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Abstract

In this work, we study the approximation of expected values of functional quantities on
the solution of a stochastic differential equation (SDE), where we replace the Monte Carlo
estimation with the evaluation of a deep neural network. Once the neural network training
is done, the evaluation of the resulting approximating function is computationally highly
efficient so that using deep neural networks to replace costly Monte Carlo integration
is appealing, e.g., for near real-time computations in quantitative finance. However, the
drawback of these nowadays widespread ideas lies in the fact that training a suitable neural
network is likely to be prohibitive in terms of computational cost. We address this drawback
here by introducing a multilevel approach to the training of deep neural networks. More
precisely, we combine the deep learning algorithm introduced by Beck et al. Beck et al.
(2018) with the idea of multilevel Monte Carlo path simulation of Giles Giles (2008a). The
idea is to train several neural networks, each having a certain approximation quality and
computational complexity, with training data computed from so-called level estimators,
introduced by Giles Giles (2008a). We show that under certain assumptions, the variance
in the training process can be reduced by shifting most of the computational workload to
training neural nets at coarse levels where producing the training data sets is comparably
cheap, whereas training the neural nets corresponding to the fine levels requires only a
limited number of training data sets. We formulate a complexity theorem showing that the
multilevel idea can indeed reduce computational complexity.

Keywords: deep learning, multilevel, Monte Carlo, computational complexity

1. Introduction

Consider a multi-dimensional SDE

dS(t) = µ(S, t) dt+ σ(S, t) dW (t), 0 < t ≤ T, (1.1)

with initial value S0, drift µ(S, t) and volatility σ(S, t), which under certain conditions has
a pathwise unique strong solution S(t), see, e.g., Kloeden et al. (2012). We are interested
in the expected value V (S(T )), where V (S) is a scalar function (payoff) and S the solution

. The opinions expressed in this article are those of the authors and do not necessarily reflect views of
Deka Investment GmbH.
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of the above SDE. The Milstein discretization of the SDE with step-width h is of the form

Ŝn+1 = Ŝn + µ(Ŝn, tn)h+ σ(Ŝn, tn)
√
h∆Zn

+
1

2
σ(Ŝn, tn)σ′(Ŝn, tn)

(
(
√
h∆Zn)2 − h

)
,

(1.2)

with ∆Zn i.i.d. standard normal for n = 0, . . . , T/h− 1, tn = nh, and Ŝ0 = S0. We denote
the approximation of V (S(T )) using step-width h as follows:

Ph := V (ŜT/h). (1.3)

The mean of the sampled payoff values given by N−1
∑N

i=1 P
(i)
h from N independent path

simulations, is the simplest estimate of E[V (S(T ))]. Assuming certain conditions on the
drift, volatility and payoff, see e.g. Kloeden et al. (2012), the estimators’ mean squared
error (MSE) is asymptotically of the form

MSE ≈ c1N
−1 + c2h

2,

with positive constants c1, c2. Hence, we can achieve an error bound of O(ε2), for any
ε > 0, at a computational complexity of order O(ε−3) for the MSE, i.e., it would require
that N = O(ε−2) and h = O(ε−1). Giles (2008a) introduced the idea of multilevel Monte
Carlo simulation, which achieves a complexity reduction. Under certain conditions and
assuming, e.g., a Lipschitz-continuous payoff and the Milstein scheme, the complexity can
be reduced to O(ε−2), see Giles (2008b).

Let Pl denote the approximations, defined by (1.3), using the discretizations hl = 2−lT
for l = 0, 1, . . . , L. We have

E[PhL ] = E[Ph0 ] +
L∑
l=1

E[Phl − Phl−1
]

and the multilevel Monte Carlo idea is to independently estimate each of the expectations
on the right-hand side. Therefore, consider the following so-called level estimators for E[Ph0 ]
and E[Phl − Phl−1

] defined by

Ŷl =

{
N−1

0

∑N0
i=1 P

(i)
h0

for l = 0,

N−1
l

∑Nl
i=1

(
P

(i)
hl
− P (i)

hl−1

)
, for l > 0,

(1.4)

using Nl paths and where the two discrete approximations P
(i)
hl

and P
(i)
hl−1

come from the

same Brownian path, such that the difference P
(i)
hl
− P (i)

hl−1
is often small due to the strong

convergence properties of the Milstein scheme, see, e.g., Giles (2008a) for further explana-
tions. The final multilevel estimator Ŷ is given by the sum of the level estimators:

Ŷ =

L∑
l=0

Ŷl. (1.5)
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The complexity reduction of the multilevel approach depends on the level estimators
(1.4). Giles presented a quite general complexity theorem that can be applied to a variety
of financial models and payoffs without using a specific numerical approximation scheme.
Further studies are e.g. made in Giles (2008b).

In practice, the volatility term σ(·, ·) is persistently re-calibrated as it depends on the
market-implied volatility. Instead of contributing new price computations arising from an
updated volatility term, this work’s key motivation is to replace these by estimating an
appropriately trained neural network N . We refer to Higham and Higham (2019) for an
in-depth introduction to neural network training. As a first focus in this work, we will study
different approaches to generate the necessary training data and correctly choose the input
parameters.

The neural network maps the parameter vector (inputs) to the expected value of a payoff
function (output). Thus, we reformulate the issue as a suitable stochastic optimization
problem and solve it through an artificial neural network approximation. We extend the
above considerations to a set of stochastic differential equations and to a family of payoff
functions. Consider the multi-dimensional stochastic differential equation

dS(t) = µ(S, t, a) dt+ σ(S, t, b) dW (t), 0 < t ≤ T, (1.6)

with initial value S(0) = s0 ∈ R+, time of maturity T ∈ R+, drift µ(S, t, a) and volatility
σ(S, t, b), with a = (a1, . . . , am) ∈ Rm and b = (b1, . . . , bs) ∈ Rs.

Let the stochastic process Sa,b,s0,T be the solution of the SDE (1.6) defined by the param-
eters a, b, s0 and T . Consider a family of payoff functions V (S, v), with v = (v1, . . . , vr) ∈ Rr.
Then, we will be interested in the expected value of

P : y 7→ V (Sa,b,s0,T (T ), v) , (1.7)

for fixed

y := (a, b, v, s0, T ) ∈ Y ⊂ RV × R2
+, (1.8)

with V = m + s + r. We call Y the training set, i.e. it contains all parameter vectors of
interest. Finally, we will be interested in

P̄ : y 7→ E[P (y)], (1.9)

the input (model and payoff parameters) to price (expected value of the payoff) map and
we aim to find an appropriate neuronal network for its approximation, i.e. a network
N : Y → R minimizing ∥∥P̄ (y)−N (y)

∥∥
Lp
, (1.10)

for 1 ≤ p ≤ ∞.

One intuitive approach to efficiently generate training data (outputs) for learning such a
network is to use, e.g., a multilevel Monte Carlo estimator for reasonably chosen or randomly
selected input values (for a high-dimensional case). One chooses a proper set of inputs of
the form (1.8) and estimates the outputs (1.9) at the required accuracy.
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However, Beck et al. (2018) presented an alternative approach: rather than using esti-
mated prices for chosen input values, they use the individual sampled paths of the single
level estimator (1.3) for randomly selected input values. In other words, one uses randomly
sampled inputs and estimates single paths of (1.7), instead of (1.9), as outputs. Within
this work, we will compare both approaches with respect to computational complexity.

This work’s main idea is to use the advantages of the multilevel Monte Carlo path
simulation and combine it with the procedure of using only single paths as training data.
I.e., we will present an approach, which trains several neural networks Nl : Y → R, for
l = 0, 1, . . . , L, where each network uses paths of the multilevel level estimators (1.5) as
training data. We will call this approach multilevel Monte Carlo learning.

Therefore, lets shortly extend the ideas of the Milstein payoff discretization (1.3) and
the multilevel level estimators (1.5) to the reformulated optimization probelem (1.10) on a
training set Y .

Consider using the Milstein scheme (1.2), with step-width h, as an approximation of the
solution of SDE (1.6), leading to

Ph : y 7→ V

((
Ŝa,b,s0,T

)
T/h

, v

)
, (1.11)

as an approximation of (1.7).

