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Abstract
We introduce a computer-assisted proof for the required number of electrodes
for uniqueness and global reconstruction for the inverse Robin transmission
problem, where the corrosion function on the boundary of an interior object is
to be determined from electrode current–voltage measurements. We consider
the shunt electrode model where, in contrast to the standard Neumann bound-
ary condition, the applied electrical current is only partially known. The aim is
to determine the corrosion coefficient with a finite number of measurements.
In this paper, we present a numerically verifiable criterion that ensures unique
solvability of the inverse problem, given a desired resolution. This allows us
to explicitly determine the required number and position of the electrodes.
Furthermore, we will present an error estimate for noisy data. By rewriting the
problem as a convex optimization problem, our aim is to develop a globally
convergent reconstruction algorithm.

Keywords: inverse problems, shunt electrode model, global convergence

1. Introduction

In this study, we address the problem of non-destructive impedance-based corrosion detec-
tion, which aims to reconstruct an unknown Robin transmission coefficient on a known
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interior boundary from current–voltage measurements taken at electrodes attached to the outer
boundary.

To the best knowledge of the authors, this work presents the first method for explicitly calcu-
lating the required number of electrodes for uniqueness and a global reconstruction guarantee
in a nonlinear spatially dependent coefficient reconstruction problem. Furthermore we are able
to numerically determine an upper bound for the inverse stability constant and hereby provide
error estimates to the solution.

Traditionally, practitioners approach such reconstruction problems using regularized data
fitting methods. The non-convexity of the residual function presents a significant challenge
for nonlinear inverse problems, which is why, in general, only a few global reconstruction
algorithms are known. Previous works [13, 15] introduced a novel approach to overcoming
non-convexity and ensuring global convergence in an idealized setting with standard Neumann
boundary conditions. In the present paper, we translate these results to the shunt electrode
model, which extends the standard Neumann boundary problem to a realistic electrode model,
where the applied electrical current is only partially known.We establish a criterion for determ-
ining whether a given number of electrodes is sufficient for unique solvability of the inverse
problem and provide an equivalent reformulation by rewriting the problem as a semidefinite
program. Our results explicitly characterize the minimum number of electrodes required to
guarantee the reconstruction of an unknown Robin parameter with a given resolution.

By evaluating a finite number of forward solutions, and their derivatives, the criterion can
be numerically verified for a given desired resolution, so the proof for uniqueness and global
reconstruction is computer-assisted. Furthermore, our criterion provides explicit error estim-
ates for noisy data. We also refine previous uniqueness results [15] to obtain sharper stability
assumptions.

This work contributes to the broader framework of the Calderón problem [7], a classical
inverse problem concernedwith reconstructing information about the interior of a domain from
measurements collected at its boundary. Electrical impedance tomography (EIT) is a well-
known application of this problem [2]. In EIT, one seeks to reconstructs material properties
from a finite number of current–voltage measurements. While global reconstruction results are
well-established for the case of infinitely manymeasurements [8, 22], results for the practically
relevant scenario of finitely many measurements remain limited [3, 5, 12, 16]. The authors of
[23] address the fractional case for finitely many measurements. Nevertheless, these findings
are of theoretical nature and are not directly applicable in practical settings.

The Robin problem considered in [15] is a special case where reconstruction is restricted
to a small subdomain. Classical theoretical tools, such as Runge approximation and localized
potentials, hold in general for this case [17]. Previous uniqueness results for the Robin case
primarily focus on the infinite-dimensional setting, assuming infinite resolution and infinitely
many measurements [17]. In contrast, [13, 15] address the practical scenario of a finite res-
olution and finitely many measurements, where a measurement corresponds to measuring the
exact Dirichlet data from applied Neumann boundary values. In [17], the authors have estab-
lished Lipschitz stability results for cases involving finitely many unknowns and infinitely
many measurements.

In this work, we consider the Robin problem under a realistic electrode model, where elec-
trodes are attached to the domain boundary [9]. The most common electrode model is the
complete electrode model. However, we focus on the shunt model, which simplifies the setup
by neglecting electrode-body impedance. Foundational theoretical work on electrode models
can be found in [10, 11, 21, 24]. Theoretical attempts to approximate idealized models using
electrode models have been made in [12, 18–20]. However, in EIT little is known about char-
acterizing the number of electrodes required to achieve a desired resolution.
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By extending the theoretical results from [15] to an electrode model, we exploit the fact
that the Neumann-Dirichlet operator already has a finite structure. The theoretical result [15,
theorem 1] translates into an explicit criterion that can be numerically verified by computing
a constant λ that was found to be an upper bound on the inverse stability constant. Due to the
inherent ill-posedness of the nonlinear inverse problem, 1/λ is expected to grow exponentially
as stated in [4]. Our numerical experiments in section 3 confirm that λ reaches machine pre-
cision even for low resolutions. Nevertheless, we observe stable and global convergence with
our equivalent reformulation. Additionally, we refine the uniqueness proof from [15, theorem
1] to improve the stability bound λ.

