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Abstract. We consider field localizing and concentration of electromagnetic waves governed
by the time-harmonic anisotropic Maxwell system in a bounded domain. It is shown that there
always exist certain boundary inputs which can generate electromagnetic fields with the energy
localized/concentrated in a given subdomain while nearly vanishing in another given subdomain.
The theoretical results may have potential applications in telecommunication, inductive charging,
and medical therapy. We also derive a related Runge approximation result for the time-harmonic
anisotropic Maxwell system with partial boundary data.
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1. Introduction.

1.1. Background and motivation. The electromagnetic (EM) phenomena are
ubiquitous and they lie at the heart of many scientific and technological applications
including radar and sonar, geophysical exploration, medical imaging, information pro-
cessing, and communication. In this paper, we are mainly concerned with the mathe-
matical study of field localizing and concentration of electromagnetic waves governed
by the time-harmonic Maxwell system in a bounded anisotropic medium. More specif-
ically, we show that there always exist certain boundary inputs which can generate the
desired electromagnetic fields that are localized/concentrated in a given subdomain
while nearly vanishing in another given subdomain.

The localizing and concentration of electromagnetic fields can have many potential
applications. In telecommunication [44], one common means of transmitting informa-
tion between communication participants is via the electromagnetic radiation. In a
certain practical scenario, say, secure communication, one may intend the information
to be transmitted mainly to a partner located at a certain region, while avoiding the
transmission to another region. Clearly, if the information is encoded into the electro-
magnetic waves that are localized and concentrated in the region where the partner
is located while nearly vanishing in the undesired region, then one can achieve the
expected telecommunication effect. In the setup of our proposed study, one can easily
obtain the aforementioned communication effect, in particular if the communication
participants transmit and receive information on some surface patches.
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Concentrating electromagnetic fields can also be useful in inductive charging,
also known as wireless charging or cordless charging [43], which is an emerging tech-
nology that can have significant impact on real life. It uses electromagnetic fields
to transfer energy between two objects through electromagnetic induction. Clearly,
the energy transfer would be more efficient and effective if the corresponding elec-
tromagnetic fields are concentrated around the charging station. The localizing of
electromagnetic fields can also have potential application in electromagnetic therapy.
Though it is mainly considered to be pseudoscientific with no affirmative evidence,
electromagnetic therapy has been widely practiced and claims to treat disease by
applying electromagnetic radiation to the body. If electromagnetic therapy shall be
proven to be effective, then through the use of certain purposely designed sources,
one can generate electromagnetic fields that are concentrated around the diseased
area.

The above conceptual and potential applications make the study of field con-
centration and localizing very appealing. Nevertheless, it is emphasized that in the
current article, we are mainly concerned with mathematical and theoretical study. We
achieve some substantial progress on this interesting topic, though the correspond-
ing study is by no means complete. It is also interesting to note that the localizing
of resonant electromagnetic fields has been used to produce invisibility cloaking and
has received significant attention in the literature in recent years [2, 3, 6, 31, 34, 37].
The corresponding study is mainly based on the use of plasmonic materials to induce
so-called anomalous localized resonance.

Our mathematical argument for proving the existence of localized and concen-
trated electromagnetic fields is mainly based on combining the unique continuation
property (UCP) for the anisotropic Maxwell system with a functional analytic duality
argument developed in [12]. By a similar argument, we also obtain a related Runge
approximation property.

The use of blow up solutions has a long tradition in the study of inverse boundary
value problems; cf. [1, 25, 27, 28] for early seminal works on this topic. Moreover, the
combination of localized fields and monotonicity relations has led to the development
of monotonicity-based methods for obstacle/inclusion detection; cf. [22, 39] for the
origins and mathematical justification of this approach, [5, 7, 9, 10, 11, 16, 17, 18, 19,
21, 23, 33, 38, 40, 42, 45] for further recent contributions, and the recent works [13, 20]
for the Helmholtz equation. Theoretical uniqueness results for inverse coefficient
problems have also been obtained by this approach in [4, 14, 15, 21, 24].

In this work, we show the existence of localized electromagnetic fields for the
more challenging case of a time-harmonic anisotropic Maxwell system with partial
data. We also derive a Runge approximation result, which shows that every solution
in a subdomain can be approximated by a solution on the whole domain. In that
context let us note the famous equivalence theorem from Peter Lax [29]: the weak
UCP is equivalent to the Runge approximation property for the second order elliptic
equation. In our study, we affirmatively verify that this property still holds for the
anisotropic Maxwell system.

The rest of this section is devoted to the mathematical description of the setup
of our study and the statement of the main result.

1.2. Mathematical setup and statement of the main result. Let \Omega be
a simply connected domain in \BbbR 3 with a Lipschitz connected boundary \partial \Omega . Let
\epsilon = (\epsilon ij)1\leq i,j\leq 3 and \mu = (\mu ij)1\leq i,j\leq 3 be two 3\times 3 real matrix-valued functions on \Omega 
satisfying the following:
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\bullet Strong ellipticity: There exist constants \mu 0 > 0 and \epsilon 0 > 0 verifying

(1.1)

\Biggl\{ 
\mu 0| \xi | 2 \leq 

\sum 3
i,j=1 \mu ij(x)\xi i\xi j \leq \mu  - 1

0 | \xi | 2,
\epsilon 0| \xi | 2 \leq 

\sum 3
i,j=1 \epsilon ij(x)\xi i\xi j \leq \epsilon  - 1

0 | \xi | 2
for any x \in \Omega and \xi \in \BbbR 3.

