolff solutions and monotonicity for the nonlinear DN map. Let
\Lambda \sigma be the (nonlinear) Dirichlet--Neumann (DN) map for the weighted p-Laplace equa-
tion (1 < p < \infty ), or p-conductivity equation, i.e.,

\Lambda \sigma : X \rightarrow X \prime 

defined by

(\Lambda \sigma (f), g) :=

\int 
\Omega 

\sigma | \nabla uf
\sigma | p - 2\nabla uf

\sigma \cdot \nabla vgdx, f, g \in X,

where X := W 1,p(\Omega )/W 1,p
0 (\Omega ), vg \in W 1,p(\Omega ) is any representative of the quotient

space element g \in X, and uf
\sigma is the weak solution of the weighted p-Laplacian with

boundary value f ; i.e., uf
\sigma is the unique minimizer in f +W 1,p

0 (\Omega ) of the p-Dirichlet
energy functional

u \mapsto \rightarrow E\sigma (u) :=

\int 
\Omega 

\sigma | \nabla u| pdx.
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The map \Lambda \sigma is well-defined by this definition [5, section 3.2].
We will use a certain exponential solution for the p-Laplace equation, which is real

valued and periodic in one direction and exponentially behaving in the other direc-
tion. This specific solution is the Wolff solution, which was introduced by Wolff [43]
and has applications in inverse problems, including boundary determination [3, 35]
and inclusion detection [5, 6]. We explicitly write the solutions as follows (see [6,
Lemma 3.1]).

Lemma 2.7 (Wolff solutions). Let \rho , \rho \bot \in \BbbR n satisfy | \rho | =
\bigm| \bigm| \rho \bot \bigm| \bigm| = 1 and \rho \cdot \rho \bot =

0. Define h : \BbbR n \rightarrow \BbbR by h(x) = e - \rho \cdot xw(\rho \bot \cdot x), where the function w satisfies the
differential equation

(2.3) w\prime \prime (s) + V (w,w\prime )w = 0

with

(2.4) V (w,w\prime ) =
(2p - 3) (w\prime )

2
+ (p - 1)w2

(p - 1) (w\prime )
2
+ w2

.

The function h is then p-harmonic.
Given any initial conditions (a0, b0) \in \BbbR 2 \setminus \{ (0, 0)\} , there exists a solution w \in 

C\infty (\BbbR ) to the differential equation (2.3) which is periodic with period \lambda p > 0 and sat-

isfies the initial conditions (w(0), w\prime (0)) = (a0, b0) and
\int \lambda p

0
w(s) ds = 0. Furthermore,

there exist constants c and C depending on a0, b0, and p such that for all s \in \BbbR we
have

(2.5) C > (w(s))2 + (w\prime (s))2 > c > 0.

For a large parameter \tau \in \BbbR and a fixed constant t \in \BbbR , we now define the
Wolff-type solutions u\tau : \BbbR n \rightarrow \BbbR by

(2.6) u\tau (x) = e\tau (x\cdot \rho  - t)w
\bigl( 
\tau x \cdot \rho \bot 

\bigr) 
.

The upper and lower bounds for the Wolff solution are due to [6, Lemma 3.1 and
equations (3.5) and (3.6)].

Lemma 2.8. Let \Omega \subset \BbbR n be a bounded open set. There exist c, C > 0 so that, for
each \rho \in Sn - 1, \tau > 0, and t \in \BbbR , the function (2.6) solves div(| \nabla u| p - 2\nabla u) = 0 in
\BbbR n, satisfies u\tau | \Omega \in C\infty (\Omega ) \subseteq W 1,p(\Omega ), and where

c\tau e\tau (x\cdot \rho  - t) \leq | \nabla u\tau (x)| \leq C\tau e\tau (x\cdot \rho  - t), x \in \Omega .

We will also use the monotonicity inequality [6, Lemma 2.1].