2. Main results

LetΩ⊂ Rd be an open, bounded domain with Lipschitz boundary ∂Ω,Ω1 be an open subset of
Ωwith Lipschitz boundary Γ := ∂Ω1, such that Γ is entirely contained withinΩ. DefineΩ2 :=
Ω \Ω1, assuming Ω2 is connected (see figure 1). Additionally, let the electrodes E1, . . .Em be
measurable subsets of ∂Ω with nonzero measure.

Given a piecewise-constant conductivity, defined as σ = σ1χΩ1 +σ2χΩ2 , where σ1,σ2 > 0,
and a Robin transmission coefficient γ ∈ L∞+ (Γ), we consider the following problem with
applied currents Ik ∈ R for k= 1, . . . ,m

−∇ · (σ∇u) = 0 on Ω1 ∪Ω2,´
Ek σ∂νuds = Ik for k= 1, . . . ,m,

σ∂νu = 0 on ∂Ω \
⋃
k=1,...,m Ek,

[[u]] = 0 on Γ,
[[σ∂νu]] = γu on Γ,

u
∣∣
Ek

= const.=: Uk for k= 1, . . . ,m,

(1)

where ν is the unit normal vector on Γ or ∂Ω pointing outward of Ω1 or Ω, [[φ ]] :=

trace
(
φ
∣∣
Ω2

)
− trace

(
φ
∣∣
Ω1

)
and [[σ∂νφ ]]Γ = ∂ν

(
σ2φ

∣∣
Ω2

)
− ∂ν

(
σ1φ

∣∣
Ω1

)
. A known current

Ik is applied to the electrode Ek for k= 1, . . .,m, and the necessary voltages Uk are measured
on the same electrodes. This setup is referred to as the shunt model. In contrast to the complete
electrode model, the shunt model represents an idealized scenario where perfect conduction
between the body and the electrodes is assumed. The corresponding variational formulation
of the shunt electrode model is given by

b(u,v) :=
ˆ
Ω

∇u∇v dx+
ˆ
Γ

γu v ds=
m∑
k=1

Ik
(
v
∣∣
Ek

)
for all v ∈ H1

□ (Ω) ,

withH1
□(Ω) = {v ∈ H1(Ω) : v

∣∣
Ek
= const. for k= 1, . . . ,m}. Since b is continuous and coer-

cive and H1
□(Ω) is a closed subspace of H1(Ω) the non-linear partial differential equation (1)

is uniquely solvable for all γ ∈ L∞+ (Γ) by Lax–Milgram Theorem (set forth in [24]). For a
piecewise constant coefficient function γ ∈ L∞+ (Γ) on a partition Γ1, . . . ,Γn, n⩾ 2, where

Γ1, . . . ,Γn, are pairwise disjoint, measurable and
n⋃

j=1

Γj = Γ,

one can define a forward map F to model the measurements. F : Rn
+ → Sm+ is given by

F (γ) I= U, where u(I)γ solves (1) and u(I)γ

∣∣
Ej
= Uj for j = 1, . . .m. (2)

3



Inverse Problems 41 (2025) 105011 A Brojatsch and B Harrach

Figure 1. The domain Ω= Ω1 ∪Ω2.

Here Sm+ denotes the space of the symmetric positive definite matrices and we identify the
vector γ ∈ Rn

+ with the piecewise constant function (
∑n

j=1 γjχΓj) ∈ L∞+ (Γ). Note thatF(γ) ∈
Sm+ since

ITF (γ)J= b
(
u(I)γ ,u(J)γ

)
for all I,J ∈ Rm

and b is symmetric and coercive.
The physical interpretation of F(γ) is that it represents the measured voltage U ∈ Rm at

the electrodes in response to the applied currents I ∈ Rm. Specifically, the (jk)th component of
F(γ) corresponds to the voltage measured at electrode Ej when a current is applied to electrode
Ek. Hence, we refer to F as the measurement operator and to F(γ) as the current–voltage
measurements. The resulting inverse problem is formulated as follows:

Reconstruct the corrosion parameter γ̂ from the measurements Ŷ := F (γ̂) . (3)

Even if the unique solvability of the inverse problem (3) can be proven, major challenges
arise due to its ill-posedness and the non-convexity of the natural data fitting approach. In
figure 3, we apply the generic MATLAB solver lsqnonlin to minimize the least-squares resid-
ual function

‖F (γ)− Ŷ‖F 2 →min!

using the first order trust-region-reflective algorithm to minimize the least-squares residual
function and demonstrate the difficulty of global reconstruction. Here, we consider the setup
of a small circle inside a larger circle with an equidistant partition Γ = Γ1 ∪ . . .∪Γn and uni-
formly placed electrodes E1, . . . ,Em along the boundary ∂Ω, as in figure 2, with n= 2, m= 4
and bounds a= 1 and b= 5.