\bullet Smoothness: \epsilon and \mu are Lipschitz continuous.
\bullet Symmetry: \epsilon and \mu are symmetric matrices, that is, \epsilon ij = \epsilon ji and \mu ij = \mu ji

for all i, j = 1, 2, 3.
The functions \epsilon and \mu , respectively, signify the electric permittivity and magnetic

permeability of the medium in \Omega . Consider the time-harmonic electromagnetic wave
propagation in \Omega . With the e - ikt time-harmonic convention assumed, we let E(x)
and H(x), respectively, denote the electric and magnetic fields. Here, k \in \BbbR + signifies
a circular frequency. Then the electromagnetic wave propagation is governed by the
following Maxwell system:

(1.2)

\left\{         
\nabla \times E  - ik\mu H = 0 in \Omega ,

\nabla \times H + ik\epsilon E = 0 in \Omega ,

\nu \times E =

\Biggl\{ 
f on \Gamma ,

0 otherwise
on \partial \Omega ,

where \Gamma is an arbitrary nonempty relatively open subset of \partial \Omega and \nu is the unit outer
normal vector on \partial \Omega . It is assumed that k > 0 is not an eigenvalue (or nonresonance,
see section 2) for (1.2) and f \in C\infty 

c (\Gamma ) throughout this paper.
The main result concerning the localized electromagnetic fields for the anisotropic

Maxwell system (1.2) is contained in the following theorem.

Theorem 1.1. Let \Omega \subset \BbbR 3 be a bounded Lipschitz domain and \Gamma \subseteq \partial \Omega be a
relatively open subset of the boundary. Let \epsilon , \mu \in L\infty (\Omega ,\BbbR 3\times 3) be real-valued, piecewise
Lipschitz continuous functions satisfying (1.1) and k > 0 be a nonresonant frequency.
Let D \Subset \Omega be a closed set with a connected complement \Omega \setminus D. For every open set
M \subseteq \Omega with M \not \subseteq D (see Figure 1 for the schematic illustration), there exists a
sequence

\bigl\{ 
f (\ell )

\bigr\} 
\ell \in \BbbN \subset C\infty 

c (\Gamma ) such that the electromagnetic fields fulfill\int 
M

\Bigl( 
| E(\ell )| 2 + | H(\ell )| 2

\Bigr) 
dx\rightarrow \infty and

\int 
D

\Bigl( 
| E(\ell )| 2 + | H(\ell )| 2

\Bigr) 
dx\rightarrow 0 as \ell \rightarrow \infty ,

Fig. 1. Schematic illustration of the field localizing and concentration.
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where, for \ell \in \BbbN , (E(\ell ), H(\ell )) \in H(curl,\Omega )\times H(curl,\Omega ) is a solution of\Biggl\{ 
\nabla \times E(\ell )  - ik\mu H(\ell ) = 0 in \Omega ,

\nabla \times H(\ell ) + ik\epsilon E(\ell ) = 0 in \Omega 

with the boundary data

\nu \times E(\ell )| \partial \Omega =

\Biggl\{ 
f (\ell ) on \Gamma ,

0 otherwise.

Remark 1.1. We denote the sequence \{ (E(\ell ), H(\ell ))\} \ell \in \BbbN in Theorem 1.1 to be the
localized electromagnetic fields.

The rest of the paper is organized as follows. In section 2, we present results
on the well-posedness of the time-harmonic anisotropic Maxwell system. We also
provide the UCP for the anisotropic Maxwell system, whenever the coefficients \mu 
and \epsilon are piecewise Lipschitz continuous matrix-valued functions. In section 3, we
demonstrate that there exist localized electromagnetic fields, which proves Theorem
1.1. The method relies on certain functional analysis techniques. In section 4 we
prove a related Runge approximation property for the anisotropic Maxwell system
with partial boundary data.

2. The anisotropic Maxwell system in a bounded domain. In this sec-
tion, we summarize some useful results of the Maxwell system, including the unique
solvability and a UCP. Throughout this section we let \Omega \subset \BbbR 3 be a bounded Lipschitz
domain.

2.1. Spaces and traces. We introduce the spaces

H(div,\Omega ) :=
\bigl\{ 
E \in L2(\Omega )3; \nabla \cdot E \in L2(\Omega )

\bigr\} 
,

H(curl,\Omega ) :=
\bigl\{ 
E \in L2(\Omega )3; \nabla \times E \in L2(\Omega )3

\bigr\} 
,

and the tangential trace operators

\gamma t : H(curl,\Omega ) \rightarrow H - 1/2(div\partial \Omega , \partial \Omega ), E \mapsto \rightarrow \gamma tE := \nu \times E| \partial \Omega ,
\gamma T : H(curl,\Omega ) \rightarrow H - 1/2(curl\partial \Omega , \partial \Omega ), E \mapsto \rightarrow \gamma TE := \nu \times (E| \partial \Omega \times \nu ),

where, and also in what follows, all functions are complex-valued unless indicated oth-
erwise. \gamma t and \gamma T are surjective bounded linear operators with bounded right inverses
\gamma  - 1
t and and \gamma  - 1

T (cf. [8, 41] ). The space H - 1/2(div\partial \Omega , \partial \Omega ) can be identified with
the dual of H - 1/2(curl\partial \Omega , \partial \Omega ), and for all E,F \in H(curl,\Omega ) we have the integration
by parts formula

(2.1)

\int 
\Omega 

(\nabla \times E) \cdot F dx - 
\int 
\Omega 

E \cdot (\nabla \times F ) dx =

\int 
\partial \Omega 

(\nu \times E| \partial \Omega ) \cdot (\nu \times (F | \partial \Omega \times \nu )) dS

(cf. [8, 35]), where the dual pairing on H - 1/2(div\partial \Omega , \partial \Omega )\times H - 1/2(curl\partial \Omega , \partial \Omega ) is writ-
ten as an integral for notational convenience.