Similar ideas lead to paths of the level estimators on the training set given by

Ŷl : y 7→

{
Ph0(y) for l = 0,

Phl(y)− Phl−1
(y)), for l > 0.

(1.12)

Hence, instead of using (1.11) for the training data, the training data for each network Nl
will be simulated by using the paths (1.12). All things considered, the multilevel Monte
Carlo training approach searches the approximation

N̂ :=
L∑
l=0

Nl, (1.13)

which minimize (1.10).

The rest of this work’s structure is as follows: First of all, we will present an introductory
example to show a possible strength and an easy implementation for which no theoretical
knowledge is needed.

Section 2 will briefly review and compare both of the approaches mentioned above, using
one neural network with respect to the computational complexity. We will call these single-
level approaches. The derived complexities will be the references for this work’s primary
goal, further complexity reductions. Then, the main complexity theorem and an extension
of numerical examples will be presented. Sections 3 and 4 will give some possible exten-
sions and a conclusion. In the appendix, we will discuss some mathematical background
and present the proof. Furthermore, we will give some numerical results, studying the
convergence with respect to the batch-size and some variance reduction effects.
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1.1 Introductory example

We start by presenting an easy and short procedure to implement the multilevel approach,
to which no further theoretical background knowledge is necessary for its application.

Consider the following procedure to train a neural network to achieve the required
accuracy. The practitioner chooses a promising network structure, fixes a limit for the
number of training steps, chooses a batch-size (training data used in each training step),
and uses the training algorithm as stated in Beck et al. (2018). The approach computes the
needed training data in each training step by using single paths, as in (1.11), on randomly
selected inputs. If the resulting network does not achieve the required accuracy, the training
process is repeated from scratch using increased batch-size, increased training steps, or
adjusted network structure.

The examples in this section will use the following variation: Though, using a fixed
amount of training steps and fixed network structure for all training processes, we gradually
increase the batch-size until the required accuracy is achieved. We will use a five-dimensional
training set from a geometric Brownian motion’s initial parameters since a closed solution
is available for this example.

1.1.1 Single-level learning example

First, we train a single neural network, by successively increasing the batch-size, until the
required accuracy is achieved. Consider a geometric Brownian motion

dS(t) = µS(t) dt+ σS(t) dW (t), 0 < t ≤ T, (1.14)

with initial value S(0) = s0, constant drift µ and constant volatility σ.
Furthermore, consider a European call option given by

V (S,K) := max{S −K, 0}, (1.15)

with fixed strike price K. Hence, we want to approximate

P : y 7→ V (Sµ,σ,s0,T (T ),K)

with y = (µ, σ, s0, T,K) ∈ Y . Technically, the final price is denoted as the discounted
expected payoff, which, for simplicity, we omit here.

Consider the training set Y ⊂ R5 to be of the specific form:

Y = [0.02, 0.05]× [0.1, 0.2]× [80, 120]× [0.9, 1.0]× [109, 110].

It is well known that the GBM (1.14) together with payoff (1.15) lead to a closed solution
for the option price for each y ∈ Y , see e.g. Hull (2008).

The idea is to train a neural network to evaluate the expected value up to a required
error ε for each input vector y within the training set Y . E.g., requiring accuracy of ε = 0.01
(L∞-error) of the trained network we use the feasible step-width h = 1/128 for the Milstein
scheme and the paths discretiazion (1.11).

As introduced above, we will use the algorithm of Beck et al., to which the PYTHON
source code can be found in section 4 of Beck et al. (2018). The code uses the open-source
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Parameter Value

neurons (50, 50, 1)
decay rate 0.1
initial learning rate 0.01
step rate 40.000
training steps 150.000

Table 1.1: Structure and learning rate parameters for each neural network.

batch-size mean of L∞ time (hours)
125.000 0.0273 2.32h
500.000 0.0180 7h

2.000.000 0.0119 26.66h

Table 1.2: Mean of the L∞-error for the single-level algorithms using the Milstein discretiza-
tion (1.2), whereat the simulations were repeated 10 times. The last column
shows the computation time using a Nvidia K80 GPU.

software library TensorFlow. For our tests, we slightly modify the code: instead of using
fixed learning-rate boundaries, we use exponential decay, which, however, would deliver
similar results for specific decay parameters.

We obtained feasible results using network structure and training parameters for the
introduced training set, as stated in table 1.1, see Higham and Higham (2019) for further
parameter explanations. The results of the training processes for increasing batch-sizes
can be found in table 1.2. The computations were made on an Nvidia K80 GPU and
were repeated 10 times for each batch-size. The L∞ error was estimated by comparing the
approximation with the closed solution on 2.000.000 randomly selected initial parameter
vectors.

We see that a batch-size of 2.000.000 achieves a feasible accuracy, to which the training
process took 26.66 hours.

1.1.2 multilevel learning example

Now, we explain the procedure for the multilevel approach. To present easy comparable
results, we use the same network structure and amount of training steps used for the single-
level approach for each of the networks we will train. Furthermore, we will use the same
model setting and training set, as in the example above. However, we will use individualized
batch-sizes. We will increase these likewise until the required accuracy is achieved.

We use the paths of the level estimators, as described in (1.12), to compute the training
data in each training step. We present the modification of the code of Beck et al. used for
the simulation of the level estimators’ paths, e.g., for P̂1 − P̂0, in listing 1 in the appendix.

The used batch-sizes Ml for each net and the amount of levels/nets L are calculated with
the multilevel sample estimator of Giles suggested in Giles (2008a) (for which MATLAB
codes can be found in Giles). The code originally estimates the Monte Carlo sample-sizes Nl

and amount of levels L needed for the Multilevel approach to achieve a required accuracy ε.
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level l 0 1 2 3 4 5 6 7
Nl 3.000.000 72695 27756 10550 3691 1308 476 182

Table 1.3: Estimated needed Monte Carlo samples Nl for the Multilevel Monte Carlo ap-
proach for y = (0.05, 0.2, 100, 1, 110).

multilevel id level l 0 1 2 3 4 5 6 7
1 Ml 75.000 1817 690 264 93 33 12 5
2 Ml 300.000 7268 2760 1056 372 132 48 20
3 Ml 1.200.000 29072 11040 4224 1488 528 192 80

Table 1.4: Estimated needed batch-size for the training of the specific level nets for l =
0, . . . , 7.

Let us present an example of its application. For e.g. ε = 0.01 and y = (0.05, 0.2, 100, 1, 110)
the code delivers parameters as stated in table 1.3.

For the multilevel approach, we use these sample-sizes in the following way: We use
the multilevel sample-ratios Nl/N0, for l = 1, . . . L, as the multilevel batch-size-ratios.
Furthermore, we use the amount of multilevel levels L as the amount of multilevel networks.

I.e. we will multiply the above ratios with the initial batch-size M0 used for network
N0. Hence, we obtain Ml = M0 · Nl/N0 for l = 1, . . . L as the batch-sizes of the networks
Nl.

If we, e.g., study the ratios in table 1.3, we see that the ratio between level one and
level zero is given by N1/N0 = 72.695/3.000.000 ≈ 0.024. Now, by multiplying this ratio
to an initial batch-size of e.g. M0 = 75.000 delivers the batch-size M1 = 1817, for the net
N1 on level l = 1. With increasing initial batch-sizes M0, we obtain the batch-sizes for the
remaining networks as presented in table 1.4, at which, for a certain initial batch-size, we
summarized the set of batch-sizes to a so-called multilevel id.

The multilevel training results using the estimated amount of levels and batch-sizes and
its comparison to the single-level approach are given in table 1.5.

single-level multilevel
batch-size mean error (time) id mean error (time)
125.000 0.0273 (2.32h) 1 0.0290 (4.15h)
500.000 0.0182 (7h) 2 0.0184 (5.29h)

2.000.000 0.0119 (26.66h) 3 0.0103 (11.18h)

Table 1.5: Mean of the L∞-error for the single-level algorithm using the Milstein discretiza-
tion (second column). The fourth column shows the mean of the L∞-error for
the multilevel algorithm using respective batch-sizes as presented in table 1.4.
All simulations were repeated 10 times. The brackets show needed computation
time using a Nvidia K80 GPU.
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Using the network structure, learning rates, and training steps of the single-level ap-
proach, we see that the multilevel approach leads to significant time-saving. For the lowest
chosen batch-size (125.000), we see that single-level learning is slightly faster than multilevel
learning. A reason for this could be that learning 8 neural networks results in higher basic
costs. However, if we require a higher error bound, e.g., as achieved for this low batch-size,
the above-introduced procedure would suggest fewer neural networks.