To overcome these difficulties, we establish a criterion. For this, one must choose a pri-
ori bounds a< γi < b for i = 1, . . . ,n. The criterion ensures that, for a given number of
electrodes m:

• The inverse problem (3) is uniquely solvable.
• Provide an explicit bound for the Lipschitz stability constant.
• There is a globally convergent reconstruction algorithm.

To compare the least squares data fitting approach from figure 3 with our convex reformu-
lation, which does not require an initial value, we initialize γ(0) = (3,3) and systematically
vary the true corrosion parameter γ̂ = (γ̂1, γ̂2) within the square [a,b]2. Figure 4 illustrates
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Figure 2. Resolution dimension n= 3 and m= 5 electrodes.

Figure 3. Plot of the residual function (top left) and the norm of its gradient (top right)
with γ̂ = (3,3) and the logarithmic error log10(∥γ

(N) − γ̂∥2) for the least squares data
fitting approach (bottom left) with varying initial values γ(0) = (γ

(0)
1 ,γ

(0)
2 ) and the

gradient of the final iterate log10(|∇∥γ(N) − γ̂∥2|) (bottom right).

that convergence can be directly improved through the equivalent convex reformulation, as
proposed in theorem 2. Here, we apply a standard semidefinite programming approach, as
explained in section 4. The key idea behind formulating a criterion that guarantees unique-
ness and global convergence for a given number of electrodes m is based on monotonicity and
convexity relations, as presented in [15].

To formulate the main results, we first introduce some notation. For x,y ∈ Rn, the relation
x⩽ y is understood pointwise, meaning x⩽ y if and only if xi ⩽ yi for i = 1, . . . ,n. Similarly,
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Figure 4. Plot of the logarithmic error log10(∥γ
(N) − γ̂∥2) for our new convex formu-

lation (left) with varying corrosion parameters γ̂ = (γ̂1, γ̂2) and the least squares data
fitting approach (right), with the initial value set to γ(0) = (3,3).

for A,B ∈ Sm, the relation A� B is understood in the Loewner sense, i.e. A� B if and only if
(B−A) is positive semidefinite.

Furthermore let ej ∈ Rn denote jth unit vector, and define e ′j : = 1− ej ∈ Rn as the negated
unit vector, which has a zero at the jth component and ones in all other components.

Theorem 1. For a resolution of dimension n ∈ N, m ∈ N fixed electrodes and n,m⩾ 2 let
F : Rn

+ → Sm be the measurement operator F(γ)I= U as in equation (2). Furthermore let
a,b ∈ R with 0< a< b. If

F ′ (zj,k)dj ⪯̸ 0 for all k ∈ {2, . . . ,K}, j ∈ {1, . . . ,n}, (4)

where

zj,k :=
a
2
e ′j +

(
a+ k

a
4

)
ej ∈ Rn

+, dj :=
2b− a
a

e ′j −
1
2
ej ∈ Rn

and K :=max
(
d 4ba e− 3,2

)
, then the following holds:

(a) F ′(γ) ∈ L(Rn,Sm) is injective for all γ ∈ [a,b]n and for all 0 6= d ∈ Rn,

‖F ′ (γ)d‖2
‖d‖∞

⩾ λ := min
j=1,...,n
k=2,...,K

λmax (F ′ (zj,k)dj)> 0.

(b) F : Rn
+ → Sm is injective and

‖F (γ1)−F (γ2)‖2 ⩾ λ‖γ1 − γ2‖∞

for all γ1,γ2 ∈ [a,b]n i.e. the inverse problem

determine γ̂ ∈ [a,b]n from the knowledge of F (γ̂)

is uniquely solvable.

Criterion (4) allows us to decide whether a number of electrodes is sufficient for unique
solvability of the inverse problem (3). The evaluation of the criterion already provides an

6
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upper bound on the inverse Lipschitz stability constant. The results in theorem 1 generalize
the uniqueness result in theorem 1 in [15] to tighter assumptions. For the proof of theorem 1
in section 2.1 and section 2.2, we will generalize lemma 1 and lemma 2 in [15].

For a fixed number of electrodes m and a resolution of dimension n, one can explicitly
check criterion (4), and therefore decide whether the number and position of the electrodes
is sufficient for unique solvability and Lipschitz stability of the inverse problem. Our second
result provides a criterion for a convex reformulation of the considered inverse problem and
gives an error estimate for noisy data. Note that the assumptions of the following theorem
imply those of theorem 1, as explained in section 2.2.