Lemma 2.9 (monotonicity inequality). Let \sigma 0, \sigma 1 \in L\infty 
+ (\Omega ), 1 < p < \infty . For

every f \in W 1,p(\Omega ) and corresponding minimizer u0 \in f +W 1,p
0 (\Omega ) of the energy E\sigma 0

,
it holds that

(p - 1)

\int 
\Omega 

\sigma 0

\sigma 
1/(p - 1)
1

\biggl( 
\sigma 

1
p - 1

1  - \sigma 
1

p - 1

0

\biggr) 
| \nabla u0| pdx

\leq ((\Lambda \sigma 1
 - \Lambda \sigma 0

)f, f) \leq 
\int 
\Omega 

(\sigma 1  - \sigma 0)| \nabla u0| pdx.
(2.7)
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3. Monotonicity method for the \bfitp -Laplacian. As above, let \sigma \in L\infty 
+ (\Omega ).

We make the global monotonicity assumption that either \sigma (x) \geq 1 holds (almost
everywhere) in \Omega or \sigma (x) \leq 1 holds (almost everywhere) in \Omega .

We will show that the essential convex hull of the support of | \sigma  - 1| is uniquely
determined by the DN operator \Lambda \sigma and that it can be recovered by monotonicity
tests.

The monotonicity tests are based on comparing \Lambda \sigma to certain nonlinear test oper-
ators in the following sense. For two (possibly nonlinear) operators \Lambda 1,\Lambda 2 : X \rightarrow X \prime 

we write that

\Lambda 1 \geq \Lambda 2 if ((\Lambda 1(f) - \Lambda 2(f)), f) \geq 0 for all f \in X.

Note that this defines a reflexive and transitive relation (a preorder), but not neces-
sarily a partial order since antisymmetry may fail.

Let \Lambda 0 denote the DN operator for the homogeneous conductivity \sigma 0 = 1. For a
measurable set B \subset \Omega , we also introduce the operator \Lambda B : X \rightarrow X \prime by

(\Lambda B(f), g) :=

\int 
B

| \nabla uf
0 | p - 2\nabla uf

0 \cdot \nabla ug
0 dx, f, g \in X,

where uh
0 is the unique minimizer in h+W 1,p

0 (\Omega ) of the p-Dirichlet energy functional
E\sigma 0

with \sigma 0 = 1.

Theorem 3.1. Let B \subseteq \Omega be a measurable set with positive measure. For every
constant \alpha > 0,

(a) \sigma | B \geq 1 + \alpha implies \Lambda 0 + \~\alpha \Lambda B \leq \Lambda \sigma ,
(b) \sigma | B \leq 1 - \alpha implies \Lambda 0  - \alpha \Lambda B \geq \Lambda \sigma ,
(c) \Lambda 0 + \alpha \Lambda B \leq \Lambda \sigma implies B \subseteq conv(supp(| \sigma  - 1| )) up to null sets,
(d) \Lambda 0  - \alpha \Lambda B \geq \Lambda \sigma implies B \subseteq conv(supp(| \sigma  - 1| )) up to null sets,

where in (a) \~\alpha := (p - 1)(1 - (1+\alpha ) - 
1

p - 1 ) > 0, and in (c) and (d), the notion ``B \subseteq A
up to null sets"" means that m(B \setminus A) = 0.

Before we give the proof of Theorem 3.1, we show that this implies that \Lambda \sigma 

uniquely determines the convex hull of the support of | \sigma  - 1| , and we comment on a
possible numerical implementation.

Corollary 3.2. Let either \sigma (x) \geq 1 hold (almost everywhere) in \Omega or \sigma (x) \leq 1
hold (almost everywhere) in \Omega . Then

conv(supp(| \sigma  - 1| )) = conv

\Biggl( \bigcup 
B\in \scrB 

B\circ 

\Biggr) 
,

where \scrB is the family of all measurable sets B \subseteq \Omega for which there exists an \alpha > 0
such that either \Lambda 0 + \alpha \Lambda B \leq \Lambda \sigma or \Lambda 0  - \alpha \Lambda B \geq \Lambda \sigma .

