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Abstract In electrical impedance tomography, algorithms based on minimizing the
linearized-data-fit residuum have been widely used due to their real-time implemen-
tation and satisfactory reconstructed images. However, the resulting images usually
tend to contain ringing artifacts. In this work, we shall minimize the linearized-data-
fit functional with respect to a linear constraint defined by the monotonicity relation
in the framework of real electrode setting. Numerical results of standard phantom
experiment data confirm that this new algorithm improves the quality of the recon-
structed images as well as reduce the ringing artifacts.

1 Introduction

Electrical Impedance Tomography (EIT) is a recently developed non-invasive ima-
ging technique, where the inner structure of a reference object can be recovered
from the current and voltage measurements on the object’s surface. It is fast, inex-
pensive, portable and requires no ionizing radiation. For these reasons, EIT qualifies
for continuous real time visualization right at the bedside.

In clinical EIT applications, the reconstructed images are usually obtained by
minimizing the linearized-data-fit residuum [7, 1]. These algorithms are fast and
simple. However, to the best of the authors’ knowledge, there is no rigorous glo-
bal convergence results that have been proved so far. Moreover, the reconstructed
images usually tend to contain ringing artifacts.
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Recently, Seo and one of the author have shown in [20] that a single linearized
step can give the correct shape of the conductivity contrast. This result raises a
question that whether to regularize the linearized-data-fit functional such that the
corresponding minimizer yields a good approximation of the conductivity contrast.
An affirmative answer has been proved in [19] for the continuum boundary data. In
the present paper, we shall apply this new algorithm to the real electrode setting and
test with standard phantom experiment data. Numerical results later on show that
this new algorithm helps to improve the quality of the reconstructed images as well
as reduce the ringing artifacts. It is worth to mention that our new algorithm is non-
iterative, hence, it does not depend on an initial guess and does not require expensive
computation. Other non-iterative algorithms, for example, the Factorization Method
[15, 16] and the Monotonicity-based Method [31, 30, 22, 4], on the other hand, are
much more sensitive to measurement errors than our new algorithm when phantom
data or real data are applied [5, 21, 33, 10].

The paper is organized as follows. In Section 2 we introduce the mathematical
setting, describe how the measured data can be collected and set up a link between
the mathematical setting and the measured data. Section 3 presents our new algo-
rithm and the numerical results were shown in Section 4. We conclude this paper
with a brief discussion in Section 5.

2 Mathematical setting

Let Ω ⊆ Rn,n ≥ 2 describe the imaging subject and σ : Ω → R be the unknown
conductivity distribution inside Ω . We assume that Ω is a bounded domain with
smooth boundary ∂Ω and that the function σ is real-valued, strictly positive and
bounded. Electrical Impedance Tomography (EIT) aims at recovering σ using
voltage and current measurements on the boundary of Ω . There are several ways
to inject currents and measure voltages. We shall follow the Neighboring Method
(aka Adjacent Method) which was suggested by Brown and Segar in 1987 [6]
and is still widely being used by practitioners. In this method, electrodes are at-
tached on the object’s surface, and an electrical current is applied through a pair
of adjacent electrodes whilst the voltage is measured on all other pairs of adja-
cent electrodes excluding those pairs containing at least one electrode with injected
current. Figure 1 illustrates the first and second current patterns for a 16-electrode
EIT system. At the first current pattern (figure 1a), small currents of intensity I(1)1

and I(1)2 = −I(1)1 are applied through electrodes E1 and E2 respectively, and the
voltage differences U (1)

3 ,U (1)
4 , . . . ,U (1)

15 are measured successively on electrode pairs
(E3,E4),(E4,E5), . . . ,(E15,E16). In general, for a L-electrode EIT system, at the k-th
current pattern, by injecting currents I(k)k and I(k)k+1 =−I(k)k to electrodes Ek and Ek+1

respectively, one gets L− 3 voltage measurements {U (k)
l }, where l ∈ {1,2, . . . ,L}

and |k− l| > 1. Note that here and throughout the paper, the electrode index is al-
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ways considered modulo L, i.e. the index L+ 1 also refers to the first electrode,
etc.
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Fig. 1 The Neighboring Method: a) first current pattern, b) second current pattern.