The subspace of H(curl,\Omega )-functions with vanishing tangential traces is denoted
by

H0(curl,\Omega ) := \{ E \in H(curl,\Omega ) : \nu \times E| \partial \Omega = 0\} .
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H0(curl,\Omega ) is a closed subspace of H(curl,\Omega ) and C\infty 
0 (\Omega )3 is dense in H0(curl,\Omega )

(cf. [35]).
To treat partial boundary data on a relatively open subset \Gamma \subseteq \partial \Omega , we also

introduce the space of functions on \Gamma that can be extended by zero to the trace of a
H(curl,\Omega )-function

H(\Gamma ) := closure of C\infty 
c (\Gamma ) in H - 1/2(div\partial \Omega , \partial \Omega ).(2.2)

For all E \in H(curl,\Omega ), we identify the restricted trace \nu \times (E| \Gamma \times \nu ) with the quotient
space element

\nu \times (E \times \nu )| \partial \Omega +H(\Gamma )\bot \in H - 1/2(curl\partial \Omega , \partial \Omega )/H(\Gamma )\bot = H(\Gamma )\ast ,

and thus define the restricted trace operator

\gamma 
(\Gamma )
T : H(curl,\Omega ) \rightarrow H(\Gamma )\ast , E \mapsto \rightarrow \gamma 

(\Gamma )
T E := \nu \times (E| \Gamma \times \nu ).

2.2. Well-posedness of the anisotropic Maxwell system. Given anisotropic
coefficients \epsilon , \mu \in L\infty (\Omega ,\BbbR 3\times 3) satisfying (1.1), k > 0, J,K \in L2(\Omega )3, and f \in 
H - 1/2(div\partial \Omega , \partial \Omega ), we consider the Maxwell system for (E,H) \in H(curl,\Omega )\times H(curl,\Omega )
such that

\nabla \times E  - ik\mu H = K in \Omega ,(2.3)

\nabla \times H + ik\epsilon E = J in \Omega ,(2.4)

\nu \times E| \partial \Omega = f.(2.5)

For the variational formulation of (2.3)--(2.4) we introduce the sesquilinear form

\scrB : H(curl,\Omega )\times H(curl,\Omega ) \rightarrow \BbbC ,

\scrB (E,F ) :=
\int 
\Omega 

\bigl( 
\mu  - 1\nabla \times E

\bigr) 
\cdot 
\bigl( 
\nabla \times F

\bigr) 
dx - 

\int 
\Omega 

k2\epsilon E \cdot F dx.

Then we have the following variational formulation and well-posedness result.

Theorem 2.1.
(a) (E,H) \in H(curl,\Omega )\times H(curl,\Omega ) solve (2.3)--(2.4) if and only if E \in H(curl,\Omega )

solves

\scrB (E,F ) =
\int 
\Omega 

ikJ \cdot F dx+

\int 
\Omega 

\bigl( 
\mu  - 1K

\bigr) 
\cdot 
\bigl( 
\nabla \times F

\bigr) 
dx for all F \in H0(curl,\Omega ),

and H =  - i

k
\mu  - 1(\nabla \times E  - K).

(b) The set of k > 0 for which the homogeneous system (2.3)--(2.5) with J = 0,
K = 0, and f = 0 possesses a nontrivial solution is discrete. We call these k
resonance frequencies.

(c) If k is not a resonance frequency, then there exists a unique solution (E,H) \in 
H(curl; \Omega )\times H(curl; \Omega ) of (2.3)--(2.5), and the solution depends linearly and
continuously on J,K \in L2(\Omega )3 and f \in H - 1/2(div\partial \Omega , \partial \Omega ).

The proof of Theorem 2.1 follows from a standard argument. Since we couldn't
find a convenient reference for precisely this setting, we supply a proof for the sake of
completeness. We first derive the following lemma.
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Lemma 2.1. (E,H) \in H(curl,\Omega ) \times H(curl,\Omega ) solves (2.3)--(2.4) if and only if
E \in H(curl,\Omega ) solves

(2.6) \scrB (E,F ) =
\int 
\Omega 

ikJ \cdot F dx+

\int 
\Omega 

\bigl( 
\mu  - 1K

\bigr) 
\cdot 
\bigl( 
\nabla \times F

\bigr) 
dx for all F \in H0(curl,\Omega ),

and H =  - i

k
\mu  - 1(\nabla \times E  - K).

Proof. Let (E,H) \in H(curl,\Omega )\times H(curl,\Omega ) solve (2.3)--(2.4). Then (2.3) implies
that

E \in H(curl,\Omega ) and H =  - i

k
\mu  - 1(\nabla \times E  - K),

and combining (2.3) and (2.4) we obtain

(2.7) \nabla \times 
\bigl( 
\mu  - 1 (\nabla \times E  - K)

\bigr) 
 - k2\epsilon E = ikJ,

which also shows that \mu  - 1 (\nabla \times E  - K) \in H(curl; \Omega ). Using (2.7) and the integration
by parts formula (2.1), it follows that for all F \in H0(curl; \Omega )\int 

\Omega 

ikJ \cdot F dx =

\int 
\Omega 

\biggl( 
\nabla \times 

\biggl( 
1

\mu 
(\nabla \times E  - K)

\biggr) \biggr) 
\cdot F dx - 

\int 
\Omega 

k2\epsilon E \cdot F dx

=

\int 
\Omega 

\bigl( 
\mu  - 1 (\nabla \times E  - K)

\bigr) 
\cdot 
\bigl( 
\nabla \times F

\bigr) 
dx - 

\int 
\Omega 

k2\epsilon E \cdot F dx,

and thus (2.6) holds.
On the other hand, if E \in H(curl,\Omega ) fulfills (2.6) for all F \in H0(curl,\Omega ), then this

also holds for all F \in C\infty 
0 (\Omega )3, which (by the definition of distributional derivatives)

shows that

\nabla \times 
\bigl( 
\mu  - 1\nabla \times E

\bigr) 
 - k2\epsilon E = ikJ +\nabla \times 

\bigl( 
\mu  - 1K

\bigr) 
,

and thus

1

ik
\nabla \times 

\bigl( 
\mu  - 1(\nabla \times E  - K)

\bigr) 
+ ik\epsilon E = J.

