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Abstract. In various imaging problems the task is to use the Cauchy data
of the solutions to an elliptic boundary value problem to reconstruct the co-
efficients of the corresponding partial differential equation. Often the exam-
ined object has known background properties but is contaminated by inhomo-
geneities that cause perturbations of the coefficient functions. The factorization
method of Kirsch provides a tool for locating such inclusions. In this paper, the
factorization technique is studied in the framework of coercive elliptic partial
differential equations of the divergence type: Earlier it has been demonstrated
that the factorization algorithm can reconstruct the support of a strictly pos-
itive (or negative) definite perturbation of the leading order coefficient, or if
that remains unperturbed, the support of a strictly positive (or negative) per-
turbation of the zeroth order coefficient. In this work we show that these two
types of inhomogeneities can, in fact, be located simultaneously. Unlike in the
earlier articles on the factorization method, our inclusions may have discon-
nected complements and we also weaken some other a priori assumptions of

the method. Our theoretical findings are complemented by two-dimensional
numerical experiments that are presented in the framework of the diffusion
approximation of optical tomography.

1. Introduction. Let us consider the following inverse boundary value problem:
Determine the diffusion tensor σ(x) > 0 and the absorption coefficient µ(x) > 0 in
the elliptic equation

(1) ∇ · σ∇u − µu = 0 in Ω

when all possible pairs of Neumann and Dirichlet boundary values of u are measured
on ∂Ω. This problem arises, e.g., in optical tomography, cf. Arridge [1] and Heino
and Somersalo [14], if the measurements are static in time and modelled by the
diffusion approximation of the radiative transfer equation.
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If µ is known to be identically zero, (1) transforms into the conductivity equation,
for which the isotropic inverse boundary value problem is known to be uniquely solv-
able under suitable dimension-dependent smoothness conditions on the scalar valued
function σ; see Astala and Päivärinta [3], Nachman [22], Sylvester and Uhlmann
[23], and the references therein. However, if µ > 0, it can be shown that the coeffi-
cients of (1) cannot, in general, be uniquely determined from the knowledge of the
Neumann-to-Dirichlet boundary map even if σ is scalar valued, cf. Arridge and Li-
onheart [2]. In this work, we consider a simplified yet practical version of this inverse
boundary value problem with emphasis on obtaining a constructive algorithm.

Various imaging problems of practical importance consider locating inhomo-
geneities inside objects with known background properties. For example, detection
of cracks and air bubbles in some building material and distinguishing cancerous
tissue from healthy background fall into this category of problems. The factoriza-
tion method of Kirsch [19], introduced originally within inverse obstacle scattering,
provides a tool that can be applied to these kinds of situations in the framework
of diffuse tomography methods [11]. The theoretical aspects and the numerical
implementation of the technique for the inverse conductivity problem have been
considered, e.g., by Brühl in [6], by the authors in [12] and in the works of Brühl
and Hanke [5, 13], respectively. The generalization to the case of more general
equations of the type (1) has been tackled by Kirsch in [20] and by the authors in
[11, 15, 16], of which the first two references provide more general analysis whereas
the latter two concentrate more specifically on optical tomography.

Although the factorization method has already been studied quite extensively
with the elliptic equation (1), simultaneous characterization of absorbing and diffuse
inhomogeneities is yet to be considered: In [11, 15, 20] the aim is to find the support
of a strictly positive (or negative) perturbation of σ; the possible variation in µ is
only treated as a nuisance causing a compact perturbation that may sometimes
result in the failure of the method. On the other hand, [16] considers only the case
where µ is perturbed but σ is not. Moreover, no previous work on the factorization
method investigates the situation where the inhomogeneity, i.e., the union of the
supports of the perturbations, does not have a connected complement and this is
also the first paper where the supports of the two perturbations need not be related
in any manner.

Assume that the perturbations of σ and µ are positive (or negative) semi definite.
In this work, we show that the factorization method distinguishes between points
of the following two types: (a) Such x ∈ Ω that one cannot travel from x to
∂Ω without climbing over a strictly positive (or negative) hump caused by either
the perturbation of σ or that of µ. (b) x ∈ Ω for which there exists an open
neighbourhood U ⊂ Ω of the boundary ∂Ω so that x ∈ U and U intersects neither
the support of the perturbation of σ nor that of the perturbation of µ. This
statement is made unambiguous in Theorem 2.3 below. In particular, we want
to emphasize that we do not pose any regularity conditions on the perturbations
of σ and µ and do not ask for any special behaviour at the boundaries of the
perturbation supports as the authors do in the references we have cited above (apart
from [12]). Our theoretical findings are complemented by two-dimensional numerical
experiments.

This text is organized as follows. In section 2, we introduce our framework, state
the characterization result and present its proof. Section 3 verifies the theoretical
results numerically and Section 4 contains the concluding remarks.
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2. Characterization of inclusions of mixed type. Let Ω ⊂ R
n, n ≥ 2, be a

smooth, bounded domain, σ : Ω → R
n×n a symmetric diffusion tensor and µ : Ω →

R an absorption coefficient. The elliptic boundary value problem we are interested
in is as follows: For the input f ∈ L2(∂Ω), find the weak solution u ∈ H1(Ω) of

(2) ∇ · σ∇u − µu = 0 in Ω, ν · σ∇u = f on ∂Ω,

where ν is the exterior unit normal of ∂Ω. If σ ∈ L∞(Ω, Rn×n) and µ ∈ L∞(Ω, R)
satisfy the estimates

(3) σ ≥ cσI > 0, µ ≥ cµ > 0, cσ, cµ ∈ R+,

the forward problem (2) has a unique solution that depends linearly and continu-
ously on the input f . Here and in the following, we use “>” in the sense of positive
definiteness almost everywhere in Ω.