Theorem 2. Let n,m⩾ 2, F : Rn
+ → Sm be the measurement operator F(γ)I= U and 0<

a< b. For the assumptions

zj,k :=
a
2
e ′j +

(
a+ k

a
4(n− 1)

)
ej ∈ Rn

+, dj :=
2b− a
a

(n− 1)e ′j −
1
2
ej ∈ Rn

and K :=max
(
d 4(n−1)b

a e− 4n− 3,2
)
it holds:

If

F ′ (zj,k)dj ⪯̸ 0 for all k ∈ {2, . . . ,K}, j ∈ {1, . . . ,n}, (5)

then the following holds additionally to the assertions of theorem 1:

(a) The inverse problem

determine γ̂ ∈ [a,b]n from the knowledge of Ŷ= F (γ̂)

is uniquely solvable and γ̂ is the unique minimizer of the convex optimization problem:

minimize
n∑

i=1

γi subject to γ ∈ [a,b]n , F (γ)� Ŷ. (6)

(b) For γ̂ ∈ [a,b]n, δ > 0 and Yδ ∈ Sm, with ‖Ŷ−Yδ‖2 ⩽ δ the convex problem:

minimize
n∑

i=1

γi subject to γ ∈ [a,b]n , F (γ)� Yδ + δI

possesses a minimum, and every such minimum γδ fulfills

‖γ̂− γδ‖∞ ⩽ 2δ (n− 1)
λ

,

with λ :=minj,kλmax (F ′(zj,k)dk).

Theorem 2 follows directly from [15, theorem 1] using the monotonicity and convexity
relations established in lemma 1. The core idea of the proof in [15] is based on a converse
monotonicity result. It is shown that if F satisfies condition (5), then

F (y)�F (x) implies
n∑

i=1

(yi− xi)> 0 for all x,y ∈ Rn
+, x 6= y.

7
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This provides a reformulation of the inverse problem (3) as a convex semi-definite optimization
problem. But here the constant C= (n− 1), which extends the condition of theorem 1, plays
a substantial role.

Lemma 1. The forward map F : Rn
+ → Sm is infinitely many times differentiable and

F ′ : Rn
+ →L(Rn,Sm) is given by

IT (F ′ (γ)δ)J=−
n∑

i=1

δi

ˆ
Γi

u(I)γ u(J)γ dx.

Moreover F is monotonically non-increasing and convex, i.e. it holds

F ′ (γ)δ � 0 for all γ ∈ Rn
+, 0 ⩽ δ ∈ Rn,

F (γ)−F
(
γ(0)

)
� F ′ (γ(0)

)(
γ− γ(0)

)
for all γ,γ(0) ∈ Rn

+.

Proof. This follows directly from lemma 2 and corollary 1 in [14].

Monotonicity and convexity can also be written as

0< γ(0) ⩽ γ(1) implies F
(
γ(0)

)
�F

(
γ(1)

)
,

and for all γ(0),γ(1) ∈ Rn
+, t ∈ [0,1]

F
(
(1− t)γ(0) + tγ(1)

)
� (1− t)F

(
γ(0)

)
+ tF

(
γ(1)

)
.

The equivalence to the differential characterization in lemma 1 is shown in [14, lemma 2].

2.1. A criterion for uniqueness and Lipschitz stability

To prove theorem 1 we first derive a sufficient criterion for unique solvability of the inverse
problem that involves the directional derivatives in arbitrary points x ∈ [a,b]n.

Lemma 2. Let m,n ∈ N, n,m⩾ 2 and F : Rn
+ → Sm be continuously differentiable, monoton-

ically non-increasing and convex.

(a) If for some x ∈ Rn
+

F ′ (x)
(
e ′j − ej

)
⪯̸ 0 for all j ∈ {1, . . . ,n},

then F(x) ′ ∈ L(Rn,Sm) is injective for all x ∈ [a,b]n. Moreover, for all 0 6= d ∈ Rn,

‖F(x) ′ d‖2
‖d‖∞

⩾ λx := min
j=1,...,n

λmax
(
F ′ (x)

(
e ′j − ej

))
> 0. (7)

(b) If x,y ∈ [a,b]n fulfill (7), then

‖F(x)−F(y)‖2 ⩾ λ‖x− y‖∞

with λ :=min{λx,λy}> 0.

Proof. This proof is completely analogous to [15, lemma 1]. But since it is short and simple,
we state it for the sake of completeness.

8
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(a) Let d ∈ Rn with ‖d‖∞ = 1. Then at least one of the entries of d must be either 1 or −1, so
that there exists j ∈ {1, . . . ,n} with either

d⩽ e ′j − ej or − d⩽ e ′j − ej.

Since F is monotonically non-increasing we obtain

F ′ (x)d� F ′ (x)
(
e ′j − ej

)
or F ′ (x)(−d)� F ′ (x)

(
e ′j − ej

)
for every x ∈ [a,b]n so that F ′ (x)d has at least one positive eigenvalue that is larger than
λmax

(
F ′ (x)

(
e ′j − ej

))
or smaller than−λmax

(
F ′ (x)

(
e ′j − ej

))
for every j = 1, . . . ,n. This

proves (a).
(b) With the same argument as in (a) we have for x 6= y either

x− y
‖x− y‖∞

⩽ e ′j − ej or
y− x

‖x− y‖∞
⩽ e ′j − ej.