Defining H :=
1

ik
\mu  - 1(\nabla \times E  - K) it follows that H \in H(curl; \Omega ) and that E and H

solve (2.3)--(2.4).
The proof is complete.

If H(curl,\Omega ) was compactly embedded into L2(\Omega ), then Theorem 2.1 would im-
mediately follow from Lemma 2.1 by a Fredholm argument. However this is not the
case, and we need to introduce an additional variational formulation on the space

\scrH := \{ E \in L2(\Omega )3 : \nabla \times E \in L2(\Omega )3, \nabla \cdot (\epsilon E) = 0, \nu \times E| \partial \Omega = 0\} ,

which is compactly embedded into L2(\Omega )3 (see, e.g., [26, Theorem 5.32]). We now
first consider the Maxwell system with homogeneous boundary data and divergence
free electric currents, so that the solution lies in \scrH . After that we shall show that the
general Maxwell system can be transformed (or gauged) to fulfill this condition.
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Lemma 2.2. For f = 0 and \nabla \cdot J = 0, (E,H) \in H(curl,\Omega ) \times H(curl,\Omega ) solves
(2.3)--(2.5) if and only if E \in \scrH solves

(2.8) \scrB (E,F ) =
\int 
\Omega 

ikJ \cdot F dx+

\int 
\Omega 

\bigl( 
\mu  - 1K

\bigr) 
\cdot 
\bigl( 
\nabla \times F

\bigr) 
dx for all F \in \scrH ,

and H =  - i

k
\mu  - 1(\nabla \times E  - K).

Proof. If (E,H) \in H(curl,\Omega )\times H(curl,\Omega ) fulfill (2.3)--(2.5), then clearly E \in \scrH 
and Lemma 2.1 shows that (2.8) is fulfilled for all F \in \scrH \subset H0(curl,\Omega ).

To prove the other direction, let E \in \scrH fulfill (2.8) for all F \in \scrH . Given \Phi \in 
H0(curl,\Omega ), there exists a solution \varphi \in H1

0 (\Omega ) of

\nabla \cdot (\epsilon \nabla \varphi ) =  - \nabla \cdot (\epsilon \Phi )

and thus F := \Phi +\nabla \varphi \in \scrH . Using (2.8) it follows that for

\scrB (E,\Phi ) = \scrB (E,F ) - \scrB (E,\nabla \varphi )

=

\int 
\Omega 

ikJ \cdot F dx+

\int 
\Omega 

\bigl( 
\mu  - 1K

\bigr) 
\cdot 
\bigl( 
\nabla \times F

\bigr) 
dx+

\int 
\Omega 

k2\epsilon E \cdot \nabla \varphi dx

=

\int 
\Omega 

ikJ \cdot \Phi dx+

\int 
\Omega 

\bigl( 
\mu  - 1K

\bigr) 
\cdot 
\bigl( 
\nabla \times \Phi 

\bigr) 
dx,

where we used \nabla \times (\nabla \varphi ) = 0, \nabla \cdot J = 0, \nabla \cdot (\epsilon E) = 0, and \varphi | \partial \Omega = 0.
The proof is complete.

We recall that we call k > 0 a resonant frequency, if the homogeneous Maxwell
system (2.3)--(2.5) with J = 0, K = 0, and f = 0 admits a nontrivial solution.

Lemma 2.3. If k > 0 is not a resonant frequency, then for every J,K \in L2(\Omega )3

with \nabla \cdot J = 0 and f = 0, there exists a unique solution (E,H) \in H(curl,\Omega ) \times 
H(curl,\Omega ) of (2.3)--(2.5), and the solution depends continuously on J,K \in L2(\Omega )3.
Moreover, the set of resonant frequencies is discrete.

Proof. Lemma 2.2 yields that (E,H) \in H(curl,\Omega )\times H(curl,\Omega ) solves (2.3)--(2.5)
if and only if

(\scrA +\scrK (k))E = l,

where \scrA ,\scrK (k) : \scrH \rightarrow \scrH \ast are defined by

\langle \scrA E,F \rangle :=
\int 
\Omega 

\bigl( 
\mu  - 1\nabla \times E

\bigr) 
\cdot (\nabla \times F ) dx+

\int 
\Omega 

E \cdot F dx for all E,F \in \scrH ,

\langle \scrK (k)E,F \rangle :=  - 
\int 
\Omega 

(1 + k2\epsilon )E \cdot F dx for all E,F \in \scrH ,

and l \in \scrH \ast is defined by

\langle l, F \rangle =
\int 
\Omega 

ikJ \cdot F dx+

\int 
\Omega 

\bigl( 
\mu  - 1K

\bigr) 
\cdot (\nabla \times F ) dx for all F \in \scrH ,

where \scrH \ast is the dual space of \scrH .
Then \scrA is a coercive linear bounded operator and thus continuously invertible due

to the Lax--Milgram theorem. For every k \in \BbbC , \scrK (k) : \scrH \rightarrow \scrH \ast is a linear compact
operator due to the compact embedding of \scrH into L2(\Omega )3. l \in \scrH \ast depends linearly



LOCALIZING ELECTROMAGNETIC FIELDS 2565

and continously on J,K \in L2(\Omega )3. It thus follows from the Fredholm alternative that
\scrA + \scrK (k) is continuously invertible if it is injective, i.e., if k > 0 is not a resonant
frequency.