Proof. By Theorem 3.1(c),(d), for every B \in \scrB there exists a null set N with

(3.1) B \subseteq conv(supp(| \sigma  - 1| )) \cup N.

Lemma 2.6 then implies B\circ \subseteq conv(B) \subseteq conv(supp(| \sigma  - 1| )), so that

(3.2)
\bigcup 
B\in \scrB 

B\circ \subseteq conv(supp(| \sigma  - 1| )),



750 T. BRANDER, B. HARRACH, M. KAR, AND M. SALO

and again by Lemma 2.6,

(3.3) conv(supp(| \sigma  - 1| )) \supseteq conv

\Biggl( \bigcup 
B\in \scrB 

B\circ 

\Biggr) 
.

To show ``\subseteq "" we assume that

conv(supp(| \sigma  - 1| )) \setminus conv

\Biggl( \bigcup 
B\in \scrB 

B\circ 

\Biggr) 
\not = \emptyset .

By Definition 2.4, there would then exist a closed half-space H with

(3.4) m

\Biggl( \Biggl( \bigcup 
B\in \scrB 

B\circ 

\Biggr) 
\setminus H

\Biggr) 
= 0 and conv(supp(| \sigma  - 1| )) \setminus H \not = \emptyset .

With Lemma 2.6 this would imply that every closed half-space \~H with | \sigma  - 1| | \Omega \setminus \~H = 0
almost everywhere must have an intersection of positive measure with the complement
of H. Hence | \sigma  - 1| could not be zero almost everywhere on \Omega \setminus H. But then there
would exist a measurable set B \subseteq \Omega \setminus H with B = B\circ , m(B) = m(B \setminus H) > 0 and
a constant \alpha > 0 with | \sigma  - 1| \geq \alpha in B. Theorem 3.1(a),(b) would then imply that
B \in \scrB , which would contradict the first part of (3.4).

Remark 3.3. Theorem 3.1 can be implemented in a numerical reconstruction al-
gorithm as in [17, 19, 20]. We choose a finite pixel partition \Omega =

\bigcup m
i=1 Pi with (not

necessarily disjoint) measurable subsets Pi \subseteq \Omega . For each pixel Pi one can numeri-
cally approximate the maximal number \alpha i \geq 0 for which \Lambda 0 + \~\alpha \Lambda B \leq \Lambda \sigma (in the case
\sigma \geq 1), resp., \Lambda 0  - \alpha \Lambda B \geq \Lambda \sigma (in the case \sigma \leq 1). Theorem 3.1 then yields that
\alpha i will be nonzero only on pixels inside the convex hull of supp(| \sigma  - 1| ). Moreover,

if | \sigma  - 1| \geq c > 0 on Pi, then \alpha i \geq (p  - 1)(1  - (1 + c) - 
1

p - 1 ) (in the case \sigma \geq 1),
resp., \alpha i \geq c (in the case \sigma \leq 1). In that sense, a plot of \alpha i will show the convex
hull of an inclusion up to the pixel partition and also give an estimate of the contrast
of the inclusion. Note, however, that the calculation of \alpha i will be considerably more
involved than in the linear case, where it could be calculated from a simple eigenvalue
calculation; cf. [17, section 4].

Proof of Theorem 3.1.
(a) Note that by our global monotonicity assumption, \sigma | B \geq 1 + \alpha implies that

we are in the case that \sigma \geq 1 almost everywhere in \Omega . Hence we obtain from
the monotonicity lemma, Lemma 2.9, that

((\Lambda \sigma  - \Lambda 0)(f), f) \geq (p - 1)

\int 
\Omega 

1

\sigma 1/(p - 1)

\Bigl( 
\sigma 

1
p - 1  - 1

\Bigr) 
| \nabla u0| pdx

\geq (p - 1)

\int 
B

\Bigl( 
1 - \sigma  - 1

p - 1

\Bigr) 
| \nabla u0| pdx

\geq (p - 1)
\Bigl( 
1 - (1 + \alpha ) - 

1
p - 1

\Bigr) 
(\Lambda B(f), f).