Assuming that the electrodes El are relatively open and connected subsets of
∂Ω , that they are perfectly conducting and that contact impedances are negligible,
the resulting electric potential u(k) at the k-th current pattern obeys the following
mathematical model (the so-called shunt model [8]):

∇ · (σ∇u) = 0 in Ω ,∫
El

σ∂ν u ds = I(k)l for l = 1, . . . ,L,
σ∂ν u = 0 on ∂Ω \

⋃L
l=1 El ,

u|El = const. for l = 1, . . . ,L.

(1)

Here ν is the unit normal vector on ∂Ω pointing outward and I(k)l := (δk,l−δk+1,l)I
describes the k-th applied current pattern where a current of strength I > 0 is driven
through the k-th and (k+1)-th electrode. Notice that {I(k)l } satisfy the conservation

of charge ∑
L
l=1 I(k)l = 0, and that the electric potential u(k) is uniquely determined by

(1) only up to the addition of a constant. The voltage measurements are given by

U (k)
l := u(k)|El −u(k)|El+1 . (2)

The herein used shunt model ignores the effect of contact impedances between
the electrodes and the imaging domain. This is only valid when voltages are me-
asured on small (see [14]) and current-free electrodes, so that (1) correctly mo-
dels only the measurements U (k)

l with |k− l| > 1. For difference measurements,

the missing elements U (k)
l with |k− l| ≤ 1, on the other hand, can be calculated

by interpolation taking into account reciprocity, conservation of voltages and the
geometry-specific smoothness of difference EIT data, cf. [17]. For an imaging sub-
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ject with unknown conductivity σ , one thus obtains a full matrix of measurements
U(σ) = (U (k)

l )k,l=1,...,L.

3 Monotonicity-based regularization

3.1 Standard one-step linearization methods

In difference EIT, the measurements U(σ) are compared with measurements U(σ0)
for some reference conductivity distribution σ0 in order to reconstruct the conducti-
vity difference σ −σ0. This is usually done by a single linearization step

U ′(σ0)(σ −σ0)≈U(σ)−U(σ0).

where U ′(σ0) : L∞(Ω)→ RL×L is the Fréchet derivative of the voltage measure-
ments

U ′(σ0) : κ 7→
(
−
∫

Ω

κ∇u(k)σ0 ·∇u(l)σ0 dx
)

1≤k,l≤L

We discretize the reference domain Ω = ∪P
j=1P j into P disjoint open pixels Pj

and make the piecewise-constant Ansatz

κ(x) =
P

∑
j=1

κ jχPj(x).

This approach leads to the linear equation

Sκ = V (3)

where V and the columns of the sensitivity matrix S contain the entries of the mea-
surements U(σ)−U(σ0) and the discretized Fréchet derivative, resp., written as
long vectors, i.e.,

κ = (κ j)
P
j=1 ∈RP,

V = (Vi)
L2

i=1 ∈RL2
, with V(l−1)L+k =U (k)

l (σ)−U (k)
l (σ0),

S = (Si, j) ∈RL2,P, with S(l−1)L+k, j =−
∫

Pj

∇u(k)σ0 ·∇u(l)σ0 dx.

Most practically used EIT algorithms are based on solving a regularized variant
of (3) to obtain an approximation κ to the conductivity difference σ−σ0. The popu-
lar algorithms NOSER [7] and GREIT [1] use (generalized) Tikhonov regularization
and minimize

‖Sκ−V‖2
res +α ‖κ‖2

pen→min!
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with (heuristically chosen) weighted Euclidian norms ‖ · ‖ res and ‖ · ‖pen in the
residuum and penalty term.

3.2 Monotonicity-based regularization

It has been shown in [20] that shape information in EIT is invariant under lineariza-
tion. Thus one-step linearization methods are principally capable of reconstructing
the correct (outer) support of the conductivity difference even though they ignore
the non-linearity of the EIT measurement process. In [19] the authors developed a
monotonicity-based regularization method for the linearized EIT equation for which
(in the continuum model) it can be guaranteed that the regularized solutions con-
verge against a function that shows the correct outer shape. In this section, we for-
mulate and analyze this new method for real electrode measurements, and in the
next section we will apply it to real data from a phantom experiment and compare it
with the GREIT method.

The main idea of monotonicity-based regularization is to minimize the residual
of the linearized equation (3)

‖Sκ−V‖2→min!

with constraints on the entries of κ that are obtained from monotonicity tests.
For the following, we assume that the background is homogeneous and that all

anomalies are more conductive, or all anomalies are less conductive than the back-
ground, i.e., σ0 is constant, and either

σ(x) = σ0 + γ(x)χD(x), or σ(x) = σ0− γ(x)χD(x).