Hence by monotonicity and convexity we have that either

F(x)−F(y)
‖x− y‖∞

� F ′ (y) x−y
∥x−y∥∞

� F ′ (y)
(
e ′j − ej

)
or

F(y)−F(x)
‖x− y‖∞

� F ′ (x) y−x
∥x−y∥∞

� F ′ (x)
(
e ′j − ej

)
,

which shows that

‖F(x)−F(y)‖2 ⩾ λy‖x− y‖∞ or ‖F(x)−F(y)‖2 ⩾ λx‖x− y‖∞,

so that (b) is proven.

For inverse coefficient problems with finitely many measurements, the assumption

F ′ (x)
(
e ′j − ej

)
⪯̸ 0 (8)

can be interpreted in the sense of localized potentials, since

ITF ′ (x)
(
e ′j − ej

)
I=
ˆ
Γi

(
u(I)γ

)2
dx−

∑
j=1
j ̸=i

ˆ
Γj

(
u(I)γ

)2
dx

for all I ∈ Rm. This expression is positive if one can ensure that the solution is large on some
part of Γ and small on the other parts. For some applications such as the idealized Robin
problem ([15, section 3]) it follows from [15, theorem 2(b)] that these assumptions hold for
all γ ∈ [a,b]n when enough measurements are being used, i.e. if m is sufficiently large. For the
shunt model (1) it remains to be shown that potentials can be localized with a sufficient number
of electrodes, such that the assumptions of theorem 1 are fulfilled. In [20] the authors provide
approximation results of the continuum model by the complete electrode model. These should
hold analogously for the shunt electrode model in the Robin case.

2.2. Checking the assumption with only finitely many tests

To practically determine how many measurements are enough, we will now rewrite the
assumption so that they require evaluations of F ′ for only finitely many points. We finalize
the proof of theorem 1 by generalizing lemma 2 in [15]. Therefore we argue that if one checks

9
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the localized potential property (8) for finitely many points, then the assertions of lemma 2 dir-
ectly follow for the whole required domain. The key idea is that we can replace the evaluation
points of F′ by using the convexity property

F ′ (x)(y− x)� F(y)−F(x)� F ′ (y)(y− x)

and the direction of the derivative by the monotonicity property

F ′ (x)d2 � F ′ (x)d1 for d1 ⩾ d2.

Lemma 3. Let F : Rn
+ → Sm,n,m⩾ 2, be continuously differentiable, convex and monotonic-

ally non-increasing, b⩾ a> 0, C> 0, dj := 2b−a
a Ce ′j − 1

2ej ∈ Rn. Then, for all j ∈ {1, . . . ,n}
and x ∈ [a,b]n, there exists t ∈

[
a+ a

2C ,b+
a
2C

]
⊂ R, so that for all 0⩽ δ ⩽ a

4C ,

F ′ (x)
(
Ce ′j − ej

)
� F ′

(a
2
e ′j +(t− δ)ej

)
dj.

Proof. Let j ∈ {1, . . . ,n} and x ∈ [a,b]n. We define t := xj+ a
2c . Then for all 0⩽ δ ⩽ a

4c

Ce ′j − ej =
2 C
a

(a
2
e ′j +(xj− t)ej

)
⩽ 2 C

a

(
x− a

2
e ′j − tej

)
⩽ 2C

a

(
x−
(a
2
e ′j +(t− δ)ej

))
and

2 C
a

(
x−
(a
2
e ′j +(t− δ)ej

))
⩽ 2 C

a

((
b− a

2

)
e ′j +(xj− t+ δ)ej

)
=

2b− a
a

(n− 1)e ′j +
2(n− 1)

a

(
− a
2C

+ δ
)
ej

⩽ 2b− a
a

Ce ′j −
1
2
ej = dj.

so that we obtain from monotonicity and convexity

F ′ (x)ex
(
Ce ′j − ej

)
� 2C

a
F ′ (x)

(
x−
(a
2
e ′j +(t− δ)ej

))
� 2C

a

(
F(x)−F

(a
2
e ′j +(t− δ)ej

))
� 2C

a
F ′
(a
2
e ′j +(t− δ)ej

)(
x−
(a
2
e ′j +(t− δ)ej

))
� F ′

(a
2
e ′j +(t− δ)ej

)
dj.

Corollary 1. Let C> 0 and j ∈ {1, . . . ,n}. Choose K⩾ 2 so that a+K a
4C ⩾ b+ a

4C . If

(F ′ (zj,k)(dj))⪯̸ 0 for all k ∈ {2, . . . ,K},

with zj,k = a
2e

′
j +
(
a+ k a

4C

)
ej ∈ Rn

+, dj =
2b−a
a Ce ′j − 1

2ej ∈ Rn, then

F ′ (x)
(
Ce ′j − ej

)
⪯̸ 0 for all x ∈ [a,b]n .

10
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Proof. Since a+K a
4C ⩾ b+ a

4C , we have for every t ∈
[
a+ a

2C ,b+
a
2C

]
that(

t−
(
a+K a

4C

))
⩽ a

4C and 0⩽
(
t−
(
a+ 2 a

4C

))
. Therefore there exists k ∈ {2, . . . ,K} so that

δ := t−
(
a+ k

a
4C

)
fulfills 0⩽ δ ⩽ a

4C
,

since one will certainly land in [0, a
4C ] with step size

(
a
4C

)
. The assertion follows from

lemma 3.