Moreover, \scrK (k) depends analytically on k, and for \widehat k := i, \scrA +\scrK (\widehat k) is coercive and
thus continuously invertible. Hence, it follows from the analytic Fredholm theorem
that the set of resonances is discrete.

The proof is complete.

Next we extend this result to nonhomogeneous boundary data f and non-diver-
gence-free currents J and prove Theorem 2.1.

Proof of Theorem 2.1. Part (a) follows from Lemma 2.1. Part (b) and the unique-
ness of the solution of the Maxwell system are proved in Lemma 2.3. To prove the
existence of the solution, we let J,K \in L2(\Omega )3 and f \in H - 1/2(div\partial \Omega , \partial \Omega ). Define
Ef = \gamma  - 1

t f \in H(curl,\Omega ), i.e., \nu \times Ef | \partial \Omega = f and Ef depends continuously and
linearly on f . Moreover, we let \psi \in H1

0 (\Omega ) solve

\nabla \cdot (ik\epsilon \nabla \psi ) = \nabla \cdot (J  - ik\epsilon Ef ),

which also depends continuously and linearly on J and Ef .
It follows from Lemma 2.3 that there exists a solution (E0, H) \in H(curl,\Omega ) \times 

H(curl,\Omega ) of the gauged system\left\{     
\nabla \times E0  - ik\mu H = K  - \nabla \times Ef in \Omega ,

\nabla \times H + ik\epsilon E0 = J  - ik\epsilon Ef  - ik\epsilon \nabla \psi in \Omega ,

\nu \times E0| \partial \Omega = 0,

and E0 and H depends linearly and continuously on K  - \nabla \times Ef \in L2(\Omega )3 and
J  - ik\epsilon Ef  - ik\epsilon \nabla \psi \in L2(\Omega )3. Hence, E := E0 + Ef + \nabla \psi and H solve (2.3)--(2.5)
and depend linearly and continuously on J,K \in L2(\Omega )3 and f \in H - 1/2(div\partial \Omega , \partial \Omega ).

The proof is complete.

2.3. Unique continuation. The UCP is an important property to study the
localized fields for differential equations. The UCP for the anisotropic Maxwell system
was studied by [30, 36], which is of critical importance for our subsequent construction
of the localized electromagnetic fields.

Definition 2.1. We say that (\epsilon , \mu ) satisfies the UCP in \Omega if any solution (E,H) \in 
H(curl; \Omega )\times H(curl; \Omega ) to the Maxwell system

(2.9)

\Biggl\{ 
\nabla \times E  - ik\mu H = 0 in \Omega ,

\nabla \times H + ik\epsilon E = 0 in \Omega 

satisfies the property that if (E,H) vanishes in a nonempty open set D in \Omega , then it
must be identically vanishing in the whole domain \Omega .

The UCP of the Maxwell system was proved by Leis [30] when the parameters \epsilon , \mu 
are C2 scalar functions. When \epsilon , \mu are Lipschitz continuous anisotropic parameters,
the UCP was proved by Nguyen and Wang [36]. In [32], Liu, Rondi, and Xiao have
shown that the UCP holds for piecewise Lipschitz continuous matrix-valued functions
\epsilon and \mu under some conditions, which we shall need for the subsequent study.

Proposition 2.1 (UCP; Proposition 2.13 in [32]). Given an open set \widetilde \Omega in \BbbR 3,

let \epsilon , \mu \in L\infty (\widetilde \Omega ,\BbbR 3\times 3) be matrix-valued functions in \Omega satisfying (1.1) in \widetilde \Omega . Suppose
the following:
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(1) There is a family \{ \Omega i\} of pairwise disjoint domains with \Omega i \subset \widetilde \Omega such that

\widetilde \Omega \subset \cup i\Omega i.

(2) The set \Sigma 0 := \widetilde \Omega \cap (\cup i\partial \Omega i) has Lebesuge measure zero (i.e., | \Sigma 0| = 0).
(3) The point x \in \Sigma 0 is called to be a partition point is there exists \delta > 0 such

that

| B\delta (x) \setminus (\Omega i \cup \Omega j)| = 0 for all i \not = j

with B\delta (x) \cap \Omega i and B\delta (x) \cap \Omega j being nonempty sets. Consider the set

\scrP c := \{ x \in \Sigma 0 : x is not a partition point\} ,

then we assume that \widetilde \Omega \setminus \scrP c is connected.
(4) The functions (\epsilon , \mu ) = (\epsilon i, \mu i) in \Omega i, where (\epsilon i, \mu i) are locally Lipschitz matrix-

valued functions in \widetilde \Omega .
Then the UCP holds.

We have the following theorem.

Theorem 2.2. Let \Omega be a bounded Lipschitz domain and \scrF \subset \Omega be a closed set
in \BbbR 3 such that \Omega \setminus \scrF is connected to a relatively open boundary part \Gamma \subseteq \partial \Omega . Let
(E,H) \in H(curl; \Omega )\times H(curl; \Omega ) solve\Biggl\{ 

\nabla \times E  - ik\mu H = 0 in \Omega \setminus \scrF ,
\nabla \times H + ik\epsilon E = 0 in \Omega \setminus \scrF .

If \nu \times E| \Gamma = \nu \times H| \Gamma = 0 on \Gamma , then (E,H) = (0, 0) in \Omega \setminus \scrF .