2. Neural network training

In this section, we will study the error sources and computational costs. Therefore, we start
with a more profound introduction to neural network training. Then, we compare the first
introduced approach and the approach used in section 1.1.1 with respect to computational
complexity. The second subsection will introduce the multilevel approach and present the
computational complexity theorem.

2.1 Single-level: error sources and complexity

First, we want to discuss some neural networks’ properties and their training processes,
such as error sources and computational cost. For a more general introduction to neural
networks, we refer to Higham and Higham (2019). This work aims to train a neural network
in such a way that it is capable of evaluating the expected value up to a required error ε
for each input vector within the training set Y .

We study the training process of a generic artificial neural network (see e.g. (A) for the
definition) which is given by the following series of functions

Nν,θi,Ph,LM : Y → R, (2.1)

for i = 1, . . . ,K, with initial weights θ0. I.e. each of the K training steps modifies the
weights θi ∈ Rν and hence defines a new element of the series. For each training process, we
fix the network structure ν (layers and neurons), the approach Ph to generate the training
data and the amount of samples M (batch-size) used to evaluate the loss function LM .

I.e., we will neither modify the estimation Ph nor the batch-size M during each of the
training processes.

Demanding a specific error bound ε, the challenge consists of choosing the most efficient
parameters ν,M, h, and K.

Since, using a stochastic gradient descent algorithm, we will study the expectation of
(1.10). Therefore, we will be interested in finding certain weights after K trainings steps
satisfying

E
[∥∥P̄ (y)−Nν,θK ,Ph,LM (y)

∥∥2

L1

]
< ε2, (2.2)

for a required error ε > 0. Using the standard variance expansion, the left hand side can
be expanded to

V
[∥∥P̄ (y)−Nν,θK ,Ph,LM (y)

∥∥
L1

]
+ E

[∥∥P̄ (y)−Nν,θK ,Ph,LM (y)
∥∥
L1

]2
. (2.3)

8



Multilevel Monte Carlo learning

We specify the error sources by further decomposing the inner term of (2.2) to obtain∥∥P̄ (y)−Nν,θK ,Ph,LM (y)
∥∥
L1 ≤

∥∥P̄ (y)− E[Ph(y)]
∥∥
L1 (e1)

+
∥∥E[Ph(y)]−Nν,Θ,E[Ph],L(y)

∥∥
L1 (e2)

+
∥∥Nν,Θ,E[Ph],L(y)−Nν,Θ,Ph,L(y)

∥∥
L1 (e3)

+ ‖Nν,Θ,Ph,L(y)−Nν,θK ,Ph,L(y)‖L1 (e4)

+ ‖Nν,θK ,Ph,L(y)−Nν,θK ,Ph,LM (y)‖L1 . (e5)

Let us shortly explain the above individual error sources, whereat we will have further
studies on the mathematical background of the decomposition in appendix A. The first line
(e1) describes the error made through the discretization of the stochastic process, using
a discretization scheme with step-width h. Error (e2) describes the error made through
the approximation of this function with a neural network with fixed structure ν, whereat
here we assume to know the best respective weights Θ (best fit). The error arising in (e3)
results from the statistical error of using an approximation of the expectation. Finally, the
optimization algorithm using K iteration steps leads to (e4) and the approximation of the
loss function by M samples per training step results in (e5).

Since, we assume a fixed neural network structure ν, the computational complexity CN
of the training process for a neural network can be bounded by

CN ≤ c (K · cost training step)

with a positive constant c, where each of the K training steps consist of the computation
of the training data, evaluating of the loss function and modifying the weights to minimize
the loss function.

Now, we want to compare both methods mentioned in the introduction based on this er-
ror decomposition. The first approach uses an estimation of the expectation (e.g., computed
through multilevel Monte Carlo) as Ph, computed typically on deterministically selected in-
put parameters (for a low dimensional case). The second approach, introduced by Beck
et al. (2018), uses only single paths instead of an expectation estimation, as Ph, computed
on randomly selected input parameter vectors.

At a first glance, if choosing a proper h, both approaches should have similar proper-
ties for the error sources (e1), (e2) and (e4), but differ in (e3), (e5) and obviously in the
computation cost. However, as we will see in appendix A.3, error (e3) is negligible. Now,
by interpreting (e5) as an integral approximation problem using M samples for the esti-
mation, a possible description of the differences could be as follows: While we expect the
first approach to have higher convergence order with respect to batch-size, it may suffer
under the curse of dimensionality for high dimensional training sets. On the other hand, we
expect the approach of Beck et al. (2018) to have a lower convergence order with respect
to batch-size, but it could be computed without suffering from the curse of dimensionality.
Furthermore, as explained in the introduction, the cost for the training data computed with
the first approach is of order O(ε−2, where the cost for a path is of order O(h−1).

Both approaches, using somewhat simplified assumptions, could lead to similar com-
plexities presented in the following two lemmata for a low-dimensional case. For the first
approach, studied in lemma 2.1, we assume the convergence order of the loss function with
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respect to M (batch-size) to be one. For the second approach, studied in lemma 2.2, we
assume the loss function’s convergence order with respect to M to be 1/2. For both ap-
proaches, we will assume a convergence of 1/2 with respect to training steps K, and we
consider a network structure ν such that (e2) can be neglected.

Lemma 2.1 Consider the training of a neural network, as described in (2.1), for the ap-
proximation of (1.9) on a training set Y ⊂ R. If there exist positive constants c1, c2, c3 and
c4 such that the decomposition (e1)-(e5) of (2.2) can be bounded by

(e1) ≤ 1

4
ε, E[(e4)] ≤ c3K

−1/2, E[(e5)] ≤ c2M
−1,

(e2) ≤ 1

4
ε, V[(e4)] ≤ c2

3K
−1, V[(e5)] ≤ c2

2M
−2,

(e3) = 0,

such that the computational complexity of the training is be bounded by

CN ≤ c4KMε−2.

Then there exist positive constants c5,M and K such that the overall error (2.2) can be
bounded by ε2 with a computational complexity bound of

CN ≤ c5ε
−5.

Proof See appendix B.

Lemma 2.2 Consider the training of a neural network, as described in (2.1), for the ap-
proximation of (1.9) on a training set Y ⊂ R. If there exist positive constants c1, c2, c3 and
c4 such that the decomposition (e1)-(e5) of (2.2) can be bounded by

(e1) ≤ c1h, E[(e4)] ≤ c3K
−1/2, E[(e5)] ≤ c2M

−1/2,

(e2) ≤ 1

4
ε, V[(e4)] ≤ c2

3K
−1, V[(e5)] ≤ c2

2M
−1,

(e3) = 0,

such that the computational complexity of the training is be bounded by

CN ≤ c4KMh−1.

Then there exist positive constants c5, h,M and K such that the overall error (2.2) can be
bounded by ε2 with a computational complexity bound of

CN ≤ c5ε
−5.

Proof See appendix B.

If the assumptions are reasonable, improved numerical integration techniques such as
sparse grid integration for the first approach, see, e.g., Gerstner and Griebel (1998), or
variance reduction, for the second approach, see, e.g., Glasserman (2003), should reduce
the overall complexity. Further studies on the implications of variance reduction techniques
for the second approach will follow in section 2.2.3.
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2.2 Multilevel Monte Carlo training

The following section will contain the error decomposition, the main complexity theorem,
and a numerical experiment for the multilevel Monte Carlo training approach.

2.2.1 error decomposition

In this section, we will study the error sources of the multilevel training approach.