(b) If \sigma | B \leq 1  - \alpha , then we are in the case that \sigma \leq 1 almost everywhere in \Omega ,
and we obtain from the monotonicity lemma, Lemma 2.9, that

((\Lambda \sigma  - \Lambda 0)(f), f) \leq 
\int 
\Omega 

(\sigma  - 1)| \nabla u0| pdx \leq 
\int 
B

(\sigma  - 1)| \nabla u0| pdx

\leq  - \alpha (\Lambda B(f), f).
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(c) We set D := conv(supp(| \sigma  - 1| )) and assume that B \setminus D is not a null set. We
will prove that

(3.5) \Lambda 0 + \alpha \Lambda B \not \leq \Lambda \sigma .

Since shrinking B will lead to a smaller \Lambda B , it suffices to prove (3.5) with B
replaced by a subset of B. Hence, by replacing B with B \setminus D, we can assume
without loss of generality that

m(B) > 0 and B \cap D = \emptyset .

Moreover, it follows from elementary measure theory or the Lebesgue density
theorem that there exists a point x \in B such that m(B \cap Br(x)) > 0 for
all sufficiently small open balls Br(x). By replacing B with B \cap Br(x) for a
sufficiently small ball, we can therefore assume without loss of generality that

m(B) > 0 and conv(B) \cap D = \emptyset .

Using the Hahn--Banach (or hyperplane) separation theorem (see, for
example, [34, Corollary 11.4.2]) we then obtain a vector \rho \in \BbbR n, | \rho | = 1,
and numbers t \in \BbbR , \epsilon > 0 such that

x \cdot \rho < t for all x \in D,

x \cdot \rho > t+ \epsilon for all x \in B.

With the Wolff solutions from Lemma 2.8, it follows that there exist constants
c, C > 0 so that for each \tau > 0 there exists a solution u0,\tau of the homogeneous
p-Laplace equation with

c\tau e\tau (x\cdot \rho  - t) \leq | \nabla u0,\tau (x)| \leq C\tau e\tau (x\cdot \rho  - t) for all x \in \Omega .

With f\tau := u0,\tau | \partial \Omega it follows that

(\alpha \Lambda B(f\tau ), f\tau ) = \alpha 

\int 
B

| \nabla u0,\tau | pdx \geq \alpha m(B)cp\tau pep\tau \epsilon ,

and using the monotonicity lemma, Lemma 2.9, we obtain

((\Lambda \sigma  - \Lambda 0)(f\tau ), f\tau ) \leq 
\int 
\Omega 

(\sigma  - 1)| \nabla u0,\tau | pdx

\leq \| \sigma  - 1\| L\infty (\Omega ) C
p\tau pm(D).

(3.6)

For large enough \tau we have that

(3.7) \| \sigma  - 1\| L\infty (\Omega ) C
pm(D) < \alpha m(B)cpep\tau \epsilon 

and thus

(\alpha \Lambda B(f\tau ), f\tau ) > ((\Lambda \sigma  - \Lambda 0)(f\tau ), f\tau ) ,

which proves (3.5).
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(d) As in (c) we setD := conv(supp(| \sigma  - 1| )) and assume without loss of generality
that m(B) > 0 and conv(B) \cap D = \emptyset . With the same Wolff solutions as in
(c) we obtain from the monotonicity lemma, Lemma 2.9, that

((\Lambda \sigma  - \Lambda 0)(f\tau ), f\tau ) \geq (p - 1)

\int 
\Omega 

\Bigl( 
1 - \sigma  - 1

p - 1

\Bigr) 
| \nabla u0,\tau | pdx

\geq  - (p - 1)
\bigm\| \bigm\| \sigma  - 1

\bigm\| \bigm\| 1
p - 1

L\infty (\Omega )

\int 
D

| \nabla u0,\tau | pdx

\geq  - (p - 1)
\bigm\| \bigm\| \sigma  - 1

\bigm\| \bigm\| 1
p - 1

L\infty (\Omega ) m(D)Cp\tau p,

so that for large enough \tau > 0,

( - \alpha \Lambda B(f\tau ), f\tau ) < ((\Lambda \sigma  - \Lambda 0)(f\tau ), f\tau ) ,

which shows that \Lambda \sigma  - \Lambda 0 \not \leq  - \alpha \Lambda B .