D is an open set denoting the conductivity anomalies, and γ : D→R is the contrast
of the anomalies. We furthermore assume that we are given a lower bound c > 0 of
the anomaly contrast, i.e. γ(x)≥ c.

For the monotonicity tests it is crucial to consider the measurements and the
columns of the sensitivity matrix S as matrices and compare them in terms of matrix
definiteness, cf. [9, 23, 17] for the origins of this sensitivity matrix based approach.
Let V :=U(σ)−U(σ0)∈RL×L denote the EIT difference measurements written as
L×L-matrix, and Sk ∈RL×L denote the k-th column of the sensitivity matrix written
as L×L-matrix, i.e. the ( j, l)-th entry of Sk is given by

−
∫

Pk

∇u( j)
σ0 ·∇u(l)σ0 dx.

We then define for each pixel Pk

βk := max{α ≥ 0 : αSk ≥−|V |}, (4)
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where |V | denotes the matrix absolute value of V , and the comparison αSk ≥ −|V |
is to be understood in the sense of matrix definiteness, i.e. αSk ≥−|V | holds if and
only if all eigenvalues of αSk + |V | are non-negative.

Following [19] we then solve the linearized EIT equation (3) using the monoto-
nicity constraints βk. We minimize the Euclidean norm of the residuum

‖Sκ−V‖2→min! (5)

under the constraints that

(C1) in the case σ ≥ σ0: 0≤ κk ≤min(a+,βk), and
(C2) in the case σ ≤ σ0: 0≥ κk ≥−min(a−,βk).

where a+ := σ0−
σ2

0
σ0+c , and a− := c.

For noisy data V δ with ‖V δ −V‖ ≤ δ this approach can be regularized by repla-
cing βk with

β
δ
k := max{α ≥ 0 : αSk ≥−|V δ |−δ I}, (6)

where I ∈RL×L is the identity matrix. For the implementation of β δ
k see section 4.

For the continuum model, and under the assumption that D has connected com-
plement, the authors [19] showed that for exact data this monotonicity-constrained
minimization of the linearized EIT residuum admits a unique solution and that the
support of the solution agrees with the anomalies support D up to the pixel partition.
Moreover, [19] also shows that for noisy data and using the regularized constraints
β δ

k , minimizers exist and that, for δ → 0, they converge to the minimizer with the
correct support. Since practical electrode measurements can be regarded as an ap-
proximation to the continuum model, we therefore expect that the above approach
will also well approximate the anomaly support for real electrode data.

In the continuum model, the constraints βk will be zero outside the support of
the anomaly and positive for each pixel inside the anomaly. The first property relies
on the existence of localized potentials [11] and is only true in the limit of infinitely
many, infinitely small electrodes. The latter property is however true for any number
of electrodes as the following result shows:

Theorem 1. If Pk ⊆ D, then

(a) in the case σ ≥ σ0 the constraint βk fulfills βk ≥ a+ > 0, and
(b) in the case σ ≤ σ0 the constraint βk fulfills βk ≥ a− > 0.

Proof. If Pk ⊆ D and σ ≥ σ0 then

σ0

σ
(σ −σ0) = σ0−

σ2
0

σ
≥
(

σ0−
σ2

0
σ0 + c

)
χPk = a+χPk ,

and if Pk ⊆ D and σ ≤ σ0 then

σ0−σ ≥ cχPk = a−χPk .
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Hence, it suffices to show that αSk ≥−|V | holds for all α > 0 that fulfill

(a) αχPk ≤
σ0
σ
(σ −σ0), or

(b) αχPk ≤ σ0−σ .

We use the following monotonicity relation from [18, Lemma 3.1] (see also [25, 24]
for the origin of this estimate): For any vector g = (g j)

L
j=1 ∈RL we have that∫

Ω

σ0

σ
(σ0−σ)

∣∣∣∇u(g)σ0

∣∣∣2 dx≥ g>V g≥
∫

Ω

(σ0−σ)
∣∣∣∇u(g)σ0

∣∣∣2 dx, (7)

with u(g)σ0 = ∑
L
j=1 g j∇u( j)

σ0 .
If αχPk ≤

σ0
σ
(σ −σ0), then

0≥ g>(αSk)g =−
∫

Pk

α

∣∣∣∇u(g)σ0

∣∣∣2 ≥ ∫
Ω

σ0

σ
(σ0−σ)