Since, the approach consists in training of individual neural networks for each level, we
aim to find suitable weights on each level, such that the networks are approximations of the
expectations of (1.12). We aim to bound∥∥∥∥E[Ŷl(y)]−Nν,θlKl ,Ŷl,LMl

(y)

∥∥∥∥
Lp
,

for each level l = 0, . . . , L using Kl training steps and loss functions discretized by using
batch-size Ml. Again, we assume all networks to have the same fixed structure ν.

Then, the final multilevel approximation N̂ will be given by

N̂ : y 7→ Nν,θ0K0
,Ŷ0,L̂M0

(y) +
L∑
l=1

Nν,θlKl ,Ŷl,L̂Ml
(y), (2.4)

whereat it should satisfy

E
[∥∥∥P̄ (y)− N̂ (y)

∥∥∥2

L1

]
< ε2, (2.5)

for a required error ε > 0. Using the standard variance expansion, the left hand side can
be expanded to

V
[∥∥∥P̄ (y)− N̂ (y)

∥∥∥
L1

]
+ E

[∥∥∥P̄ (y)− N̂ (y)
∥∥∥
L1

]2
. (2.6)

Again, we specify the error sources by decomposing the inner term of (2.5) by∥∥∥P̄ (y)− N̂ (y)
∥∥∥
L1
≤
∥∥∥P̄ (y)− E[P̂hL(y)]

∥∥∥
L1

(E1)

+

L∑
l=0

∥∥∥E[Ŷl(y)]−Nν,Θl,E[Ŷl],L(y)
∥∥∥
L1

(E2)

+
L∑
l=0

∥∥∥Nν,Θl,E[Ŷl],L(y)−Nν,Θl,Ŷl,L(y)
∥∥∥
L1

(E3)

+

L∑
l=0

∥∥∥∥Nν,Θl,Ŷl,L(y)−Nν,θlKl ,Ŷl,L
(y))

∥∥∥∥
L1

(E4)

+

L∑
l=0

∥∥∥∥Nν,θlKl ,Ŷl,L(y)−Nν,θlKl ,Ŷl,LMl
(y)

∥∥∥∥
L1

. (E5)

11
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The explanations of the error sources are analogous to those of (e1) to (e5), whereas
from (E2) to (E5) we use the sum of the L+ 1 errors.

Again by fixing the net structures, the computational complexity CNl of the training
for each network Nl := Nν,θlKl ,Ŷl,LMl

is bounded by

CNl ≤ c (Kl · costtraining step on level) , (2.7)

with a positive constant c. Each of the Kl training steps consist of the computation of the
Ml training data of type Ŷl, the calculation of the loss function L̂l and the modification of
the weights to minimize the loss function.

2.2.2 complexity theorem

In this subsection, we present the main complexity theorem. Since further studies on the
error sources are required, we will word some assumptions quite generally. The idea of
theoretical complexity reduction can be described as follows. The multilevel approach uses
different time-steps for the discretization to obtain a complexity reduction. Under certain
circumstances, this induces different amounts of random samples on each level, especially
fewer samples on the finer discretizations. The idea can be transformed into multilevel
training, which - when using finer path discretizations - we expect to result in lower needed
batch-sizes. As introduced by Giles (2008a) the variance of the level estimators needs to

be bounded with an order of O(hβl ), for β > 0. For e.g. a European call option Giles,
Debrabant and Rössler prove β = 2 in Giles et al. (2013).

Theorem 2.1 Consider a multilevel training process as described in (2.4), for the ap-
proximation of (1.9) on a specific training set Y . If there exist positive constants α ≥
1/2, β, γ, η, c1, c2, c3 and c4 such that the decomposition (E1)-(E5) of (2.5) can be bounded
by ∥∥∥P̄ (y)− E[P̂hl(y)]

∥∥∥
L1
≤ c1hl, (A1)∥∥∥E[Ŷl(y)]−Nν,Θl,E[Ŷl],L(y)

∥∥∥
L1
≤ 1√

32
ε, (A2)∥∥∥Nν,Θl,E[Ŷl],L(y)−Nν,Θl,Ŷl,L(y)

∥∥∥
L1

= 0, (A3)

E
[∥∥∥∥Nν,Θl,Ŷl,L(y)−Nν,θlKl ,Ŷl,L

(y))

∥∥∥∥
L1

]
≤ c2h

αγ
l K

−1/2
l , (A4 i)

V
[∥∥∥∥Nν,Θl,Ŷl,L(y)−Nν,θlKl ,Ŷl,L

(y))

∥∥∥∥
L1

]
≤ c2

2h
2αγ
l K−1

l , (A4 ii)

E
[∥∥∥∥Nν,θlKl ,Ŷl,L(y)−Nν,θlKl ,Ŷl,LMl

(y)

∥∥∥∥
L1

]
≤ c3h

β/2
l ρηlM

−1/2
l , (A5 i)

V
[∥∥∥∥Nν,θlKl ,Ŷl,L(y)−Nν,θlKl ,Ŷl,LMl

(y)

∥∥∥∥
L1

]
≤ c2

3h
β
l ρ

2η
l M

−1
l , (A5 ii)

with ρl = K
−1/2
l , such that the computational complexity of the training for each net is be

bounded by

Cl ≤ c4h
−1
l MlKl. (2.8)
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level l 0 1 2 3 4 5 6 7
Ml 1200000 64000 32000 16000 8000 4000 2000 1000
Kl 150000 20000 19000 18000 15000 14000 13000 11000

Table 2.1: Batch-sizes Ml and training steps Kl for the training of the specific level nets Nl
for l = 1, . . . , 8.

Then, there exists a positive constants c5 such that for any ε < e−1, there are values
L,Ml and Kl for which

E
[∥∥∥P̄ (y)− N̂ (y)

∥∥∥2

L1

]
(2.9)

can be bounded by ε2, with a computational complexity CN with bound

CN ≤ c5



ε−3.0, for η = 0.5, γ = 2, β = 2, α = 1,

ε−3.0 |log ε|4 , for η = 0.5, γ = 1, β = 1, α = 1,

ε−3.5 |log ε|4 , for η = 0.25, γ = 1, β = 1, α = 1,

ε−4 |log ε|5 , for η = 0, γ = 0, β = 1, α = 1,

ε−5 |log ε|4 , for η = 0, γ = 0, β = 0, α = 1,

ε−6 |log ε|4 , for η = 0, γ = 0, β = 0, α = 1/2.

Proof See appendix B

Remark 2.2 By assuming η = γ = 0 and β = α = 1, we focus on the level effect with
respect to the batch-size, as, e.g., studied in the introductory example.

2.2.3 Numerical results

We will now present an extension of the example of section 1.1 by considering the level
effect with respect to training steps.

We extend the example of section 1.1 by including the level effect with respect to training
steps, as introduced in theorem 2.1.

Using the identical model and network parameters, we will use the number of training
steps and batch-sizes, as stated in table 2.1.

The mean and standard deviation of the L∞ for this modified training are presented in
table 2.2.

The multilevel training results using the stated amount of levels, batch-sizes, and train-
ing steps are given in table 2.2.

Compared to table 1.5, we see a further computational reduction while satisfying the
required error-bound.

3. Extensions

In this subsection, we want to discuss some promising possible extensions beyond this work’s
scope except the first one.

13
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single net: mean error (time) multilevel: mean error (time)
0.0119 (26.66h) 0.0111 (9.66h)

Table 2.2: Mean of the L∞-error for the single-level algorithm using the Milstein discretiza-
tion and the multilevel algorithm using respective batch-sizes as presented in
table 2.1. All simulations were repeated 10 times. The brackets show needed
computation time using a Nvidia K80 GPU.

3.1 Optimal Kl

As explained in the introduction, we could use a second level effect by using a possible
connection between the variance of the level estimators’ variance and training steps needed
for the respective network. In the example above, we explicitly used the same parameters of
the single-level for the multilevel approach. This method implied a relatively straightforward
procedure to implement the multilevel approach and still had an advantage in computation
time. However, we observed that for the finest level, much fewer training steps would be
sufficient. Therefore, it could lead to further savings using individual decay rates, initial
learning rates, or training steps. Further studies are made in section 2.2.2.