When solving the inverse boundary value problem corresponding to (2), one
tries to reconstruct the coefficients σ and µ from the knowledge of the Neumann-
to-Dirichlet map

Λσ : f 7→ u|∂Ω, L2(∂Ω) → L2(∂Ω),

which is linear, compact and self-adjoint and can also be considered as an isomor-
phism from H−1/2(∂Ω) to H1/2(∂Ω).

2.1. The main result. In this work, we assume that the coefficients of (2) are of
the form

(4) σ = σ0I + κ, µ = µ0 + η,

where σ0, µ0 > 0 are the known constant background diffusion and absorption
coefficients, respectively, and the perturbations κ ∈ L∞

c (Ω, Rn×n) and η ∈ L∞
c (Ω, R)

are assumed to be such that σ is symmetric and (3) is satisfied. Here L∞
c denotes

the space of L∞-functions whose supports are compact subsets of Ω. Take note
that the results presented below would remain valid if the constant and isotropic
background values in (4) were replaced by any other a priori known background
coefficients that satisfy (3) and enable unique continuation of Cauchy data from ∂Ω
to the interior of Ω. The same comment applies to the smoothness of the boundary
∂Ω, as well.

In what follows, we will denote the Neumann-to-Dirichlet boundary map corre-
sponding to the perturbed coefficients σ and µ by Λ and the map corresponding
to the background coefficients σ0 and µ0 by Λ0. Our goal is to obtain constructive
information on the supports of κ and η via boundary measurements by looking at
the range of the square root of |Λ0 − Λ|. Notice that Λ0 can be computed and Λ
can, in principle, be measured. The techniques applied here stem from the works
of Kirsch [19] and Brühl [6] and they have been used with elliptic equations of the
type (2) in the works of Bal [4], Kirsch [20] and the authors [11, 15, 16, 18], as well.

Before presenting our characterization results, let us define two auxiliary con-
cepts. To motivate the first definition, recall that the support of a locally integrable
function f is the complement of the set of all points that have an open neighbour-
hood in which f vanishes almost everywhere. In [21], Kusiak and Sylvester intro-
duced the so-called infinity support of f by taking the complement of the smaller
set of points that have an unbounded open neighbourhood with this property. Thus,
roughly speaking, the infinity support is the union of the support with all points
that cannot be connected to infinity without crossing the support. We introduce
now the analogous concept with infinity replaced by the boundary ∂Ω. Here and in
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the following, we denote by ‖ · ‖2 the matrix norm corresponding to the Euclidean
vector norm.

Definition 2.1. The ∂Ω-support of g ∈ L1
loc(Ω, Rd×d) is the complement of the set

of all x ∈ Ω for which there exists a (relatively) open U ⊂ Ω with x ∈ U , ∂Ω∩U 6= ∅,
and g|U vanishes almost everywhere. We denote this set by supp∂Ω g.

The combined ∂Ω-support supp∂Ω (g1, g2) of g1 ∈ L1
loc(Ω, Rd1×d1) and g2 ∈

L1
loc(Ω, Rd2×d2) is defined by

supp∂Ω (g1, g2) := supp∂Ω(‖g1‖2 + ‖g2‖2).

Definition 2.2. A point y ∈ Ω is shaded by the symmetric tensors g1 ∈
L∞

c (Ω, Rd1×d1) and g2 ∈ L∞
c (Ω, Rd2×d2) if there exists a smooth domain D ⊂ Ω,

with D ⊂ Ω and Ω \D connected, such that y ∈ D and for each z ∈ ∂D there exist
constants ǫz, rz > 0 such that

|gj | > ǫzI almost everywhere in B(z, rz)

for j = 1 or j = 2. Here B(z, rz) denotes the open ball of radius rz centered at z.
The set of all points shaded by g1 and g2 is denoted by sh(g1, g2).

Take note that supp∂Ω (g1, g2) is closed and consists of the supports of g1 and
g2 together with the holes that cannot be connected to ∂Ω without crossing the
support of g1 or that of g2. On the other hand, sh(g1, g2) is open and contains
x ∈ Ω if one cannot travel from x to the boundary ∂Ω without going over a strictly
positive hump in |g1| or in |g2|. In particular, sh(g1, g2) ⊆ int(supp∂Ω (g1, g2)) but
the inclusion does not need to hold in the other direction.

Finally, let us introduce a singular solution for scanning the object Ω: Fix y ∈ Ω
and consider the solution Φy ∈ C∞(Ω\{y}) of the following homogeneous Neumann
problem

(5) σ0∆Φy(x) − µ0Φy(x) = δ(x − y) for x ∈ Ω, σ0
∂Φy

∂ν
= 0 on ∂Ω,

where δ is the delta functional. Notice that Φy can be computed without any
information on κ and η. Our main result is as follows:

Theorem 2.3. Assume that either κ, η ≥ 0 or κ, η ≤ 0. If y ∈ sh(κ, η), the
boundary value Φy|∂Ω belongs to the range of |Λ0 −Λ|1/2. Conversely, Φy|∂Ω is not

included in the range of |Λ0 − Λ|1/2 if y /∈ supp∂Ω (κ, η).

Theorem 2.3 is arguably a little difficult to comprehend. In consequence, we
present five examples that demonstrate its strength but also its slight shortcomings.
In all examples Ω ⊂ R

2 is the unit disk and the perturbations of the first four
examples are visualized in Figure 1: κ is strictly positive definite in the regions
filled by horizontal lines and zero elsewhere; η is strictly positive in the regions
filled by vertical lines and zero elsewhere.