Remark. Note that

a+K
a
4C

⩾ b+
a
4C

holds for C= 1 with K⩾ d 4ba e− 3. For C= (n− 1) we need K⩾ d 4(n−1)b
a e− 4n− 3.

Theorem 3. Let m,n ∈ N, n,m⩾ 2 and F : Rn
+ → Sm be continuously differentiable, convex

and monotonically non-increasing. If

F ′ (zj,k)dj ⪯̸ 0 for all k ∈ {2, . . . ,K}, j ∈ {1, . . . ,n},

where

zj,k :=
a
2
e ′j +

(
a+ k

a
4

)
ej ∈ Rn

+, dj :=
2b− a
a

e ′j −
1
2
ej ∈ Rn

and K :=max
(
d 4ba e− 3,2

)
, then the following holds:

(a) F ′(x) ∈ L(Rn,Sm) is injective for all x ∈ [a,b]n and for all 0 6= d ∈ Rn,

‖F ′ (x)d‖2
‖d‖∞

⩾ λ := min
j=1,...,n
k=2,...,K

λmax (F
′ (zj,k)dj)> 0.

(b) F : Rn
+ → Sm is injective and

‖F(x1)−F(x2)‖2 ⩾ λ‖x1 − x2‖∞

for all x1,x2 ∈ [a,b]n i.e. the inverse problem

determine x̂ ∈ [a,b]n from the knowledge of F(x̂) .

is uniquely solvable.

Proof. Follows directly from lemma 2 and corollary 1.

This completes the proof of theorem 1, since the constructed forwardmapF is continuously
differentiable, convex andmonotonically non-increasing by lemma 1. Note that ifF fulfills the
assumptions of theorem 2, thenF is already injective, i.e. the inverse problem of reconstructing
γ̂ from F(γ̂) is uniquely solvable, since theorem 3 holds for both C= 1 and for C= (n− 1).
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3. Numerical results

In section 2, we established a criterion to verify whether a given number of electrodes is suffi-
cient to guarantee the unique solvability of the inverse Robin problem. Additionally, we refor-
mulated the reconstruction problem as a convex semidefinite optimization problem.

We have managed to overcome the non-convexity of the natural data fitting approach, as
illustrated in figure 3. For a given resolution and electrodes of fixed sizes and positions, (4)
can be used to verify unique solvability, while (5) ensures an equivalent convex reformulation.
However, there is no general guarantee that these criteria will be met with a finite number of
electrodes. It remains to be numerically verified that Criteria (4) and (5)

λ= min
j=1,...,n
k=2,...,K

λmax (F ′ (zj,k)dj)> 0

hold, with zj,k and dj chosen accordingly for all k ∈ {2, . . . ,K}, j ∈ {1, . . . ,n} as in theorem 1
and theorem 2. For this purpose, we consider a simple geometry of a small circle in a large
circle. The boundary Γ is partitioned into Γ1 ∪ . . .∪Γn with equidistant segments, and elec-
trodes E1, . . . ,Em are uniformly placed along the boundary, as illustrated in figure 2.

Note that that criteria (4) and (5) provide upper bounds for the inverse stability constant
1/λ. Once uniqueness and global convergence are established, efforts can be made toward
further improving the stability constant λ. In general, the bound obtained from theorem 1
is more favorable than that from theorem 2, as theorem 2 considers more evaluation points
than theorem 1. As illustrated in figure 7, the value of λ improves by taking more electrodes.
Nevertheless the ill-posedness of the inverse problem remains, so that λ goes to 0 as the res-
olution dimension n increases.

3.1. Implementation of the forward operator

Motivated by [14] we discretize the forward map by calculating the element stiffness matrices
B0,B1, . . . ,Bn ∈ SD and element load vectors y1, . . . ,ym ∈ RD, where D is the dimension of
the linear span < Λ1, . . . ,ΛD >⊂ H1

□(Ω), the element stiffness matrices are given by

B0 =

(ˆ
Ω

σ∇Λi∇Λj dx

)
i,j=1,...,D

, Bk =
(ˆ

Γk

Λi Λj ds

)
i,j=1,...,D

for k= 1, . . . ,n and the element load vectors are given by

yk =

 m∑
j=1

(ek)jΛi

∣∣
Ej


i=1,...,D

=
(
Λi

∣∣
Ek

)
i=1,...,D

for k= 1, . . . ,m. Note that the chosen basis functions Λi are constant along the electrodes,
since < Λ1, . . . ,ΛD > has to be a subspace of H1

□(Ω). With P := (y1, . . . ,ym) the discretized
forward map is given by

F : Rn
+ → Sm+, γ 7→ PT

(
B0 +

n∑
i=1

γiBi

)−1

P

12
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Figure 5. Plot of the required number of electrodesm for Criterion (4) andλ for different
resolution dimensions n with a= 1 and b= 5. The dashed line describes λ calculated
with five extra electrodes.

where the matrix
(
B0 +

∑n
i=1 γiBi

)
is symmetric and positive definite, since the bilinear form

bγ is symmetric and coercive. Note that the discretized forward map remains to be infinitely
often differentiable with

F ′ (γ)δ =−
n∑

i=1

δiP
T

B0 +
n∑

j=1

γjBj

−T

Bi

B0 +
n∑

j=1

γjBj

−1

P

by [14, lemma 3]. Moreover F is monotonically non-increasing and convex by [14, lemma 4].