3.2 Optimal Nl

We only used single paths (Nl = 1) to compute the training data for the computations
above. We discussed the advantages and disadvantages of explicitly computed prices in
lemma 2.2 and lemma 2.1. Furthermore, we will see in appendix A.3 that this approach
does not lead to a bias for the final trained neural network under certain assumptions.
Nevertheless, if we study (A4 i) to (A5 ii) we see that the estimator’s variance could affect
the needed batch-size Ml and the needed training steps Kl. Therefore, we believe that
further studies on Nl could lead to efficiency improvements. For example, for levels with a
high estimators’ variance, increasing Nl could be reasonable.

3.3 Optimal H

In our work so far, we have not specified H, which is the factor by which the time-step
is refined. Again, we refer to Giles (2008a) for some further explanations on H for the
multilevel Monte Carlo estimator. For the multilevel Monte Carlo simulation, further studies
on H could lead to further efficiency improvements for the multilevel training.

3.4 Individual structure νl

In this work, we fixed the net structure ν for each neural net, and for simplicity, we assumed
the approximation error to be negligible. Nevertheless, we see the potential for further
studies on individual structures νl, which could further improve efficiency.

14
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4. Conclusion

In this work, we combined the ideas of a single-paths deep learning approximation with the
multilevel Monte Carlo path simulation concept. We showed that the resulting multilevel
Monte Carlo training approach could reduce the complexity of the training process.

Deep learning algorithms have become very popular in recent years. However, there are
not many rigorous mathematical convergence results for the different error sources. The
decomposition into three parts, the approximation error, the generalization error, and the
optimization error, and the first overall error analysis was made by Beck et al. (2019).
However, their convergence speed analysis is far from optimal and suffers from the curse of
dimensionality. Hence, we worded the main theorem quite generally. Nevertheless, several
challenging areas for further research arise in this work.

Therefore, the first is a more in-depth theoretical analysis of the convergence speed with
respect to each error source.

The second is the individual network structure. In this work, we used a fixed network
structure for each net. Using distinct network structures could lead to further numerical
savings. Furthermore, we ignore a possible third level-effect arising if the network structures
could be linked to the level.

A further research area concerns the heuristic of the multilevel algorithm. Like the
heuristic for the batch-sizes, it would be desirable to have an algorithm to obtain an optimal
amount of training steps for each net.

Finally, it may be possible to further reduce the complexity by using more than just one
path to simulate the training data. To achieve that, we must ensure a better understanding
of the introduced level-effect parameter.
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The appendix’s proceeding will be as follows: First, we give a definition of a neural
network and have a closer look at the mathematical background of the error sources (E1)
to (E5). Then, we present some numerical results aiming to support some of the discussed
assumptions. Finally, we will provide the missing proof.

Appendix A. Mathematical background

In this subsection we will give some mathematical background and references. For this, we
first give a short definition of neural networks used in this work. Then, we discuss the error
sources (E1) to (E5). Finally, we present an example of an level estimator’ code.

A.1 Neural network defintion and optimization

Let Ld : Rd → Rd be the function which satisfies for every y = (y1, y2, . . . , yd) ∈ Rd that

Ld(y) =

(
exp(y1)

exp(y1) + 1
,

exp(y2)

exp(y2) + 1
, . . . ,

exp(yd)

exp(yd) + 1

)
,

for every k, l ∈ N, v ∈ N0, θ = (θ1, . . . , θν) ∈ Rν with v + l(k + 1) ≤ ν, let Aθ,vk,l : Rk → Rl be

the function which satisfies for every x = (x1, . . . , xk) ∈ Rk that

Aθ,vk,l (x) =


θv+1 θv+2 . . . θv+k

θv+k+1 θν+k+2 . . . θv+2k

θv+2k+1 θv+2k+2 . . . θv+3k
...

...
...

...
θv+(l−1)k+1 θv+(l−1)k+2 . . . θv+lk




x1

x2

x3
...
xk

+


θv+kl+1

θv+kl+2

θv+kl+3
...

θv+kl+l

 ,

let s ∈ {3, 4, 5, 6, . . . }, assume that (s− 1)d(d+ 1) + d+ 1 ≤ ν and let Nν,θ : Rd → R be the
function which satisfies for every y ∈ Rd that

Nν,θ(y) =
(
A
θ,(s−1)d(d+1)
d,1 ◦ Ld ◦A

θ,(s−2)d(d+1)
d,d ◦ · · · ◦ Ld ◦A

θ,d(d+1)
d,1 ◦ LdAθ,0d,d

)
(y).

The function Nν,θ describes an artificial neural network with s + 1 layers and standard
logistic functions as activation functions. Fixing the network structure ν and assuming to
know the best fit weights Θ ∈ Rν leads to the approximation error (E2):∥∥P̄ (y)−Nν,Θ(y)

∥∥
Lp
. (A.1)

For an overview over the approximation error, we refer to Higham and Higham (2019) and
to Barron (1994); Hornik (1991); Hornik et al. (1989, 1990) for further studies.

Now, consider a neural net Nν,θ, as defined in (A.1), but without knowing the best-fit-
weights Θ. Aiming to train the network such that it approximates P̄ , we are interested in
minimizing the loss function

L : θ 7→
∥∥P̄ (y)−Nν,θ(y)

∥∥
Lp
. (A.2)
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The Taylor series expansion gives

L(θ + ∆θ) = L(θ) +
ν∑
r=1

∂L(θ)

θr
∆θ,

where ∂L(θ)/θr denotes the partial derivative of the loss function with respect to the r-th
parameter. Generally, only being an approximation for a small step ∆θ, we limit the step
in that direction by η, leading to series of weights

θi+1 := θi − η∇L(θi), (A.3)

for i = 0, . . . ,K− 1 and with the so-called learning rate η. We call an iteration of this form
a training step. All in all this leads to the optimization errors (e4) or (E4).

We complete the neural network training definition by defining the following series of
functions

Nν,θi,P,L : Rd → R, (A.4)

with i = 1, . . . ,K, initial weights θ0 and loss function L, which is evaluated with training
data P .

In this work, we use stochastic gradient descent optimization and backpropagation, see
e.g., Higham and Higham (2019), for an overview. For studies on the optimization error,
see, e.g., Bach and Moulines (2013); Bercu and Fort (2011); Chau et al. (2019); Fehrman
et al. (2020); Jentzen et al. (2021).

A.2 Discretization error

We shortly introduce the parameters α and β. The (weak) convergence, for a fixed param-
eter vector y ∈ Y , is defined by

E[P − Ph] ≤ chα, (A.5)

with a positive constant c. It is well known, provided certain assumptions are satisfied that
both the Euler scheme and the Milstein scheme (1.2) converge with α = 1 for Lipschitz-
continuous payoff P only depending on the time of maturity, see, e.g., the monograph
Kloeden et al. (2012). The second parameter β is used for bounding the estimators’ variance,
as explained in theorem 2.1. This parameter is, e.g., the focus of the article Giles et al.
(2013). The authors prove different constants for β for a different type of option under
certain SDE conditions.

A.3 Generalization error

This section will give some background for a more in-depth understanding of the loss func-
tions’ discretization error. As explained above, we discretize the loss function (A.2) in each
training step by a finite set yi ∈ Y , with i = 1, . . . ,M .

The usage of the approximated loss function leads to the generalization error (e5). For
the multilevel approach, we discretize the loss function at randomly selected inputs yi ∈ Y .
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Consider the loss function (A.2). First, we transform both arising integrals to the unit
cube. For simplicity, we assume the training set Y to be of the form [a, b]d, without loss of
generality. For the transformation of the norm-part, we will use the linear transformation
U : [a, b]d → [0, 1]d. For the expectation-integral, we will use the inversion method, see
e.g. Glasserman (2003), e.g. for the cumulative standard normal distribution function
Φ(x) : RH → [0, 1]H , leading to the following lemma.