4. Enclosure method. We define the indicator function I\rho (t, \tau ) as

I\rho (t, \tau ) = \tau  - p \langle (\Lambda \sigma  - \Lambda 1) (f\tau ), f\tau \rangle ,

where \rho \in \BbbR n is a unit vector, t \in \BbbR , \tau > 0, and f\tau = u\tau | \partial \Omega where u\tau are the Wolff
solutions given by (2.6).

The indicator function for any \rho , t, and \tau is determined by \Lambda \sigma . Thus the next
theorem implies that \Lambda \sigma determines the essential convex hull of the inclusion D, where
we write

D = supp(\sigma  - 1).

Theorem 4.1. Suppose that \sigma \in L\infty 
+ (\Omega ) and that either \sigma \geq 1 or \sigma \leq 1 almost

everywhere. Then

convD =
\bigcap 

\rho \in \BbbR n;| \rho | =1

H\rho ,

where
H\rho = \{ x \in \BbbR n ; | I\rho (x \cdot \rho , \tau )| \rightarrow \infty as \tau \rightarrow \infty \} .

Before the proof, we give a simple lemma. First recall that hD is the convex
support function of the set D, as defined in section 2.

Lemma 4.2. Suppose that \sigma \in L\infty 
+ (\Omega ) and that either \sigma \geq 1 or \sigma \leq 1 almost

everywhere. Let also t < hD(\rho ). Then there exists a set S \subset D which satisfies the
following conditions:

1. m(S) > 0.
2. There is \varepsilon 1 > 0 such that for all x \in S we have x \cdot \rho > t+ \varepsilon 1.
3. There is \varepsilon 2 > 0 such that for all x \in S we have \sigma (x) > 1+\varepsilon 2 or \sigma (x)+\varepsilon 2 < 1.

Proof. Choose \varepsilon 1 so that 0 < \varepsilon 1 < hD(\rho ) - t, and define

\~S = \{ x \in D ; x \cdot \rho > t+ \varepsilon 1\} .

Then items 1 and 2 are true for \~S by the definition of the essential convex hull and hD.
To also satisfy item 3, we observe that \~S is a set of positive measure and that \sigma > 1
(or \sigma < 1) in \~S. Since

\~S =
\bigcup 

k\in \BbbZ +

\Bigl\{ 
x \in \~S; | \sigma  - 1| > 1/k

\Bigr\} 
,
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and \~S has positive measure, at least one of the sets
\Bigl\{ 
x \in \~S; | \sigma  - 1| > 1/k

\Bigr\} 
must have

positive measure. We choose it as the set S.

Proof of Theorem 4.1. First, if \sigma = 1 almost everywhere, the indicator function
vanishes, and the claim is true. Let us suppose this is not the case. Then D =
supp(\sigma  - 1) is nonempty, and we consider a fixed direction \rho \in \BbbR n, | \rho | = 1.