Example 2.1. Consider the inclusion geometry visualized in the top left image of
Figure 1. According to Theorem 2.3, the test function Φy|∂Ω belongs to the range

of |Λ0 −Λ|1/2 if y lies in either of the two open disks marked by the thick solid line.
On the other hand, if y belongs to the complement of the closure of these disks,
Φy|∂Ω is not in the range of |Λ0 − Λ|1/2. �

Example 2.2. Assume that the inhomogeneities inside Ω are given by the top
right image of Figure 1. Theorem 2.3 tells us that Φy|∂Ω belongs to the range of

|Λ0 − Λ|1/2 if y lies in one of the three open squares marked by the thick solid line
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Figure 1. Inclusion geometries of the first four examples. The
perturbation κ is strictly positive definite in the regions filled by
horizontal lines and zero elsewhere; the perturbation η is strictly
positive in the regions filled by vertical lines and zero elsewhere.
Top left: Example 2.1. Top right: Example 2.2. Bottom left:
Example 2.3. Bottom right: Example 2.4.

and, on the other hand, Φy|∂Ω does not belong to the range if y is in the complement
of the closure of these squares. In particular, the factorization method identifies the
holes as parts of the inhomogeneities. �

Example 2.3. Consider the inclusion geometry of the bottom left image of Fig-
ure 1. This time the characterization of Theorem 2.3 is inconclusive since the
interior of supp∂Ω (κ, η) is larger than sh(κ, η): The combined ∂Ω-support of κ and
η is the union of the two closed polygons marked by the thick solid line whereas the
shade of κ and η consists of the interior of the right-hand polygon together with the
open region filled by horizontal and vertical lines inside the left-hand polygon. This
asymmetry is due to the ’infinite thinness’ of the left-hand inclusion at its left-hand
edge. As a consequence, Theorem 2.3 does not tell whether Φy|∂Ω belongs to the

range of |Λ0 − Λ|1/2 or not if y lies in the unperturbed triangle marked with the
thick dashed line. �

Example 2.4. Consider the inhomogeneities in the bottom right image of Figure 1.
As in the preceding example, the characterization given by Theorem 2.3 is not
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conclusive: The combined ∂Ω-support of κ and η is the union of the two closed
rectangles marked by the thick solid line whereas the shade of κ and η consists of
the interior of the upper rectangle together with the union of the two open regions
filled by horizontal and vertical lines, respectively, inside the lower rectangle. This
time the mismatch between the interior of supp∂Ω (κ, η) and sh(κ, η) is caused by
the vertical line segments that separate the supports of κ and η inside the lower
inclusion; the points on these lines do not have neighbourhoods where one of the
perturbations is strictly positive. Consequently, Theorem 2.3 does not tell whether
Φy|∂Ω belongs to the range of |Λ0 −Λ|1/2 or not if y lies on either of these two line
segments or in the unperturbed square marked with the thick dashed line. �

Example 2.5. Let D, with D ⊂ Ω, be an arbitrary simply connected and smooth
domain. Assume that η = 0 in the whole of Ω and κ is given by

κ =

(

1 0
0 0

)

in D, κ = 0 in Ω \ D.

In this case the combined ∂Ω-support of κ and η is D, but their shade is empty.
Consequently, the only thing that Theorem 2.3 tells is that Φy|∂Ω does not belong

to the range of |Λ0 − Λ|1/2 if y ∈ Ω \ D. �

As the above examples indicate, Theorem 2.3 is less unequivocal than earlier
results on the factorization method for inverse elliptic boundary value problems
(cf. [11, 12, 20]). The reason for this is that earlier papers have not considered
inhomogeneities that may have disconnected complements and they have also as-
sumed that the leading order perturbation is positive (or negative) definite in the
interior of its support; none of the inclusion geometries of the above examples falls
into the framework of the theorems presented in [11, 15, 16, 20]. For inclusions
with connected complements, Theorem 2.3 gives almost all earlier results as special
cases apart from the following impairment: Theorem 2.3 never tells whether Φy|∂Ω

is in the range of |Λ0 − Λ|1/2 or not if y belongs to the boundary of the combined
∂Ω-support of κ and η. Usually authors have been able to avoid this uncertainty by
assuming that the inclusions, i.e., the supports of the perturbations, have regular
boundaries and that the perturbations (or their higher normal derivatives) produce
strict jumps of the coefficient functions (or of their higher normal derivatives) at
the inclusion boundaries (cf. [6, 11, 15, 16, 17, 20]). Here we assume no regularity
of the supports of the L∞

c -perturbations and only assume that the perturbations
are positive (or negative) semidefinite. In particular, the coefficients defined by (4)
may be smooth. A related consideration for the inverse conductivity problem with
inclusions that have connected complements can be found in [12].

In spite of the above described treatment of inclusions with disconnected comple-
ments and the reduced positivity and smoothness assumptions, the most significant
improvement that Theorem 2.3 provides to the factorization method for elliptic
equations of the type (1) is the following: Earlier papers have either focused on
locating the support of κ and treated η, with supp η ⊆ suppκ, as a nuisance caus-
ing a compact perturbation that may sometimes result in the failure of the method
[11, 15, 20], or they have assumed that κ = 0 and concentrated on locating the
support of η [16]. Bearing this history in mind, a remarkable detail about Theorem
2.3 is that it treats κ and η in a symmetric way. In other words, the factorization
method finds the interior of the support of η as easily as that of κ even though κ is
a higher order perturbation. This observation is supported by the numerical studies
presented in Section 3.
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2.2. Proof of the main result. The proof of Theorem 2.3 is based on the fol-
lowing three lemmas. To begin with, notice that the analog of Lemma 2.3 in [12]
yields that the absolute value of the difference of the Neumann-to-Dirichlet maps
in Theorem 2.3 is simply the difference itself (for κ, η ≥ 0) or minus the difference
(for κ, η ≤ 0).