Proof. Let \scrO be a nonempty open set in \BbbR 3 such that \scrO \cap \partial \Omega = \Gamma and \scrF \subset \scrO .
In the open set \widetilde \Omega := \Omega \cup \scrO , we define

\widehat \epsilon := \Biggl\{ 
\epsilon in \Omega ,

1 in \scrO \setminus \Omega ,
and \widehat \mu =

\Biggl\{ 
\mu in \Omega ,

1 in \scrO \setminus \Omega .

It can be seen that the parameters \widehat \epsilon and \widehat \mu satisfy the conditions (1)--(4) in Proposition

2.1 in the open set \widetilde \Omega = \Omega \cup \scrO . Since \nu \times E = \nu \times H = 0 on \Gamma , we can extend (E,H)
by (0, 0) and define the extension functions

\widehat E :=

\Biggl\{ 
E in \Omega ,

0 in \scrO \setminus \Omega ,
and \widehat H :=

\Biggl\{ 
H in \Omega ,

0 in \scrO \setminus \Omega .

First, we prove that ( \widehat E, \widehat H) \in H(curl; \Omega \cup \scrO ) \times H(curl; \Omega \cup \scrO ). For any \phi \in 
C\infty 

c (\Omega \cup \scrO ), we have\int 
\Omega \cup \scrO 

\widehat E \cdot (\nabla \times \phi )dx =

\int 
\Omega 

E \cdot (\nabla \times \phi )dx

=

\int 
\Omega 

(\nabla \times E) \cdot \phi dx+

\int 
\partial \Omega 

E \cdot (\nu \times \phi )dS

=

\int 
\Omega \cup \scrO 

((\nabla \times E)\chi \Omega ) \cdot \phi dx,
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where we have used E \cdot (\nu \times \phi ) =  - \phi \cdot (\nu \times E) = 0 on \Gamma and \phi = 0 on \partial \Omega \setminus \Gamma . This

shows that \widehat E \in H(curl; \Omega \cup \scrO ) and that \nabla \times \widehat E is the zero extension of \nabla \times E. The

same holds for \widehat H, and thus it also follows that ( \widehat E, \widehat H) is a solution of\Biggl\{ 
\nabla \times \widehat E  - ik\widehat \mu \widehat H = 0 in (\Omega \cup \scrO ) \setminus \scrF ,
\nabla \times \widehat H + ik\widehat \epsilon \widehat E = 0 in (\Omega \cup \scrO ) \setminus \scrF .

Notice that \widehat \epsilon and \widehat \mu are piecewise Lipschitz continuous functions fulfilling the ellipticity
condition (1.1) and the conditions in Proposition 2.1. Recalling that \widehat E = \widehat H = 0 in

\scrO \setminus \Omega (a nonempty open set), and by using Proposition 2.1, the UCP gives \widehat E \equiv \widehat H \equiv 0
in (\Omega \cup \scrO ) \setminus \scrF .

The proof is complete.

3. Localized electromagnetic fields. We are now in a position to present the
main result on localizing and concentrating electromagnetic fields. We show that
there exists boundary data (supported on an arbitrarily small boundary part) which
can generate an electromagnetic field with an arbitrarily high energy on one part of
the considered domain and an arbitrarily small energy on another part. This extends
the related results in [12] for the conductivity equation and [20] for the Helmholtz
equation to the more practical and challenging Maxwell system. In this section,
we prove the existence of localized fields by using the functional analysis techniques
from [12]. Recall our main result as follows.

Theorem 3.1. Let \Omega \subset \BbbR 3 be a bounded Lipschitz domain and \Gamma \subseteq \partial \Omega be a
relatively open piece of the boundary. Let \epsilon , \mu \in L\infty (\Omega ,\BbbR 3\times 3) be real-valued, piece-
wise Lipschitz continuous functions satisfying (1.1) and k \in \BbbR + be a nonresonant
frequency. Let D \Subset \Omega be a closed set with a connected complement \Omega \setminus D. For every
open set M \subseteq \Omega with M \not \subseteq D (see Figure 1 for the schematic illustration), there exists
a sequence

\bigl\{ 
f (\ell )

\bigr\} 
\ell \in \BbbN \subset C\infty 

c (\Gamma ) such that the electromagnetic fields fulfill

(3.1)\int 
M

\Bigl( 
| E(\ell )| 2 + | H(\ell )| 2

\Bigr) 
dx\rightarrow \infty and

\int 
D

\Bigl( 
| E(\ell )| 2 + | H(\ell )| 2

\Bigr) 
dx\rightarrow 0 as \ell \rightarrow \infty ,

where, for \ell \in \BbbN , (E(\ell ), H(\ell )) \in H(curl,\Omega )\times H(curl,\Omega ) is a solution of

\nabla \times E(\ell )  - ik\mu H(\ell ) = 0 in \Omega ,(3.2)

\nabla \times H(\ell ) + ik\epsilon E(\ell ) = 0 in \Omega (3.3)

with the boundary data

\nu \times E(\ell )| \partial \Omega =

\Biggl\{ 
f (\ell ) on \Gamma ,

0 otherwise.
(3.4)

Proof of Theorem 3.1. We first note that it suffices to prove the theorem for
an open subset of M . Hence, without loss of generality, we can assume that M \Subset \Omega 
is open, M \cap D = \emptyset , and \Omega \setminus (M \cup D) is connected. We follow the localized potentials
strategy in [12, 20, 21] and first describe the energy terms in Theorem 3.1 as operator
evaluations. Then we show that the ranges of the adjoints of these operators have
trivial intersection. A functional analytic relation between the norm of an operator
evaluation and the range of its adjoint then yields that the operator evaluations cannot
be bounded by each other, which then shows that we can drive one energy term in
Theorem 3.1 to infinity and the other one to zero.
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For a measurable subset O \subseteq \Omega , we define

\scrL O : H(\Gamma ) \rightarrow L2(O)3 \times L2(O)3 by f \mapsto \rightarrow (E| O, H| O),

where H(\Gamma ) is defined in (2.2), and (E,H) \in L2(\Omega )3 \times L2(\Omega )3 solves (3.2)--(3.3) with
the boundary data \nu \times E| \partial \Omega = f . Now we characterize the adjoint of this operator.