Suppose first that \sigma \geq 1 almost everywhere. If t > hD(\rho ), then we have by the
monotonicity inequality (Lemma 2.9) and Lemma 2.8 that

0 \leq I\rho (t, \tau ) = \tau  - p \langle (\Lambda \sigma  - \Lambda 1) (f\tau ), f\tau \rangle \leq \tau  - p

\int 
\Omega 

(\sigma  - 1) | \nabla u\tau | p dx

= \tau  - p

\int 
D

(\sigma  - 1) | \nabla u\tau | p dx

\leq C

\int 
D

(\sigma  - 1)ep\tau (x\cdot \rho  - t)dx

\leq C \| \sigma  - 1\| L\infty (\Omega )

\int 
D\cap \{ x\cdot \rho \leq hD\} 

ep\tau (x\cdot \rho  - t)dx

\leq C \| \sigma  - 1\| L\infty (\Omega )

\int 
D\cap \{ x\cdot \rho \leq hD\} 

ep\tau (hD - t)dx

\leq C \| \sigma  - 1\| L\infty (\Omega ) m(D)ep\tau (hD - t) \rightarrow 0

as \tau \rightarrow \infty . Note that we used the fact that m(D \setminus \{ x \cdot \rho \leq hD\} ) = 0.
Next, suppose t < hD(\rho ). By the monotonicity inequality, Lemma 2.9, we get

I\rho (t, \tau ) = \tau  - p \langle (\Lambda \sigma  - \Lambda 1) (f\tau ), f\tau \rangle 

\geq (p - 1)\tau  - p

\int 
D

\Bigl( 
1 - \sigma  - 1/(p - 1)

\Bigr) 
| \nabla u\tau | pdx

\geq (p - 1)

\int 
D

\Bigl( 
1 - \sigma  - 1/(p - 1)

\Bigr) 
ep\tau (x\cdot \rho  - t)dx.

By Lemma 4.2, there is a set S \subseteq D with positive measure so that x \cdot \rho > t+ \varepsilon 1 and
that 1 - \sigma  - 1/(p - 1) > \varepsilon 3 on S for some \varepsilon 1, \varepsilon 3 > 0. Thus\int 

D

\Bigl( 
1 - \sigma  - 1/(p - 1)

\Bigr) 
ep\tau (x\cdot \rho  - t)dx \geq 

\int 
S

\varepsilon 3e
p\tau \varepsilon 1dx.

This shows that I\rho (t, \tau ) \rightarrow \infty as \tau \rightarrow \infty .
If instead \sigma \leq 1 almost everywhere, then the previous proof works with minor

changes and gives that I\rho (t, \tau ) \rightarrow 0 for t > hD(\rho ) and I\rho (t, \tau ) \rightarrow  - \infty for t < hD(\rho ).
Also note that, by definition, the set H\rho has the following form:

H\rho = \{ x \in \BbbR n ; | I\rho (x \cdot \rho , \tau )| \rightarrow \infty as \tau \rightarrow \infty \} .

Therefore, we have established that

\{ x \in \BbbR n;x \cdot \rho < hD(\rho )\} \subseteq H\rho \subseteq \{ x \in \BbbR n;x \cdot \rho \leq hD(\rho )\} ,

and thus

H\rho = \{ x \in \BbbR n;x \cdot \rho \leq hD(\rho )\} .
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By the definition of hD, one has m
\bigl( 
D \setminus H\rho 

\bigr) 
= 0 for each direction \rho . This

implies, by definition of the essential convex hull, that

convD \subseteq 
\bigcap 

\rho \in \BbbR n;| \rho | =1

H\rho .

To see the other direction, consider some x0 \in 
\bigcap 

\rho \in \BbbR n;| \rho | =1 H\rho , and an arbitrary closed

hyperplane H satisfying m (D \setminus H) = 0. There exists \rho 0 \in \BbbR n, | \rho 0| = 1, and t0 \in \BbbR 
such that

H = \{ x \in \BbbR n;x \cdot \rho 0 \leq t0\} .

By definition of hD we then have t0 \geq hD(\rho 0), so that H\rho 0
\subseteq H and consequently

x0 \in H.

Remark 4.3. The situation where the conductivity takes values both less than
one and greater than one in sets of positive measure is similar to that in [6, section
5].