Lemma 2.4. Let Λ1, Λ2 and Λ3 be the Neumann-to-Dirichlet maps correspond-
ing to the coefficient pairs (σ1, µ1), (σ2, µ2), (σ3, µ3) ∈ L∞(Ω, Rn×n) × L∞(Ω, R),
respectively. Assume that

σ1 ≤ σ2 ≤ σ3 and µ1 ≤ µ2 ≤ µ3.

Then

R
{

(Λ1 − Λ2)
1/2

}

, R
{

(Λ2 − Λ3)
1/2

}

⊆ R
{

(Λ1 − Λ3)
1/2

}

.

Suppose that Λ2 − Λ3 is injective. Then Λ1 − Λ3 is also injective, and if f, g ∈
L2(∂Ω) satisfy

(6) (Λ2 − Λ3)
1/2f = (Λ1 − Λ3)

1/2g,

then it holds that

‖g‖L2(∂Ω) ≤ ‖f‖L2(∂Ω) .

The same assertion remains valid if Λ2 − Λ3 is replaced by Λ1 − Λ2.

Proof. Reasoning as in the proofs of Lemma 2.3 and 2.4 in [12], it is easy to see
that

(7) ‖(Λ1 − Λ2)
1/2f‖L2(∂Ω), ‖(Λ2 − Λ3)

1/2f‖L2(∂Ω) ≤ ‖(Λ1 − Λ3)
1/2f‖L2(∂Ω),

for all f ∈ L2(∂Ω). In consequence, the claim about the ranges follows by using the
same functional analytic argument as in the proof of Lemma 2.4 in [12] (see also [9,
Cor. 3.5]).

To prove the second part of the claim, note first that the injectivity of Λ1 − Λ3

follows from (7); in particular, both (Λ1−Λ3)
1/2 and (Λ2−Λ3)

1/2 have dense ranges
since they are injective and self-adjoint. Let f, g ∈ L2(∂Ω) satisfy (6) and estimate
as follows:

‖g‖L2(∂Ω) = sup
h∈L2, h6=0

(

g, (Λ1 − Λ3)
1/2h

)

L2(∂Ω)

‖(Λ1 − Λ3)1/2h‖L2(∂Ω)

= sup
h∈L2, h6=0

(

f, (Λ2 − Λ3)
1/2h

)

L2(∂Ω)

‖(Λ1 − Λ3)1/2h‖L2(∂Ω)

≤ sup
h∈L2, h6=0

(

f, (Λ2 − Λ3)
1/2h

)

L2(∂Ω)

‖(Λ2 − Λ3)1/2h‖L2(∂Ω)

= ‖f‖L2(∂Ω) ,

where the inequality follows from (7). Since the claim involving Λ1 −Λ2 instead of
Λ2 − Λ3 can be handled in the same manner, the proof is complete.

Lemma 2.5. Let D be a smooth domain such that D ⊂ Ω and Ω \ D is connected
and let A : L2(∂Ω) → L2(∂Ω) be an injective, bounded, linear operator.

(a) If f : ∂D → L2(∂Ω) is a measurable function with f(∂D) ⊆ R(A), then also

g : ∂D → L2(∂Ω), g(z) := A−1f(z) for all z ∈ ∂D

is a measurable function.
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(b) If

Φz|∂Ω ∈ R(A) for all z ∈ ∂D,

and the corresponding preimages are uniformly bounded in L2(∂Ω), then

Φy|∂Ω ∈ R(A) for all y ∈ D.

Proof. (a) We start with a standard approximation of f with a sequence of simple
functions; cf., e.g., the proof of [7, Sect. II, Thm. 2]. Let {vl}l∈N be a countable,

dense subset of the separable space L2(∂Ω). We define the sets Γ̃l,m ⊆ ∂D,
l, m ∈ N, by

Γ̃l,m :=

{

z ∈ ∂D
∣

∣ ‖f(z) − vl‖L2(∂Ω) <
1

m

}

and for each M ∈ N we make a number of these sets disjoint by setting

Γ
(M)
l,m := Γ̃l,m \ Cl,m for all l, m ∈ N,

where Cl,m is the union of Γ̃l̃,m, l̃ ∈ {l + 1, . . . , M}, and Γ̃l̃,m̃, l̃ ∈ {1, . . . , M},
m̃ ∈ {m + 1, . . . , M}.

By induction, it follows that the sets Γ
(M)
l,m , l, m ∈ {1, . . . , M}, are indeed

mutually disjoint. Moreover, for every z ∈ Γ̃l,m there exists l̃ ∈ {1, . . . , M} and

m̃ ∈ {m, . . . , M} such that z ∈ Γ
(M)

l̃,m̃
⊆ Γ̃l̃,m̃, which means, in particular, that

∥

∥f(z)− vl̃

∥

∥

L2(∂Ω)
<

1

m̃
≤ 1

m
.

Denoting by χ
(M)
l,m the characteristic functions of Γ

(M)
l,m , we define the sequence

of simple function (fM )M∈N,

fM : ∂D → L2(∂Ω), fM (z) :=

M
∑

l,m=1

vl χ
(M)
l,m (z).

For every z ∈ Γ̃l,m and M ≥ max{l, m} the above construction yields that

‖fM (z) − f(z)‖L2(∂Ω) <
1

m
.

In particular, we deduce from the denseness of {vl}l∈N that fM converges point-
wise against f .

Now we define another sequence of simple functions

gM : ∂D → L2(∂Ω), gM (z) :=

M
∑

l,m=1

wl,m χ
(M)
l,m (z)

using the regularized preimages

wl,m := (A∗A + m−1I)−1A∗vl.

For every fixed z ∈ ∂D and sufficiently large M , there exists a unique pair of

indices (l, m) such that z ∈ Γ
(M)
l,m . Thus,

gM (z) = (A∗A + α(z, M)I)
−1

A∗fM (z) with α(z, M) :=
1

m
.