Lemma A.1 Let Y = [a, b]d and consider Ph to be multivariate standard normal distributed
for each y ∈ Y . Then, by using the linear transformation U : Y → [0, 1]d =: U and the
cumulative standard normal distribution function Φ(x) : RH → [0, 1]H , we have∥∥E[Ph(y)]−Nν,θ,E[Ph],LY (y)

∥∥
Lp(Y )

=

(b− a)−d/p
∥∥∥E∗[P̂h(u)]− N̂ν,θ,E[P̂h],LU (u)

∥∥∥
Lp(U)

,

with P̂h(u) : u 7→ Ph(U−1(u)), N̂
ν,θ,E[P̂h],LU

: u 7→ Nν,θ,E∗[Ph],LY (U−1(u)), and the expecta-

tion E∗ defined on the unit cube.

Proof ∥∥E[Ph(y)]−Nν,θ,E[Ph],LY (y)
∥∥
Lp

=

(∫
[a,b]d

∣∣∣E[Ph(y)]−Nν,θ,E[Ph],LY (y)
∣∣∣p dy

)1/p

=

(
(b− a)d

∫
[0,1]d

∣∣E[Ph(U−1(u))]−Nν,θ,E[Ph],LY (U−1(u))
∣∣p du

)1/p

=(b− a)d/p
∥∥∥E∗[P̂h(u)]− N̂

ν,θ,E[P̂h],LU
(u)
∥∥∥
Lp
.

I.e. we can study the neural net training on the unit cube.

Corollary A.1 Consider Y = [0, 1]d =: U and Ph to be uniformly distributed. We have
the following inequality:

‖E[Ph(u)]−N (u)‖2L1 ≤‖E[Ph(u)]−N (u)‖2L2 (A.6)

and the difference is given by ∫
U
V [E[Ph(u)]−N (u)] du. (A.7)

Proof (A.6) is given through Hölders’ ineqaulity. (A.7) is given by∫
U
V∗
[
E[P̂h(u)]−N (u)

]
du

=

∫
U

(
E[Ph(u)]− N̂ (u)

)2
du−

(∫
U
E[P h(u)]−N (u) du

)2

.
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In practice, we will be interested in approximating the right-hand side of (A.6). The
standard Monte Carlo approximation leads to the following corollary.

Corollary A.2 For p = 2, the right-hand side of (A.6) can be estimated by the Monte
Carlo estimator

1

M

M∑
i=1

 1

N

N∑
j=1

P (u
(2)
i,j , u

(1)
i )

−N (u
(1)
i )

2

,

with u
(1)
i ∈ [0, 1]d for i = 1, . . . ,M and u

(2)
i,j ∈ [0, 1]H for j = 1, . . . N and i = 1, . . . ,M both

i.i.d. uniformly distributed. This estimator leads to the generalization error.

For, e.g., d = H = 1, this estimator needs M + MN random samples for the training
data for each training step. The introduced Monte Carlo estimator relies on the choice of
both M and N . The attempt to avoid this choice leads to the following considerations.

Lemma A.2 For the right-hand side of (A.6) the following inequality holds:

‖E[Ph(u)]−N (u)‖2L2 ≤
∫

[0,1]d+H
(Ph(u)−N (u))2 du (A.8)

and the difference is given by

‖V [Ph(u)]‖L1 . (A.9)

Proof Let u(1) ∈ [0, 1]d and u(2) ∈ [0, 1]H . Then,

‖E[Ph(u)]−N (u)‖2L2

=

∫
[0,1]d

(∫
[0,1]H

P h(u(2), u(1)) du(2) −N (u(1))

)2

du(1)

≤
∫

[0,1]d

∫
[0,1]H

(
P h(u(2), u(1))−N (u(1))

)2
du(2) du(1)

The difference follows from above with

=

∫
[0,1]d

∫
[0,1]H

(
P h(u(2), u(1))−N (u(1))

)2
du(2) du(1)

−
∫

[0,1]d

(∫
[0,1]H

P h(u(2), u(1)) du(2) −
∫

[0,1]H
N (u(1)) du(2)

)2

du(1)

=

∫
[0,1]d

V
[
P h(u)−N (u)

]
du.
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The Monte Carlo approximation of the right-hand side of (A.8) leads to the following
corollary.

Corollary A.3 The loss function L2
2∗ defined on the right-hand side of (A.8) can be esti-

mated by the Monte Carlo estimator

L̂M =
1

M

M∑
i=1

(
[P̂ (u2,i, u1,i)]−Nν,θ,P̂ (u1,i)

)2
,

with u1,i ∈ [0, 1]d and u2,i ∈ [0, 1]H , for i = 1, . . . ,M independent uniformly distributed.

For, e.g., d = H = 1, this leads to 2M needed random numbers per iteration step.

Furthermore, from, e.g., proposition 2.2 of Beck et al. (2019), we know that under certain
assumptions, there exists a a neural network N : [0, 1]d → R and a unique continuous
function f such that

inf
f∈C([0,1]d,R)

∫
[0,1]d+H

(
P h(u)− f(u)

)2
du =

∫
[0,1]d+H

(
P h(u)−N(u)

)2
du (A.10)

and it holds for every u ∈ [0, 1]d that

N(u) =

∫
[0,1]H

P h(u) du = E
[
P h(u)

]
. (A.11)

Remark A.4 In other words, the function minimizing the right-hand side of (A.8) could
as well minimize the right-hand side of (A.6). I.e., for the training process of a neural
network, both Monte Carlo estimators of theorem A.3 and theorem A.3 lead to unbiased
results. With respect to the error assumptions, this justifies (A3). However, one should
keep in mind that the Monte Carlo estimator of theorem A.2 could be more efficient, even
though, depending on the choice of N and M . The apparent reason for this is that even
though the norm choice does not apply a bias, e.g., in (A3), its respective Monte Carlo
estimators’ quality will affect the loss functions’ error, e.g., in (A5 i).

For further studies on the generalization error, see, e.g., Berner et al. (2020); Poggio
and Shelton (2002); Györfi et al. (2006); Shalev-Shwartz and Ben-David (2014); Geer and
van de Geer (2000).

We will study a single-level training process for a European option using a geometric
Brownian motion in the second subsection. While neglecting the training step-size, we will
focus on the numerical properties of the loss functions’ error.
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batch-size mean error standard deviation mean reduction
1k 0.0263 0.0102
4k 0.0139 0.0042 0.5285
16k 0.0071 0.0022 0.5096
64k 0.00321 0.0010 0.4500

Table A.1: Mean and standard deviation of the L∞-error with respect to increasing batch-
size. Training set is [100, 104] and the training is repeated 10 times. The last
column describes the error reduction.

A.4 Numerical results: batch-size convergence and variance reduction

Even though we know that the standard Monte Carlo simulation converges with order
1/2, it is not entirely clear whether this property applies to the neural network training,
as assumed, e.g., in (A5 i). Hence, we present some results for increasing batch-sizes for
the GBM and a European call option for a small fixed training set, e.g., s0 ∈ [100, 104].
Using this small training set, the closed solution as training data, and a vast amount of
training steps, we suppose the batch-size to be the crucial factor for the error. A first result
can be found in table A.1. If not further specified, we use the same network and training
parameters as in the examples above.

We observe a convergence order of approximately 1/2 for an increasing batch-size with
respect to the mean of the sampled L∞ error.

As well known, our specific choice of the payoff leads to a particular standard deviation
of the standard Monte Carlo estimator. Furthermore, it is well known that this standard
deviation is responsible for the Monte Carlo error. It could be reduced by, e.g., variance
reduction techniques, see, e.g., Glasserman (2003). For our example, we will use some
importance sampling by only sampling paths that stay above the strike price. Since we
know that the variance is increasing monotonously for this specific example, we evaluated
the variance reduction factor to be included in the interval [0.34179, 0.39067] for our training
set’s initial values. Now, by training a neural network with training data computed with
the variance reduced Monte Carlo estimator, we obtain results as can be seen in table A.2.

batch-size mean error standard net mean error OSS net mean reduction
1k 0.0263 0.0106 0.3869

Table A.2: Mean of the L∞-error for both the neural networks. The calculated mean re-
duction is given in the last column. The training was computed on the interval
[100, 104] and repeated 10 times.

Comparing the results’ mean L∞-error, we see that the L∞-error reduction factor is
included in the above interval of variance reduction ratios. This property may justify a
relation between the needed batch-size and the estimators’ variance as, e.g., used in (A5 i).
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A.5 Python code example

Code of the level estimator P1 − P0.