3.2. Condition for uniqueness and Lipschitz stability

In this section, we check for different resolutions whether there is a sufficient number of elec-
trodes such that condition (4) is satisfied. For all of our exemplary calculations we use the
geometry of a small circle inside a large circle with an equidistant partition Γ = Γ1 ∪ . . .∪Γn
and uniformly placed electrodes E1, . . . ,Em at the boundary as in figure 2. We compute

λ= min
j=1,...,n
k=2,...,K

λmax (F ′ (zj,k)dj)

with zj,k,dj for k ∈ {2, . . . ,K}, j ∈ {1, . . . ,n} chosen accordingly to criterion (4) and check if
λ is positive. In figure 5, we depict the smallest number electrodes so that λ is positive and in
particular criterion (4) is satisfied. We therefore achieve unique reconstruction of the corrosion
parameter and an upper bound on the Lipschitz stability, i.e.

‖F (γ1)−F (γ2)‖2 ⩾ λ‖γ1 − γ2‖∞ for all γ1,γ2 ∈ [a,b]n .

In figure 5, we also compute λ for the required number of electrodes and additionally with
five extra electrodes to improve stability. However, as shown in figure 7, for a fixed resolution,
the stability constant λ increases with the number of electrodes m.

3.3. Condition for convex reformulation

Uniqueness and Lipschitz stability do not guarantee the existence of a globally convergent
reconstruction algorithm. To establish the convex semidefinite reformulation, it is necessary to

13
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Figure 6. Plot of the required number of electrodesm for criterion (5) and λ for different
resolutions dimensions n with a= 1 and b= 5. The dashed line describes λ calculated
with five extra electrodes.

Figure 7. The constantsλ1 from theorem 1 andλ2 from theorem 2with a fixed resolution
dimension n= 4 and bounds a= 1, b= 5 for an increasing number of electrodes m.

verify Condition (5) from theorem 2 under themore restrictive assumptions. Figure 6 illustrates
the number of electrodes needed to satisfy criterion (5) for a given resolution, along with the
corresponding value of λ. We achieve a convex reformulation

minimize
n∑

i=1

γi subject to γ ∈ [a,b]n , F (γ)� Ŷ= F (γ̂) (9)

of the inverse problem (3). In this case λ decreases even more rapidly than in condition (4).
This behavior is anticipated since theorem 2 requires verifying the criterion at more evaluation
points.

In the setting of theorem 2, the constant λ is also growing with an increasing number of
electrodes m, as illustrated in figure 7. Notably, the value of 1/λ provides an upper bound for
the inverse stability constant, since

‖F (γ1)−F (γ2)‖2 ⩾ λ‖γ1 − γ2‖∞ for all γ1,γ2 ∈ [a,b]n .

14
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Figure 8. Plot of the admissible set without and with noise.

The stability is illustrated in figure 8 where one can observe that the reconstruction corres-
ponding to the minimal l1-norm remains close to the true solution, even in the presence of
noise. However, it is important to note that 1/λ, inevitably tends to infinity as the resolution
increases, regardless of the method used for its computation. This limitation is an inherent con-
sequence of the ill-posedness of the inverse problem, which remains a fundamental challenge
in the study of nonlinear inverse coefficient problems.

Example 1. In figure 8, we plot the admissible set

{γ ∈ [a,b]2 : F (γ)� Ŷ}

for the convex problem (9), considering the parameters a= 1, b= 5, γ̂ = (3,3), a resolution
dimension of n= 2, and m= 4 tested electrodes. Additionally, we add random noise to Ŷ=
F(γ̂) such that ‖Yδ − Ŷ‖2 ⩽ δ, and compute

{γ ∈ [a,b]2 : F (γ)� Yδ + δI}

for δ = 0,10−4,10−3,10−2.

3.4. Numerical solver

In all numerical experiments presented in this article, we consider the discretized form of the
nonlinear inverse problem

reconstruct γ̂ ∈ Rn
+ from Ŷ := F (γ̂) , (10)

15
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where the discretized forward map F : Rn
+ → Sm+ ⊂ Rm×m is given by

F (γ) = PT
(
B0 +

n∑
i=1

γjBj

)−1

P.

Here Bj ∈ SD, j = 1, . . . ,n, and P ∈ RD×m are the element stiffness matrices and the element
load vectors, respectively, as introduced in section 3. We claim to have a global reconstruc-
tion algorithm by reformulating the inverse problem to a minimization problem with a linear
objective function and constrains that are convex in the Loewner sense.