Since fM (z) → f(z) and ‖fM (z) − f(z)‖L2(∂Ω) < 1
m = α(z, M), it follows

from classical results on Tikhonov regularization (cf., e.g., Engl, Hanke and
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Neubauer [8, Thm. 5.2]) that gM converges pointwise towards g as M goes to
infinity. Hence, g is measurable.

(b) From the theory of fundamental solutions, it is well-known that the mapping
∂D ∋ z 7→ Φz |∂Ω ∈ L2(∂Ω) is continuous and thus measurable. (This also
follows from the explicit representation of Φz|∂Ω in Section 3.) Thus, we obtain
from (a) that the function z 7→ Ψz := A−1Φz|∂Ω is measurable. Since it is also
bounded by assumption, it follows that for all g ∈ C∞(∂D) the L2(∂Ω)-valued
function z 7→ g(z)Ψz is integrable on ∂D and that

∫

∂D

g(z)Φz|∂Ω dSz = A

(
∫

∂D

g(z)Ψz dSz

)

∈ R(A).

Thus, it only remains to show that for every y ∈ D there exists gy ∈ C∞(∂D)
such that

(8) Φy|∂Ω =

∫

∂D

gy(z)Φz|∂Ω dSz.

To that end, we introduce the Dirichlet-to-Neumann map corresponding to D
and the background coefficients (σ0, µ0), i.e.,

Λ−1
D,0 : h 7→ σ0

∂v

∂ν

∣

∣

∣

∣

∂D

, H1/2(∂D) → H−1/2(∂D),

where ν is the exterior unit normal of ∂D and v ∈ H1(D) is the solution of

σ0∆v − µ0v = 0 in D, v = h on ∂D.

Then we define gy ∈ C∞(∂D) by

gy := σ0
∂Φy

∂ν

∣

∣

∣

∣

∂D

− Λ−1
D,0(Φy |∂D).

To show that gy fulfills (8), consider an arbitrary f ∈ C∞(∂Ω) and let

uf ∈ C∞(Ω) be the corresponding solution of the Neumann boundary value
problem (2) with σ = σ0 and µ = µ0. From potential theory it follows that

uf(z) = −
∫

∂Ω

f(x)Φz(x) dSx

for all z ∈ Ω. Thus, using partial integration and the self-adjointness of Λ−1
D,0,

we may reason as follows:
∫

∂Ω

f(x)Φy(x) dSx =

∫

∂D

σ0
∂uf

∂ν
(z)Φy(z) dSz −

∫

∂D

σ0
∂Φy

∂ν
(z)uf (z) dSz

=

∫

∂D

(

(

Λ−1
D,0Φy|∂D

)

(z) − σ0
∂Φy

∂ν

∣

∣

∣

∣

∂D

(z)

)

uf (z) dSz

=

∫

∂D

gy(z)

∫

∂Ω

f(x)Φz(x) dSx dSz

=

∫

∂Ω

f(x)

∫

∂D

gy(z)Φz(x) dSz dSx.

Since this holds for every smooth f and C∞(∂Ω) is dense in L2(∂Ω), the proof
is complete.
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Lemma 2.6. Let D be as in Lemma 2.5 and let Λc be the Neumann-to-Dirichlet
map corresponding to the coefficient pair

σc =

{

(σ0 + c1)I in D,
σ0I in Ω \ D,

µc =

{

µ0 + c2 in D,
µ0 in Ω \ D,

where c1 > −σ0 and c2 > −µ0 are real constants. Then Φy|∂Ω does not belong to

R(|Λ0 − Λc|1/2) if y /∈ D.
Furthermore, if either c1 = 0 or c2 = 0, but not both, then Λ0 − Λc is injective,

and there exists C > 0 such that for every y ∈ D

(9) Φy|∂Ω ∈ R(|Λ0 − Λc|1/2)

and the preimage Ψy ∈ L2(∂Ω), |Λ0 − Λc|1/2Ψy = Φy|∂Ω, satisfies

(10) ‖Ψy‖L2(∂Ω) ≤ C

∥

∥

∥

∥

∂Φy

∂ν

∥

∥

∥

∥

H±1/2(∂D)

,

where the plus sign corresponds to the case c1 = 0, c2 6= 0 and the minus sign to
the case c1 6= 0, c2 = 0.

Proof. The fact that Φy|∂Ω does not belong to R(|Λ0 − Λc|1/2) if y /∈ D, as well as
the claim about the injectivity of Λ0 −Λc and the existence of Ψy ∈ L2(∂Ω) in the
case c1 6= 0, c2 = 0, follow straight away from the material in [11, 15]. On the other
hand, when c1 = 0 and c2 6= 0, the injectivity of Λ0 − Λc and the existence of Ψy

can be proved by slightly modifying (simplifying) the line of reasoning presented in
Section 3 of [16], where an equivalent result is proved for Robin-to-Robin boundary
operators. However, since the norm estimate (10) has not been included in earlier
papers, we outline here the proof for the case y ∈ D.

To begin with, let us introduce a family of auxiliary operators. For φ ∈ Hs(∂D),
s ≥ −1/2, the boundary value problem

σ0∆v − µ0v = 0 in Ω \ D, σ0
∂v

∂ν
= 0 on ∂Ω, σ0

∂v

∂ν
= φ on ∂D,

has a unique solution v ∈ H1(Ω \ D) that depends continuously on the bound-
ary data. We define the linear, bounded, compact and injective operator Ls :
Hs(∂D) → L2(∂Ω) by

Ls : φ 7→ v|∂Ω,

for s ≥ −1/2.
When c1 6= 0 and c2 = 0, it follows from the considerations in [11, 20] that the

boundary map |Λ0 − Λc| : L2(∂Ω) → L2(∂Ω) can be factorized as

|Λ0 − Λc| = L−1/2G−1/2(G−1/2)
∗(L−1/2)

∗,

where G−1/2 : L2(∂D) → H−1/2(∂D) is an isomorphism. On the other hand, if

c1 = 0 and c2 6= 0, there exists a closely related isomorphism G1/2 : L2(∂D) →
H1/2(∂D) such that (cf. [16])

|Λ0 − Λc| = L1/2G1/2(G1/2)
∗(L1/2)

∗.