Listing 1: Training data for level estimator
1 def sde body p1 p0(idx, s coarse, s fine, samples):
2 z1 = tf.random normal(shape=(samples, batch size p1 p0, d),
3 stddev=1., dtype=dtype)
4 z2 = tf.random normal(shape=(samples, batch size p1 p0, d),
5 stddev=1., dtype=dtype)
6 z=(z1+z2)/np.sqrt(2.)
7 h fine=1
8 h coarse=1/2
9 s fine=s fine + mu *s fine * h fine +sigma * s fine ...

*np.sqrt(h fine)*z1 + 0.5 *sigma *s fine *sigma * ...
((np.sqrt(h fine)*z1)**2-h fine)

10 s fine=s fine + mu *s fine * h fine +sigma * s fine ...

*np.sqrt(h fine)*z2 + 0.5 *sigma *s fine *sigma * ...
((np.sqrt(h fine)*z2)**2-h fine)

11 s coarse=s coarse + mu *s coarse * h coarse +sigma * s coarse ...

*np.sqrt(h coarse)*z + 0.5 *sigma *s coarse *sigma * ...
((np.sqrt(h coarse)*z)**2-h coarse)

12 return tf.add(idx, 1), s coarse, s fine

Appendix B. Proof

This subsection provides the missing proof.

Proof [Proof of lemma 2.2]

We derive an upper bound of 1
2ε

2 on the square of the expectation of the bias and an
upper bound of 1

2ε
2 on the variance, which together with (2.3) give an ε2 upper bound on

(2.2).

Setting K = 32c2
3ε
−2 and M =

√
32c2ε

−1 together with (e1) ≤ 1√
32
ε, (e2) ≤ 1√

32
ε and

(e3) = 0 leads to

(
E
[∥∥∥E[P (y)]−Nν,θ,P̂ ,L̂(y)

∥∥∥
L1

])2
≤
(

1√
32
ε+

1√
32
ε+ 0 +

1√
32
ε+

1√
32
ε

)2

=
1

2
ε2,

Furthermore, the above choices for K and M together with the assumptions V[(e5)] ≤
c2

2M
−2, and V[(e4)] ≤ c2

3K
−1 lead to

V
[∥∥∥E[P (y)]−Nν,θ,P̂ ,L̂(y)

∥∥∥
L1

]
≤ 1

32
ε2 +

1

32
ε2 ≤ 1

2
ε2.

The assumption on the complexity is bounded together with the choices for K and M lead
to CN ≤ c432c2

3

√
32c2ε

−5. Hence, setting c5 = c432c2
3

√
32c2 completes the proof.

Proof [Proof of lemma 2.1]
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The proof is analogue to the proof of lemma 2.2, but we choose K = 32c2
3ε
−2, M =

32c2
2ε
−2 and

h =
ε

c1

√
32
,

which again leads to the ε2 bound on (2.2). The computational complexity is bounded by

CN ≤ c4KMh−1 ≤ c4322c2
3c

2
2c1

√
32ε−5.

Hence, setting c5 = c4322c2
3c

2
2c1

√
32 completes the proof.

To shorten the proof of theorem 2.1 and simplify its presentation, we will use generalized
Kl and Ml from the second case onwards, which we apply for all the remaining cases.
Nevertheless, this leads to bad estimates for the log ε terms. Hence, if interested in a
particular case, we recommend a more in-depth examination of the first case’s proof.
Proof [Proof of theorem 2.1]

For each case, we choose specific Kl and Ml such that these bound (2.9). We use the de-
composition (2.6) and show that both satisfy an 1

2ε
2 bound. Finally, using the assumptions

(2.8), we show that the chosen parameters can bound the overall complexity

CN ≤
L∑
l=0

c4h
−1
l MlKl, (B.1)

with the stated complexity for the specific case. Let hl = H−lT , for l = 0, . . . , L be different
step-widths with H > 1. We start by choosing L to be

L =

⌈
log
(√

32c1T
αε−1

)
α logH

⌉
,

so that

1√
32
H−αε < c1h

α
L ≤

1√
32
ε. (B.2)

Let θ be positive, then

L∑
l=0

hθl =
L∑
l=0

(
H−lT

)θ
= T θ

L∑
l=0

(
H−θ

)l
<

T θ

1−H−θ
.

On the contrary, for negative exponents we have

L∑
l=0

h−θl = h−θL

L∑
l=0

(Hθ)−l <
Hθ

Hθ − 1
h−θL ,

which holds due to (B.2) and with

h−θL < Hθ

(
ε√

32c1

)−θ/α
,
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we obtain

L∑
l=0

h−θl <
H2θ

Hθ − 1

(√
32c1

)θ/α
ε−θ/α.

For a simplified presentation, we denote

g : θ 7→

{
T θ

1−H−θ for θ > 0,
H2θ

Hθ−1

(√
32c1

)θ/α
, for θ < 0.

(B.3)

I.e., we will have the following inequalities

L∑
l=0

hθl ≤


g(θ) for θ > 0,

L+ 1 for θ = 0,

g(θ)ε−θ/α, for θ < 0.

(B.4)

Now, let us consider the different parameter values.

(a) If η = 0.5, γ = 2, β = 2 and α = 1 we set

Kl =
⌈
32ε−2c2

2h
1.5
l g(1.25)2

⌉
(B.5)

and

Ml =
⌈
32ε−1c2

3c
2
6h

3/4
l

⌉
, (B.6)

with

c6 = max
{
g(2/8)(32c2

2g(1.25)2)−1/4, T (1−H−1/2)−2

(√
32c2

2g(1.25)2

)−2
}
,

Using (A4 i), (B.3) and (B.5), we obtain

E

[
L∑
l=0

∥∥∥∥Nν,Θl,Ŷl,L(y)−Nν,θlKl ,Ŷl,L
(y))

∥∥∥∥
L1

]
≤

L∑
l=0

c2h
2
lK
−1/2
l

≤ c2
1√

32c2
2g(1.25)2

ε

L∑
l=0

h1.25
l

≤ 1√
32
ε.
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Using (A5 i), (B.3) and (B.6), we obtain

E

[
L∑
l=0

∥∥∥∥Nν,θlKl ,Ŷl,L(y)−Nν,θlKl ,Ŷl,LMl
(y)

∥∥∥∥
L1

]
≤

L∑
l=0

c3hlρ
1/2
l M

−1/2
l

≤
L∑
l=0

c3hlK
−1/4
l

1√
32ε−1c2

3c
2
6h

3/4
l

≤ 1√
32c2

6

ε
1

(32c2
2(g(1.25))2)1/4

L∑
l=0

h
2/8
l

≤ 1√
32c2

6

ε
g(2/8)

c6(32c2
2(g(1.25))2)1/4

≤ 1√
32
ε.

Hence, using these results together with assumptions (A1)-(A3) leads to(
E
[∥∥∥E[P (y)]− N̂ (y)

∥∥∥
L1

])2
≤
(

1√
32
ε+

1√
32
ε+

1√
32
ε+

1√
32
ε

)2

=
1

2
ε2. (B.7)

I.e., we obtain the searched 1
2ε

2 error bound on the square of the bias. Now, using (A4 ii),
(B.5) and (B.3), we obtain

V

[
L∑
l=0

∥∥∥∥Nν,Θl,Ŷl,L(y)−Nν,θlKl ,Ŷl,L
(y))

∥∥∥∥
L1

]
≤

L∑
l=0

c2
2h

4
lK
−1
l

≤
L∑
l=0

c2
2h

4
l

1

32ε−2c2
2h

1.5
l (g(1.25))2

=
1

32
ε2

L∑
l=0

h4
l

1

h1.5
l (g(1.25))2

≤ 1

32
ε2

g(2.5)

g(1.25)2

≤ 1

4
ε2,

which holds, since we have g(2.5) < g(1.25)2. Using (A5 ii), (B.6) and (B.3), we obtain

V

[
L∑
l=0

∥∥∥∥Nν,θlKl ,Ŷl,L(y)−Nν,θlKl ,Ŷl,LMl
(y)