Lemma 3.1. The adjoint of \scrL O is given by

\scrL \ast 
O : L2(O)3 \times L2(O)3 \rightarrow H(\Gamma )\ast by (J,K) \rightarrow  - \nu \times ( \widetilde H \times \nu )| \Gamma ,

where ( \widetilde E, \widetilde F ) \in H(curl,\Omega )\times H(curl,\Omega ) solves the (adjoint) Maxwell system (cf. The-
orem 2.1) \left\{     

\nabla \times \widetilde E + ik\mu \widetilde H = K\chi O in \Omega ,

\nabla \times \widetilde H  - ik\epsilon \widetilde E = J\chi O in \Omega ,

\nu \times \widetilde E| \partial \Omega = 0,

and K\chi O and J\chi O denote the zero extensions of K and J to \Omega , respectively.

Proof. Similar to section 2.1, we write the dual pairing on H(\Gamma )\ast \times H(\Gamma ) as an
integral for the sake of notational convenience. With this notation we have that\int 

\Gamma 

f \cdot \scrL \ast 
O(J,K) ds

=

\int 
O

(J,K) \cdot (E| O, H| O) dx =

\int 
\Omega 

J\chi O \cdot E dx+

\int 
\Omega 

K\chi O \cdot H dx

=

\int 
\Omega 

J\chi O \cdot E dx - 1

ik

\int 
\Omega 

K\chi O \cdot 
\bigl( 
\mu  - 1\nabla \times E

\bigr) 
dx

=

\int 
\Omega 

\Bigl( 
\nabla \times \widetilde H  - ik\epsilon \widetilde E\Bigr) 

\cdot E dx - 1

ik

\int 
\Omega 

\Bigl( 
\nabla \times \widetilde E + ik\mu \widetilde H\Bigr) 

\cdot 
\bigl( 
\mu  - 1\nabla \times E

\bigr) 
dx

=

\int 
\Omega 

\Bigl( 
\nabla \times \widetilde H\Bigr) 

\cdot E dx - 
\int 
\Omega 

\widetilde H \cdot 
\bigl( 
\nabla \times E

\bigr) 
dx

 - 1

ik

\biggl( \int 
\Omega 

\bigl( 
\mu  - 1\nabla \times E

\bigr) 
\cdot 
\Bigl( 
\nabla \times \widetilde E\Bigr) 

dx - 
\int 
\Omega 

k2\epsilon E \cdot \widetilde E dx

\biggr) 
=  - 

\int 
\partial \Omega 

\bigl( 
\nu \times E| \partial \Omega 

\bigr) 
\cdot 
\Bigl( 
\nu \times ( \widetilde H| \partial \Omega \times \nu )

\Bigr) 
dS =  - 

\int 
\Gamma 

f \cdot 
\Bigl( 
\nu \times ( \widetilde H| \Gamma \times \nu )

\Bigr) 
dS,

where we make use of the fact that \epsilon and \mu are real-valued and symmetric. We also
utilized the integration by parts formula (2.1) and that \widetilde E \in H0(curl,\Omega ) implies that\int 

\Omega 

\bigl( 
\mu  - 1\nabla \times E

\bigr) 
\cdot 
\Bigl( 
\nabla \times \widetilde E\Bigr) 

dx - 
\int 
\Omega 

k2\epsilon E \cdot \widetilde E dx = 0

by Theorem 2.1(a).

Next we show the following property for the ranges of the adjoint operators \scrL \ast 
M

and \scrL \ast 
D.

Lemma 3.2. \scrL M and \scrL \ast 
D are injective, the ranges R(\scrL \ast 

M ) and R(\scrL \ast 
D) are both

dense in H(\Gamma )\ast , and

(3.5) R(\scrL \ast 
M ) \cap R(\scrL \ast 

D) = \{ 0\} .
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Proof. The proof follows from the UCP for the Maxwell system. By Proposi-
tion 2.1, one readily sees that \scrL M and \scrL D are injective, and therefore R(\scrL \ast 

M ) and
R(\scrL \ast 

D) both are dense in H(\Gamma )\ast .
To prove (3.5), let g \in R(\scrL \ast 

M ) \cap R(\scrL \ast 
D), and then there exist JM ,KM \in L2(M)

and JD,KD \in L2(D) such that the solutions (EM , HM ), (ED, HD) \in H(curl,\Omega ) \times 
H(curl,\Omega ) of\left\{     

\nabla \times EM + ik\mu HM = KM\chi M in \Omega ,

\nabla \times HM  - ik\epsilon EM = JM\chi M in \Omega ,

\nu \times EM | \partial \Omega = 0, on \partial \Omega ,

and

\left\{     
\nabla \times ED + ik\mu HD = KD\chi D in \Omega ,

\nabla \times HD  - ik\epsilon ED = JD\chi D in \Omega ,

\nu \times ED| \partial \Omega = 0 on \partial \Omega 

fulfill
\nu \times (HM \times \nu )| \Gamma = g = \nu \times (HD \times \nu )| \Gamma .