As a consequence, |Λ0 −Λc| is injective, and it follows from fundamental functional
analysis (cf., e.g., [11, Lemma 3.5] for an elementary proof) that

R
{

|Λ0 − Λc|1/2
}

= R(L±1/2G±1/2) = R(L±1/2),

where the plus and minus signs correspond to the cases c1 = 0, c2 6= 0 and c1 6= 0,
c2 = 0, respectively.
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If y ∈ D, it is easy to see that

L±1/2

(

σ0
∂Φy

∂ν

∣

∣

∣

∣

∂D

)

= Φy|∂Ω,

and so there exists Ψy ∈ L2(∂Ω) that satisfies (9). Moreover, by using the above
factorizations and the same argumentation as in the proof of Lemma 2.4, it follows
that

‖Ψy‖L2(∂Ω) =

∥

∥

∥

∥

(G±1/2)
−1

(

σ0
∂Φy

∂ν

)∥

∥

∥

∥

L2(∂D)

≤ C

∥

∥

∥

∥

∂Φy

∂ν

∥

∥

∥

∥

H±1/2(∂D)

,

where once again the plus and minus signs correspond to the cases c1 = 0, c2 6= 0
and c1 6= 0, c2 = 0, respectively. This completes the proof.

Then it is the time to provide the proof of Theorem 2.3.
Proof of Theorem 2.3. To begin with, assume that κ, η ≥ 0. If y ∈ sh(κ, η), by
definition there exists a smooth domain D ⊂ Ω, with D ⊂ Ω and Ω \ D connected,
such that y ∈ D and for each ζ ∈ ∂D there exist constants ǫζ , rζ > 0 such that

κ > ǫζI or η > ǫζ almost everywhere in B(ζ, rζ).

Let us introduce an auxiliary function ι : ∂D → {0, 1} defined by

ι(ζ) =

{

0 if κ > ǫζI almost everywhere in B(ζ, rζ),
1 otherwise,

which indicates a perturbation that is strictly positive in a neighbourhood of ζ ∈ ∂D.
Since ∂D is compact, we may choose a finite set of points {ζj}m

j=1 ⊂ ∂D so that

(11) ∂D ⊂
m
⋃

j=1

B(ζj , rj/2),

where we have used the shorthand notation rj = rζj ; in the following, we will also
write ǫj = ǫζj and ιj = ι(ζj). Let us define a family of auxiliary coefficient pairs
{σj , µj}m

j=1 by

σj =

{

σ0 + (1 − ιj)ǫj in B(ζj , rj),

σ0 in Ω \ B(ζj , rj),
µj =

{

µ0 + ιjǫj in B(ζj , rj),

µ0 in Ω \ B(ζj , rj),

and denote the associated Neumann-to-Dirichlet maps by {Λj}m
j=1. According to

Lemma 2.6, Λ0 − Λj is injective and for every z ∈ B(ζj , rj/2) there exists Θz,j ∈
L2(∂Ω) such that

|Λ0 − Λj |1/2Θz,j = Φz |∂Ω and ‖Θz,j‖L2(∂Ω) ≤ C

∥

∥

∥

∥

∂Φz

∂ν

∥

∥

∥

∥

H1/2(∂B(ζj ,rj))

≤ Cj ,

where the last inequality is due to the fact that z stays away from the boundary of
B(ζj , rj).

Since σ0I ≤ σjI ≤ σ and µ0 ≤ µj ≤ µ, it follows from Lemma 2.4 that Λ0 −Λ is
injective and that there exists Ψz,j ∈ L2(∂Ω) such that

|Λ0 − Λ|1/2Ψz,j = Φz |∂Ω and ‖Ψz,j‖L2(∂Ω) ≤ Cj for all z ∈ B(ζj , rj/2).

Taking advantage of (11) and the injectivity of |Λ0 − Λ|1/2, it is easy to see that
Ψz := Ψz,j is well-defined for all z ∈ ∂D. We have thus constructed {Ψz}z∈∂D ⊂
L2(∂Ω) such that |Λ0 − Λ|1/2Ψz = Φz |∂Ω for all z ∈ ∂D and

sup
z∈∂D

‖Ψz‖L2(∂Ω) ≤ max
j=1,...,m

Cj < ∞.

Inverse Problems and Imaging Volume 2, No. 3 (2008), 355–372

First published in Inverse Problems and Imaging in Vol. 2, No. 3, 2008, 
       published by the American Institute of Mathematical Sciences



366 Bastian Gebauer and Nuutti Hyvönen

As a consequence, Lemma 2.5 shows that Φy|∂Ω belongs to the range of |Λ0−Λ|1/2.
Continue assuming that κ, η ≥ 0 and let now y ∈ Ω\supp∂Ω (κ, η). Since κ and η

are compactly supported, it follows from the definition of the combined ∂Ω-support
that there exists a smooth domain Dy such that y /∈ Dy, supp∂Ω (κ, η) ⊂ Dy,

Dy ⊂ Ω and Ω\Dy is connected. We define yet another pair of auxiliary coefficients
by

σy =

{

σ0 + c1 in Dy,
σ0 in Ω \ Dy,

µy =

{

µ0 + c2 in Dy,
µ0 in Ω \ Dy,

where the scalar constants c1, c2 ≥ 0 are chosen so that σyI > σ and µy > µ almost
everywhere in Ω. Now Lemmas 2.4 and 2.6 tell us that

Φy|∂Ω /∈ R
{

|Λ0 − Λy|1/2
}

⊇ R
{

|Λ0 − Λ|1/2
}

,

where Λy is the Neumann-to-Dirichlet map corresponding to the pair (σy , µy). This
proves the claim for κ, η ≥ 0.