Lemma 4. Let

Bj :=

(
Bj 0
0 0

)
∈ R(D+m)×(D+m), and Y :=

(
B0 P
PT Ŷ

)
∈ R(D+m)×(D+m).

Then

F (γ)� Ŷ if and only if γ1B1 + . . .+ γnBn+Y� 0.

Proof. The assertion follows from the fact that Ŷ−PT
(
B0 +

∑n
j=1 γjBj

)−1
P is the Schur

complement of

( (
B0 +

∑n
j=1 γjBj

)
P

PT Ŷ

)
and that

(
B0 +

∑n
j=1 γjBj

)
� 0.

So the convex Problem

minimize
n∑

i=1

γi subject to γ ∈ [a,b]n , F (γ)� Ŷ

can be rewritten as

minimize
n∑

i=1

γi subject to γ ∈ [a,b]n , γ1B1 + . . .+ γnBn �−Y. (11)

Problem (11) can now be solved using standard semidefinite programming methods.
Notably, we have established a formal equivalence, meaning that solving the discretized
inverse problem (10) is mathematically equivalent to solving the corresponding semidefinite
program. Consequently, the solutions obtained from both formulations are identical.

Example 2. For the example of a small circle in a large circle, as depicted in figure 2, with a
resolution dimension of n= 20 and bounds a= 1, b= 5, the constant λ for m= 30 electrodes,
computed according to theorem 1, satisfies λ⩽ 1.3 · 10−14. Similarly, for theorem 2, we obtain
λ⩽ 1.2 · 10−15. Despite this stability constant being close to machine precision, the semidef-
inite program (11) with d= 1081 elements successfully reconstructs the parameter γ̂ with a
precision of ‖γ̂− γN‖∞ ⩽ 3 · 10−4. Even when random noise is added to the measurement
data Ŷ, the perturbed problem

minimize
n∑

i=1

γi subject to γ ∈ [a,b]n , F (γ)� Yδ + δI,

with a noise level of ‖Ŷ−Yδ‖2 ⩽ δ, maintains an accuracy that is far better than the error
estimate provided by theorem 2, as depicted in figure 9.

16



Inverse Problems 41 (2025) 105011 A Brojatsch and B Harrach

Figure 9. Reconstruction results using the equivalent semidefinite program for a res-
olution dimension n= 20, bounds a= 1, b= 5, number of electrodes m= 30 and noise
levels δ = 10−1,10−2, ·10−10,0.

4. Conclusion

This work presents the first explicit characterization of the number of electrodes required to
guarantee uniqueness, as well as an explicit convex reformulation of the nonlinear inverse
problem that enables the global reconstruction of the unique solution from finitely many
measurements. Previous results have primarily been limited to theoretical uniqueness proofs,
whereas our approach provides a computable criterion that ensures both uniqueness and global
convergence in a nonlinear inverse problem.

By translating recent advances in global reconstruction techniques to the realistic electrode
model, we derive an explicit and verifiable criterion for unique solvability. Once a suitable
geometry has been chosen, with electrodes of fixed sizes and positions placed at the boundary,
the forward problem can be simulated. By performing a finite number of forward evaluations,
Conditions (4) and (5) can be verified numerically by calculating a value λ ∈ R and checking
if it is positive. If λ> 0, the inverse problem can be rewritten as a uniquely solvable convex
semidefinite program, with a bound 1/λ on the stability constant of the inverse problem. In
cases where the conditions are not satisfied (i.e. λ⩽ 0), additional electrodes may be applied,
and the procedure can be repeated until a sufficient number of electrodes is reached.

The numerical experiments in figures 5–7 confirm that the proposed criteria are satisfied
when a sufficient number of electrodes is present. It is important to note, however, that the cri-
terion provides only a sufficient condition for uniqueness, theremay exist values ofm for which
the inverse problem is uniquely solvable, even though the convex optimization approach does
not succeed. While the parameter λ reaches machine precision at relatively low resolutions, as
shown in figure 7, that reconstruction in our experiments is still accurate at significantly higher
resolutions, as illustrated in example 2. Moreover, further refinements may be achievable, as
the given criteria provide only an upper bound for the stability constant.

Through the convex reformulation, we obtain a globally convergent reconstruction method,
but globally convergent methods may also be possible without convex reformulations. There
exist non-convex globally convergent reconstruction methods, which are often restricted to
cases where the number of measurements equals the number of unknowns [6, 13]. In [1], the
authors consider a concave formulation in order to aim at global convergence.
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A key advantage of our method is the ability to explicitly compute Lipschitz and error
amplification constants. Nonetheless, the resulting stability bounds are not guaranteed to be
sharp. Despite successfully finding an equivalent formulation of the nonlinear inverse problem
as a semidefinite problem, the fundamental ill-posedness remains a major challenge. Future
research could focus on improving the stability bounds, optimizing electrode configurations,
and extending the approach to the Calderón problem.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the
authors.
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