∣∣∣∇u(g)σ0

∣∣∣2 ≥ g>V g,

which shows that |V |=−V ≥−αSk.
If αχPk ≤ σ0−σ , then

0≤ g>(−αSk)g =
∫

Pk

α

∣∣∣∇u(g)σ0

∣∣∣2 ≤ ∫
Ω

(σ0−σ)
∣∣∣∇u(g)σ0

∣∣∣2 ≤ g>V g,

which shows that |V |=V ≥−αSk. ut

4 Numerical results

In this section, we will test our algorithm on the data set iirc data 2006 measu-
red by Professor Eung Je Woo’s EIT research group in Korea [32, 26, 28, 27]. iirc
stands for Impedance Imaging Research Center. The data set is publicly available as
part of the open source software framework EIDORS [3] (Electrical Impedance and
Diffused Optical Reconstruction Software). Since the data set iirc data 2006
is also frequently used in the EIDORS tutorials, we believe that this is a good ben-
chmark example to test our new algorithm.

4.1 Experiment setting

The data set iirc data 2006 was collected using the 16-electrode EIT system
KHU Mark1 (see [29] for more information of this system). The reference object
was a Plexiglas tank filled with saline. The tank was a cylinder of diameter 0.2m
with 0.01m diameter round electrodes attached on its boundary. Saline was filled
to about 0.06m depth. Inside the tank, one put a Plexiglas rod of diameter 0.02m.
The conductivity of the saline was 0.15 S/m and the Plexiglas rod was basically
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non-conductive. Data acquisition protocol was adjacent stimulation, adjacent mea-
surement with data acquired on all electrodes.

The data set iirc data 2006 contains the voltage measurements for both ho-
mogeneous and non-homogeneous cases. Measurements for the homogeneous case
were obtained when the Plexiglas rod was taken away (reference conductivity in
this case is 0.15 S/m). In the non-homogeneous case, 100 different voltage mea-
surements were measured corresponding to 100 different positions of the Plexiglas
rod.

4.2 Numerical implementation

EIDORS [3] (Electrical Impedance and Diffused Optical Reconstruction Software)
is an open source software that is widely used to reconstruct images in electrical
impedance tomography and diffuse optical tomography. To reconstruct images with
EIDORS, one first needs to build an EIDORS model that fits with the measured
data. In this paper, we shall use the same EIDORS model described in the EIDORS
tutorial web-page:

http://eidors3d.sourceforge.net/tutorial/EIDORS_basics/tutorial110.shtml

Figure 2 shows the reconstructed images of the 9th-inhomogeneous measure-
ments with different regularization parameters using the EIDORS built-in command
inv solve, which follows the algorithm proposed in [2]. We emphasize that, Fi-
gure 2(b) (regularization parameter is chosen as 0.03 by default) was considered at
the EIDORS tutorial web-page, we show them here again in order to easily compare
them with the reconstructed images using our new method later on.

1

1/10

(a) Parameter = 0.003
1

1/10

(b) Parameter = 0.03
1

1/10

(c) Parameter = 0.3

Fig. 2 Reconstructed images for the 9th-inhomogeneous voltage measurements with different re-
gularization parameters.
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4.3 Minimizing the residuum

In the EIDORS model suggested in the EIDORS tutorial web-page, the reference
body was chosen by default as a disk of diameter 1m and the default reference con-
ductivity was 1 S/m. However, in the experiment setting, the reference body was a
cylinder of diameter 0.2m and the reference conductivity was 0.15 S/m. Hence, an
appropriate scaling factor should be applied to the measurements, to make sure that
the EIDORS model fits with these measurements. In the EIDORS tutorial web-page,
the measurements were scaled by multiplying by a factor 10−4. In this paper, to in-
crease the precision of the model, we shall find the best scaling factor that minimizes
the error between the measured data and the data generated by the EIDORS model.
More precisely, let call vh the measured data for homogeneous case and vh model
the homogeneous data generated by the EIDORS model, the best scaling factor is a
minimizer of the following problem

min
c∈R
‖c∗vh−vh model‖2

For this experiment setting, the best factor is 2.49577 ∗ 10−5. From now on, by
measured data we always refer to scaled measured data with respect to this best
factor.