Remark 4.4. The behavior of the indicator function when t = hD is tricky. By the
same proof as in [6, Lemma 4.6] we have I\rho (hD, \tau ) \leq C (note that we have a different
power of \tau in the indicator function). The lower bound uses Lipschitz regularity and
a jump condition on the boundary of the inclusion, so it seems unlikely to work in
the present case.

5. Boundary determination. In this section we give a boundary determina-
tion result for the p-Calder\'on problem. This result was proved in [35, Theorem 1.1]
for domains with C1 boundary. We assume that the domain is strictly convex instead.

Theorem 5.1. Let \Omega \subset \BbbR n, n \geq 2, be a bounded open set so that \Omega is strictly
convex. Suppose \sigma \in C(\Omega ) is a positive function. Then the nonlinear DN map \Lambda \sigma 

determines \sigma | \partial \Omega .
Proof. Let x0 \in \partial \Omega be an arbitrary boundary point. Since \Omega is convex, the

supporting hyperplane theorem of Minkowski (see, for example, [34, Theorem 11.6])
implies that there is a closed half-space H with

\Omega \subset H, x0 \in \partial H.

By strict convexity one has \Omega \cap \partial H = \{ x0\} (for if \Omega \cap \partial H were to contain another
point y0, then the line segment between x0 and y0 would lie in \Omega \cap \partial H and thus also
in \partial \Omega , contradicting strict convexity). The half-space H may be written as

H = \{ x \in \BbbR n ; \rho \cdot x \leq t0\} 

for some unit vector \rho \in \BbbR n, which will be fixed from now on, and some t0 \in \BbbR .
Let \gamma \in \BbbR + be a constant, which we will use as a test conductivity. Define the

indicator function
I\gamma (t, \tau ) = \tau  - p \langle (\Lambda \sigma  - \Lambda \gamma )(f\tau ), f\tau \rangle ,

where t \in \BbbR , \tau > 0, and f\tau = u\tau | \partial \Omega is the boundary value of the Wolff solution u\tau 

(which depends on \rho ) that solves div(\gamma | \nabla u| p - 2\nabla u) = 0 in \Omega .
For any fixed t < t0, we are going to show that

\gamma < \sigma (x0) =\Rightarrow I\gamma (t, \tau ) \rightarrow +\infty as \tau \rightarrow \infty ,(5.1)

\gamma > \sigma (x0) =\Rightarrow I\gamma (t, \tau ) \rightarrow  - \infty as \tau \rightarrow \infty .(5.2)
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Then \sigma (x0) = inf \{ \gamma > 0 ; lim\tau \rightarrow \infty I\gamma (t, \tau ) =  - \infty \} , which shows that \sigma (x0) can be
determined from \Lambda \sigma , thus concluding the proof.

Suppose that \gamma \not = \sigma (x0). By continuity of \sigma , there are \varepsilon , r > 0 such that

| \sigma (x) - \gamma | \geq \varepsilon , x \in B(x0, r) \cap \Omega .

For t \in \BbbR consider the set

St = \{ x \in \BbbR n ; \rho \cdot x > t\} \cap \Omega .

We claim that there exists \delta > 0 so that

St0 - \delta \subset B(x0, r) \cap \Omega .

If not, then for any j there is xj \in \Omega with \rho \cdot xj > t0  - 1/j but xj /\in B(x0, r). The set
\Omega is compact, and hence some subsequence of (xj) converges to some x\infty \in \Omega with
\rho \cdot x\infty \geq t0. But we saw earlier that \Omega \subset H and \Omega \cap \partial H = \{ x0\} where H = \{ \rho \cdot x \leq t0\} ,
showing that x\infty = x0, which is a contradiction.

Now choose t with t0  - \delta < t < t0. Then the set St is nonempty with positive
measure, and one has

| \sigma (x) - \gamma | \geq \varepsilon , x \in St.