∥∥∥∥
L1

]
≤ c2

3h
2
l ρ

1
lM
−1
l

≤ ε2 1√
32c2

2(g(1.25))2

1

32c2
6

L∑
l=0

h
1/2
l

≤ 1

32c2
6

ε2
g(1/2)√

32c2
2(g(1.25))2

≤ 1

4
ε2.
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Hence, we obtain an 1
2ε

2 upper bound on the variance and the together with the bound on
the bias the required ε2 bound on (2.9). Finally, we study the computational cost for the
chosen parameters. Using (B.1), (B.3), (B.4), (B.5), (B.6) and the following upper bounds
on Kl and Ml

Kl < 32ε−2c2
2h

1.5
l (g(1.25))2 + 1, 32ε−1c2

3c
2
6h

3/4
l + 1,

we obtain

CN ≤
L∑
l=0

c4h
−1
l MlKl

≤
L∑
l=0

c4h
−1
l

(
32ε−2c2

2h
1.5
l (g(1.25))2 + 1

) (
32ε−1c2

3c
2
6h

3/4
l + 1

)
= c4

L∑
l=0

h−1
l

(
c7ε
−2 (hl)

1.5 + 1
) (
c8ε
−1h0.75

l + 1
)

≤ c4c7c8ε
−3g(1.25) + c4c7ε

−2g(0.5) + c4c8ε
−1g(−0.25)ε−0.25/α + c4g(−1)ε−1/α,

with c7 = 32c2
2(g(1.25))2 and c8 = 32c2

3c
2
6. Hence, for this case we obtain the required

complexity bound

CN ≤ c5ε
−3,

with c5 = c4c7c8g(1.25) + c4c7g(0.5) + c4c8g(−0.25) + c4g(−1), which completes the proof.
Now, as mentioned above, instead of individual choices for Kl and Ml for the remaining
cases, we will choose them in a more generic way, i.e. let

Kl =
⌈
32ε−2c2

2h
2γα
l (L+ 1)2

⌉
(B.8)

and

Ml =
⌈
32ε−2+2ηc2

3h
β̄
l (L+ 1)2

⌉
. (B.9)

We will use (B.8) and (B.9) for each of the remaining cases. As we will see in the following,
these choices satisfy the required error bound on the MSE for each case. Hence, for each
case, we will only have to study the individual computational cost. Using (A4 i) and (B.8),
we obtain

E

[
L∑
l=0

∥∥∥∥Nν,Θl,Ŷl,L(y)−Nν,θlKl ,Ŷl,L
(y))

∥∥∥∥
L1

]
≤

L∑
l=0

c2h
αγ
l K

−1/2
l

≤ 1√
32
ε. (B.10)
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Using (A5 i) and (B.9), we obtain

E

[
L∑
l=0

∥∥∥∥Nν,θlKl ,Ŷl,L(y)−Nν,θlKl ,Ŷl,LMl
(y)

∥∥∥∥
L1

]
≤

L∑
l=0

c3h
β/2
l ρηlM

−1/2
l

≤
L∑
l=0

c3h
β/2
l K−η/2M

−1/2
l

≤ 1√
32(L+ 1)

εη+1−η
L∑
l=0

h
β/2
l

1

hγαηl h
¯β/2
l

≤ 1√
32
ε, (B.11)

where the last inequality holds by choosing β̄ = β − 2αγη. For the variance analogue
formulas hold, as we will see in the following calculations. Using (A4 ii) and (B.8), we
obtain

V

[
L∑
l=0

∥∥∥∥Nν,Θl,Ŷl,L(y)−Nν,θlKl ,Ŷl,L
(y))

∥∥∥∥
L1

]
≤

L∑
l=0

c2
2h

2αγ
l K−1

l

≤
L∑
l=0

1

32ε−2(L+ 1)2

≤ 1

4
ε2. (B.12)

Using (A5 ii) and (B.9), we obtain

V

[
L∑
l=0

∥∥∥∥Nν,θlKl ,Ŷl,L(y)−Nν,θlKl ,Ŷl,LMl
(y)

∥∥∥∥
L1

]
≤

L∑
l=0

c2
3h
β
l ρ

2η
l M

−1
l

≤ 1

32(L+ 1)2
ε2η+2−2η

L∑
l=0

hβl
1

h2γαη
l hβ̄l

≤ 1

4
ε2, (B.13)

again the last inequality holds by choosing β̄ = β − 2αγη.
Hence, we obtain an 1

2ε
2 upper bound on the variance and with (B.10) and (B.11) an

1
2ε

2 upper bound on the bias. Together, the required we obain a ε2 bound on the MSE
(2.9).

Now, we will study the computational cost for each case. We have the following upper
bounds

Kl < 32ε−2c2
2h

2γα
l (L+ 1)2 + 1

and

Ml < 32ε−2+2ηc2
3h
β̄
l (L+ 1)2 + 1.
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Together with (B.1) this leads to

CN ≤
L∑
l=0

c4h
−1
l

(
32ε−2c2

2h
2γα
l (L+ 1)2 + 1

)(
32ε−2+2ηc2

3h
β̄
l (L+ 1)2 + 1

)
≤ c4c7c8(L+ 1)4ε−4+2η

L∑
l=0

h−1+2γα+β̄
l + c4c7(L+ 1)2ε−2

L∑
l=0

h−1+2γα
l

+ c4c8(L+ 1)2ε−2+2η
L∑
l=0

h−1+β̄
l + c4g(−1)ε−1/α,

(B.14)

with the constants c7 = 32c2
2 and c8 = 32c2

3. For L of (B.14) we have

L ≤ log ε−1

α logH
+

log(
√

2c1T
α

α logH
+ 1

and since 1 < log ε−1 for ε < exp(−1) it follows that

L+ 1 ≤ c9 log ε−1, (B.15)

where

c9 =
1

α logH
+ max

(
0,

log(
√

2c1T
α

α logH

)
+ 2.

Let us consider the different parameter values. Again, we will use β̄ = β−2αγη for each case.

(b) Let η = 0, γ = 0, β = 0 and α = 1/2. Then, β̄ = 0 and with (B.14) we have

CN ≤ c6ε
−4(L+ 1)4

L∑
l=0

h−1
l ,

with c6 = c4(c7c8 + c7 + c8 + 1). Using (B.3), (B.4) and (B.15) we obtain

CN ≤ c6ε
−6| log ε|4,

with c5 = c6c
4
9g(−1). (c) Let η = 0, γ = 0, β = 0 and α = 1. Then, β̄ = 0 and with (B.14)

we have

CN ≤ c5ε
−4(L+ 1)4

L∑
l=0

h−1
l ,

with c6 = c4(c7c8 + c7 + c8 + 1). Using (B.3), (B.4) and (B.15) we obtain

CN ≤ c6ε
−5| log ε|4,

with c5 = c6c
4
9g(−1).
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(d) Let η = 0, γ = 0, β = 1 and α = 1. Then, β̄ = 1 and with (B.14) we have

CN ≤ c6ε
−4(L+ 1)4

L∑
l=0

h0
l ,

with c6 = c4(c7c8 + c7 + c8 + 1). Using (B.3), (B.4) and (B.15) we obtain

CN ≤ c5ε
−4| log ε|5,

with c5 = c6c
5
9.

(e) Let η = 0.25, γ = 1, β = 1 and α = 1. Then, β̄ = 0.5 and with (B.14) we have

CN ≤ c6ε
−3.5(L+ 1)4

L∑
l=0

h1.5
l ,

with c6 = c4(c7c8 + c7 + c8 + 1). Using (B.3), (B.4) and (B.15) we obtain

CN ≤ c5ε
−3.5| log ε|4,

with c5 = c6c
4
9g(1.5). (f) Let η = 0.5, γ = 1, β = 1 and α = 1. Then, β̄ = 0 and with (B.14)

we have

CN ≤ c6ε
−3(L+ 1)4

L∑
l=0

h1
l ,

with c6 = c4(c7c8 + c7 + c8 + 1). Using (B.3), (B.4) and (B.15) we obtain

CN ≤ c5ε
−3| log ε|4,

with c5 = c6c
4
9g(1).
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