The next step is to recover the missing measurements on the driving electrodes.
We shall follow the result in [17] to obtain an approximation for these missing mea-
surements using interpolation.

Now we are in a position to minimize the problem (5) under the linear constraint
(C1) or (C2). To do this, we need to clarify a+,a−, and βk in the linear constraints.
After scaling, the reference conductivity is σ0 = 1 S/m, and D still denotes the
Plexiglas rod with conductivity σ = 0 S/m. Thus, γ = 1, a− = infD γ = 1 and βk
is calculated using (4). In practice, there is no way to obtain the exact value of the
matrix V in (4). Indeed, what we know is just the measured data V δ = Uδ (σ)−
Uδ (σ0), where δ denotes the noise level. When replacing |V | by the noisy version
|V δ |, it may happen that there is no α > 0 so that the matrix |V δ |+αSk is still
positive semi-definite. Therefore, instead of using (4), we shall calculate βk from

βk = max{α ≥ 0 : |V δ |+αSk ≥−δ I}.

Here, I represents the identity matrix, and δ is chosen as the absolute value of the
smallest eigenvalue of V δ . Notice that, in the presence of noise, |V δ |+δ I plays the
role of the positive semi-definite matrix |V |. We shall follow the argument in [19] to
calculate βk. Let L be the lower triangular Cholesky decomposition matrix of |V δ |+
δ I, and let λs(L−1Sk(L∗)−1) be the smallest eigenvalue of the matrix L−1Sk(L∗)−1.
Since Sk is negative semi-definite, so is L−1Sk(L∗)−1. Thus, λs(L−1Sk(L∗)−1) ≤ 0.
Arguing in the same manner as in [19], we get

βk =−
1

λs(L−1Sk(L∗)−1)
≥ 0.
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1

1/10

(a) cvx
1

1/10

(b) quadprog

1

1/10

(c) EIDORS inv solve

1

1/10

(d) GREIT

Fig. 3 Reconstructed images for the 9th-inhomogeneous voltage measurements with different al-
gorithms (after scaling the measured data w.r.t the best scaling factor).

The minimizer of (5) is then obtained using two different approaches: one em-
ploys cvx (Figure 3(a)), a package for specifying and solving convex programs
[13, 12], the other (Figure 3(b)) uses the MATLAB built-in function quadprog
(trust-region-reflective Algorithm). We also show the reconstructed re-
sult using the built-in function inv solve of EIDORS [2] (Figure 3(c)) with the
default regularization parameter 0.03 and with GREIT algorithm [1] (Figure 3(d))
to see that scaling the measured data with the best scaling factor will improve a little
bit the reconstructed image. Notice that reconstructed images are highly affected by
the choice of the minimization algorithms, and we will see from Figure 3 that the
images obtained by cvx has less artifacts than the others.

It is worth to emphasize that although each EIDORS model is assigned to a de-
fault regularization parameter, when using the EIDORS built-in function inv solve
[2], in order to obtain a good reconstruction (Figure 2) one has to manually choose
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a regularization parameter, whilst the regularization parameters a− and βk in our
method are known a-priori provided the information of the conductivity σ and the
reference conductivity σ0 exists. Besides, if we manually choose the parameters
min(a−,βk), we even get much better reconstructed images (Figure 4).

1

1/10

(a) min(2,βk)

1

1/10

(b) min(3,βk)

1

1/10

(c) min(4,βk)

Fig. 4 Reconstructed images for the 9th-inhomogeneous voltage measurements with
monotonicity-based algorithm and different choices of lower constraint.

Table 1 Runtime of pictures in Figure 3

Algorithm Runtime (second)

cvx 839.3892
quadprog (trust-region-reflective) 5.4467
EIDORS (inv solve) 0.0231
GREIT 0.0120

Last but not least, our new method proves its advantage when there are more than
one inclusions (Figure 5).

5 Conclusions

In this paper, we have presented a new algorithm to reconstruct images in EIT in
the real electrode setting. Numerical results show that this new algorithm helps to
reduce the ringing artifacts in the reconstructed images. Global convergence result
of this algorithm has been proved in [19] for the Continuum Model. In future works,
we shall aim to prove global convergence result for the Shunt Model setting as well
as reduce the runtime to fit with real-time applications.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Reconstructed images for simulated data with 0.1% noise. (From left to right) First column:
True conductivity change, Second column: our new method (with cvx), Third column: EIDORS
(inv solve), Last column: GREIT
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