Let s \in \{ +1, - 1\} be the sign of \sigma  - \gamma in St. In the monotonicity inequality, Lemma 2.9,
we write

F+(a, b) = (p - 1)
a

b1/(p - 1)

\Bigl( 
b1/(p - 1)  - a1/(p - 1)

\Bigr) 
,

F - (a, b) = a - b

and estimate

sI\gamma (t, \tau ) = s\tau  - p \langle (\Lambda \sigma  - \Lambda \gamma ) f\tau , f\tau \rangle \geq s\tau  - p

\int 
\Omega 

Fs (\sigma (x), \gamma ) | \nabla u\tau | p dx

= s\tau  - p

\Biggl( \int 
St

Fs (\sigma (x), \gamma ) | \nabla u\tau | p dx+

\int 
\Omega \setminus St

Fs (\sigma (x), \gamma ) | \nabla u\tau | p dx

\Biggr) 

\geq s

\Biggl( 
c

\int 
St

Fs (\sigma (x), \gamma ) e
p\tau (x\cdot \rho  - t)dx - C

\int 
\Omega \setminus St

Fs (\sigma (x), \gamma ) e
p\tau (x\cdot \rho  - t)dx

\Biggr) 

\geq c

\int 
St

ep\tau (x\cdot \rho  - t)dx - C

\int 
\Omega \setminus St

ep\tau (x\cdot \rho  - t)dx.

If t < t\prime < t0, then St\prime has positive measure and one has\int 
St

ep\tau (x\cdot \rho  - t)dx \geq 
\int 
St\prime 

ep\tau (x\cdot \rho  - t)dx \geq ep\tau (t
\prime  - t)m(St\prime ) \rightarrow \infty 

as \tau \rightarrow \infty , and have \int 
\Omega \setminus St

ep\tau (x\cdot \rho  - t)dx \leq 
\int 
\Omega \setminus St

dx \leq C.

Thus I\gamma \rightarrow +\infty when \sigma (x0) > \gamma and I\gamma \rightarrow  - \infty when the opposite inequality holds.
This proves (5.1)--(5.2) under the condition t0  - \delta < t < t0, but the result holds also
for t \leq t0  - \delta since

I\gamma (t, \tau ) = I\gamma (t0  - \delta /2, \tau )ep\tau (t0 - \delta /2 - t),

which follows by a short computation.
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Remark 5.2. It is clear that the same proof also gives the following result: if
\Omega \subset \BbbR n is a bounded open set, if \Omega is strictly convex at x0 \in \partial \Omega in the sense that
there is a closed half-space H with

\Omega \subset H, \Omega \cap \partial H = \{ x0\} ,

and if \sigma \in L\infty 
+ (\Omega ) is continuous near x0, then the knowledge of \Lambda \sigma determines \sigma (x0).

Remark 5.3. The proof gives the following simple algorithm for boundary deter-
mination in strictly convex domains:

1. First, take an arbitrary point x0 \in \partial \Omega . Our aim is to find the value of \sigma 
at x0.

2. Select a direction \rho such that \rho \cdot x0 = maxx\in \Omega \rho \cdot x = t0. This is possible by
strict convexity of the set \Omega .

3. Fix a parameter t so that t < t0, which corresponds to taking a hyperplane
that intersects \Omega .

4. Choose a small \gamma 0 \in \BbbR + and a large \gamma 0 \in \BbbR + such that

I\gamma 0 \rightarrow +\infty and I\gamma 0 \rightarrow  - \infty as \tau \rightarrow \infty .

5. Suppose \gamma j - 1 and \gamma j - 1 have been determined. Define \kappa j =
\gamma j - 1+\gamma j - 1

2 and
calculate I\kappa j

.
6. If I\kappa j \rightarrow +\infty , take \gamma j = \kappa j . If I\kappa j \rightarrow  - \infty , take \gamma j = \kappa j . Otherwise

\kappa j = \sigma (x0), in which case we are done.
7. Repeat steps 5 and 6.
8. We have

lim
j\rightarrow \infty 

\kappa j = lim
j\rightarrow \infty 

\gamma j = lim
j\rightarrow \infty 

\gamma j = \sigma (x0).
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