Since the case that κ, η ≤ 0 can be handled in exactly the same way, the proof
is complete. �

3. Numerical experiments. We will now present some numerical experiments to
verify and illustrate our theoretical findings. In all cases, Ω is the two-dimensional
unit disk and the background diffusion and absorption coefficients are chosen to be
σ0 = 0.05 and µ0 = 0.5, which correspond to the optical parameters of a neonatal
head of radius 25 mm, cf. [1, 18].

The numerical simulation of the Neumann-to-Dirichlet boundary maps is done
in the same way as in [12]: On the boundary ∂Ω we apply the L2-orthonormal basis
functions

B :=

{

1√
2π

,
1√
π

sin(kφ),
1√
π

cos(kφ)
∣

∣

∣
k = 1, . . . , 128

}

as inputs. Here and in the following, the pair (r, φ) denotes the polar coordinates
with respect to the center of Ω. For given perturbations κ and η, let u ∈ H1(Ω)
be the solution of (2) with σ = σ0 + κ, µ = µ0 + η, and let u0 ∈ H1(Ω) be the
corresponding solution for the unperturbed background coefficients σ0 and µ0.

For every f ∈ B we compute the difference v := u0 − u ∈ H1(Ω) with the
commercial finite element software Comsol by solving the variational problem

∫

Ω

(σ∇v · ∇w + µvw) dx =

∫

Ω

(κ∇u0 · ∇w + ηu0w) dx for all w ∈ H1(Ω),

which is obtained by subtracting the variational equations for u and u0. Since κ
and η are compactly supported in Ω, this is equivalent to

∇ · σ∇v − µv = ∇ · κ∇u0 − ηu0

with the homogeneous Neumann boundary condition on ∂Ω. On the right hand
side we use the exact solutions u0 for the aforementioned input functions f , i.e.,

c0√
2π

I0

(√

µ0

σ0
r

)

,
ck√
π

cos(kφ)Ik

(√

µ0

σ0
r

)

, and
ck√
π

sin(kφ)Ik

(√

µ0

σ0
r

)

,

where

ck :=
2

√
µ0σ0

(

Ik−1

(
√

µ0

σ0

)

+ Ik+1

(
√

µ0

σ0

)) , k = 0, . . . , 128,
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and Iα, α ∈ Z, are the modified Bessel functions of the first kind (cf. [18]). As the
difference of u and u0 is considerably smaller than u and u0, this approach leads
to a higher precision than computing u and u0 separately. The boundary data
v|∂Ω = (u0 − u)|∂Ω is then expanded in the orthonormal basis B, so that we obtain
a discrete approximation M ∈ R

257×257 of the operator Λ0 − Λ.
We turn next to the computation of the singular function Φy, i.e., the solution of

(5). Let K0 be the zeroth order modified Bessel function of the second kind. Then,

hy(x) := − 1

2πσ0
K0

(√

µ0

σ0
|y − x|

)

satisfies the first part of (5) and thus differs from Φy only by a homogeneous solution.
Hence, it follows that

Φy|∂Ω = hy|∂Ω − Λ0

(

σ0
∂hy

∂ν

∣

∣

∣

∣

∂Ω

)

.

The operator Λ0 is diagonalized by the orthonormal basis B and its eigenvalues
are easily computed from the exact solutions given above. Thus, we obtain the
expansion Φ̃y ∈ R

257 of Φy|∂Ω in the basis B in a straightforward manner by using

the corresponding expansions of hy|∂B and σ0
∂hy

∂ν (cf. [18]).
For the numerical implementation of the range test

(12) Φy|∂Ω ∈ R(|Λ0 − Λ|1/2),

we proceed as in [12]. Let

(Λ0 − Λ)vj = λjvj , j ∈ N,

be a spectral decomposition of the compact, self-adjoint, and injective operator
Λ0 − Λ with orthonormal basis of eigenfunctions {vj} ⊂ L2(∂Ω) and eigenvalues
{λj} ⊂ R (sorted in decreasing order of absolute value). The Picard criterion yields
that (12) holds if and only if

f(y) :=
1

‖Φy|∂Ω‖2
L2(∂Ω)

∞
∑

j=1

|〈Φy|∂Ω, vj〉L2(∂Ω)|2
|λj |

< ∞.

Using a singular value decomposition of the discrete approximation M ∈ R
257×257,

Mṽj = λ̃j ũj , M∗ũj = λ̃j ṽj , j = 1, . . . , 257,

with nonnegative {λ̃j} ⊂ R (sorted in decreasing order) and orthonormal bases
{ũj}, {ṽj} ⊂ R

257, we approximate the function f(y) by

f̃(y) :=

m
∑

j=1

(Φ̃y · ṽj)
2

|λ̃j |
/

m
∑

j=1

(Φ̃y · ṽj)
2,

where m is chosen so that λ̃m+1 is the first singular value below the expected
measurement error.

To obtain a numerical criterion for deciding if the infinite sum f(y) attains the

value ∞ from the mere knowledge of the approximate value f̃(y), which is always
finite, a threshold C∞ > 0 is needed to distinguish the points with large values
f̃(y) ≥ C∞ from those with small values f̃(y) < C∞. A reconstruction of a set
containing information on the combined ∂Ω-support of κ and η (see Theorem 2.3)

is then obtained by evaluating f̃(y) on a grid of points {yn} ⊂ Ω and saying that all

points with f̃(yn) < C∞ belong to this set of interest. Choosing different threshold
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values C∞ corresponds to choosing different level contours of f̃(y) or, equivalently,

of a monotone function of f̃(y).
In our numerical experiments, we plot the indicator function

(13) Ind(y) :=
(

log f̃(y)
)−1

on an equidistant grid {yn} ⊂ Ω, which is chosen independently of the finite element
mesh that is used for solving the forward problems. We also show the level contour
that fits best to the true ∂Ω-support (chosen by hand on a purely subjective basis).
In practice, the choice of the threshold requires additional information, e.g., from
previous experiments, and there is no guarantee that an optimal contour is found.
To illustrate the sensitivity of our reconstructions with respect to the threshold, we
also plot the level contours Ind−1(C∞) for C∞ = 0.9 ·Ĉ∞ and C∞ = 1.1 ·Ĉ∞, where

Ĉ∞ is the threshold corresponding to the optimal level contour.
Figure 2 illustrates the reconstructions that we obtained using exact simulated

data. The supports of the perturbations η, κ are the sets from Examples 2.1–
4. On their respective supports we set η = µ0 and κ = σ0, i.e., the perturbed
coefficients are twice as high as the background coefficients. The left column of
Figure 2 shows the graph of the indicator function defined by (13) using all singular
values above machine precision level. The edges of the supports of η and κ are
plotted by a dashed, light cyan line. For distinguishing the respective supports we
refer to Figure 1. As explained above, the second column of Figure 2 shows the
corresponding level curves for the optimal threshold Ĉ∞ (light solid red line), and

for the two perturbed thresholds 0.9 · Ĉ∞ (outer dotted green line) and 1.1 · Ĉ∞

(inner dotted green line). The true inclusions are marked with a dashed black line.
As Figure 2 demonstrates, the factorization method provides a relatively good

reconstruction of the combined ∂Ω-support of κ and η if exact data is available. In
particular, the algorithm locates simultaneously both diffuse and absorbing inclu-
sions, although the behaviour of the indicator function depends somewhat on the
type of the inhomogeneity in question: Ind tends to have a broad and low elevation
over the support of κ whereas there is a more concentrated and higher peak over
the support of η. Experiments with other parameter values, however, reveal that
the relative heights of the humps in the graph of Ind depend strongly on the choice
of σ0 and µ0 as well as on the strengths of the perturbations κ and η. An inter-
esting detail in Figure 2 is that the difference between supp∂Ω (κ, η) and sh(κ, η)
in the latter two experiments (see Examples 2.3 and 2.4, and Theorem 2.3) does
not seem to affect the reconstructions very much: The method seems to provide an
approximation of the combined ∂Ω-support of κ and η also in these cases.

Let us remark that our unperturbed simulated data is of course not really exact
but contains all kinds of discretization errors. Using the magnitude of the nonsym-
metric part of M as in [10], we estimated the relative error in the spectral norm
to be around 2 · 10−6 for our four examples. However, this error is of a system-
atic nature, which we observed to have a lesser impact on the reconstructions than
random errors do.

In addition to using the unperturbed simulated measurement matrix M , we
therefore also test the method after adding 0.1% random noise to M . More precisely,
we generate a random matrix E ∈ R

257×257 with uniformly distributed entries
between −1 and 1. Then E is scaled to the noise level with respect to its spectral

Inverse Problems and Imaging Volume 2, No. 3 (2008), 355–372

First published in Inverse Problems and Imaging in Vol. 2, No. 3, 2008, 
       published by the American Institute of Mathematical Sciences



Factorization method and inclusions of mixed type 369

Figure 2. Numerical reconstructions with exact data.
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Figure 3. Numerical reconstructions with noisy data.
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norm ‖E‖2 and added to M , i.e., we replace M with

Mǫ := M + 10−3 ‖M‖2

E

‖E‖2

.

Accordingly, only singular values larger than 10−3 ‖Mǫ‖ are now used in the trun-

cated Picard series in the definition of f̃(y).
Figure 3, which is organized in the same way as Figure 2, illustrates the recon-

structions corresponding to noisy simulated data. As expected, the reconstructions
are more blurred than in the noiseless case and one cannot make out the exact
shapes of the inhomogeneities based on the graphs of the indicator functions. How-
ever, the images in Figure 3 still provide useful informations on the approximate
locations of the inclusions. The effect that the measurement noise has on the quality
of the reconstructions is in line with the observations in [5, 13, 12], where similar
experiments are presented in the framework of electrical impedance tomography.

4. Conclusions. We have shown that in the framework of coercive elliptic par-
tial differential equations of the divergence type the factorization method locates
simultaneously the supports of positive (or negative) perturbations of the leading
and zeroth order coefficients. Furthermore, we have demonstrated that the method
remains functional even if the inhomogeneities have irregular boundaries and dis-
connected complements. Numerical experiments with simulated data confirm our
theoretical results.

Acknowledgements. This work was conducted while the first author was em-
ployed at the Johann Radon Institute for Computational and Applied Mathematics
(RICAM), Austrian Academy of Sciences, Altenbergerstr. 69, A-4040 Linz, Austria.

The work of the second author was supported by the Academy of Finland (project
115013), the Finnish Funding Agency for Technology and Innovation (project
40084/06), the Finnish Cultural Foundation, and the Finnish Foundation for Tech-
nology Promotion.

REFERENCES

[1] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41–R93.
[2] S. R. Arridge and W. R. B. Lionheart, Nonuniqueness in diffusion-based optical tomography,

Opt. Lett., 23 (1998), 882–884.
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