Since \Omega \setminus (M \cup D) is connected, we obtain by using Theorem 2.2 that

EM = ED in \Omega \setminus (M \cup D).

Hence, we can define

\BbbE :=

\left\{     
ED in M,

EM in D,

ED = EM in \Omega \setminus (M \cup D),

and \BbbH :=

\left\{     
HD in M,

HM in D,

HD = HM in \Omega \setminus (M \cup D).

As in the proof of UCP, Theorem 2.2, it is easy to see that (\BbbE ,\BbbH ) \in H(curl,\Omega ) \times 
H(curl,\Omega ) is a solution of \left\{     

\nabla \times \BbbE + ik\mu \BbbH = 0 in \Omega ,

\nabla \times \BbbH  - ik\epsilon \BbbE = 0 in \Omega ,

\nu \times \BbbE | \partial \Omega = 0 on \partial \Omega .

Since k is nonresonant, it follows that (\BbbE ,\BbbH ) = (0, 0), and hence g = 0. This completes
the proof.

Now we can use the following tool from functional analysis.

Lemma 3.3. Let X, Y1, and Y2 be Hilbert spaces, and \scrA 1 : X \rightarrow Y1 and \scrA 2 :
X \rightarrow Y2 be linear bounded operators. Then

\exists C > 0 : \| \scrA 1x\| \leq C\| \scrA 2x\| for all x \in X if and only if R(\scrA \ast 
1) \subseteq R(\scrA \ast 

2).

Proof. This is proved for reflexive Banach spaces in [12, Lemma 2.5].

Proof of Theorem 1.1. From Lemma 3.2 it follows that R(\scrL \ast 
M ) \not \subseteq R(\scrL \ast 

D). Using
Lemma 3.3 this shows that

\not \exists C > 0 : \| \scrL Mf\| \leq C\| \scrL Df\| for all f \in H(\Gamma ),

and by continuity of \scrL M and \scrL D and density of C\infty 
c (\Gamma ) \subset H(\Gamma ) this is equivalent to

(3.6) \not \exists C > 0 : \| \scrL Mf\| \leq C\| \scrL Df\| for all f \in C\infty 
c (\Gamma ).

Using (3.6) with C := \ell 2 for all \ell \in \BbbN we thus obtain a sequence
\Bigl\{ \widetilde f (\ell )\Bigr\} 

\ell \in \BbbN 
\subset C\infty 

c (\Gamma )

with
\| \scrL M

\widetilde f (\ell )\| > \ell 2\| \scrL D
\widetilde f (\ell )\| for all \ell \in \BbbN .
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By injectivity \scrL M
\widetilde f (\ell ) \not = 0 implies \widetilde f (\ell ) \not = 0 and \scrL D

\widetilde f (\ell ) \not = 0, so that we can define

f (\ell ) :=
\widetilde f (\ell )

\ell \| \scrL D
\widetilde f (\ell )\| \in C\infty 

c (\Gamma )

and it follows that\int 
M

\Bigl( 
| E(\ell )| 2 + | H(\ell )| 2

\Bigr) 
dx = \| \scrL Mf

(\ell )\| 2 > \ell 2 \rightarrow \infty ,\int 
D

\Bigl( 
| E(\ell )| 2 + | H(\ell )| 2

\Bigr) 
dx = \| \scrL Df

(\ell )\| 2 =
1

\ell 2
\rightarrow 0.

This completes the proof of Theorem 1.1.

Remark 3.1.
(a) A constructive version of the existence proof for the localized fields can be

obtained as in [12, Lemma 2.8].
(b) With the same arguments as in [20, section 4.1] one can also show that

for all spaces W \subseteq H(\Gamma ) with finite codimensions, one can find a sequence\bigl\{ 
f (\ell )

\bigr\} 
\ell \in \BbbN \subset W such that the corresponding electromagnetic fields fulfill (3.1).

This might be useful for developing monotonicity-based reconstruction meth-
ods as in [20].

4. Runge approximation property for the partial data Maxwell sys-
tem. In this section we derive an extension of the localization result in Theorem 1.1
and establish a Runge approximation property for the partial data Maxwell system,
which is of mathematical interest for its own sake. We show that every solution of
the Maxwell system on a subset of \Omega with a Lipschitz boundary and a connected
complement can be approximated arbitrarily well by a sequence of solutions on the
whole domain \Omega with partial boundary data. Since we can choose a solution that is
zero on a part of \Omega and nonzero on another part of \Omega , this readily implies a fortiori the
localization result in Theorem 1.1. We also refer to [20] for the connection between
Runge approximation properties and localized solutions.

Theorem 4.1. Let \Omega \subset \BbbR 3 be a bounded Lipschitz domain and \Gamma \subseteq \partial \Omega be a
relatively open piece of the boundary. Let \epsilon , \mu \in L\infty (\Omega ,\BbbR 3\times 3) be real-valued, piece-
wise Lipschitz continuous functions satisfying (1.1) and k \in \BbbR + be a nonresonant
frequency.

Let O \Subset \Omega be an open set with Lipschitz boundary and connected complement
\Omega \setminus O. For every solution (e, h) \in H(curl, O)\times H(curl, O) of

\nabla \times e - ik\mu h = 0 in O,(4.1)

\nabla \times h+ ik\epsilon e = 0 in O,(4.2)

there exists a sequence
\bigl\{ 
f (\ell )

\bigr\} 
\ell \in \BbbN \subset C\infty 

c (\Gamma ) such that the electromagnetic fields fulfill

\| E(\ell )  - e\| L2(O) \rightarrow 0 and \| H(\ell )  - h\| L2(O) \rightarrow 0 as \ell \rightarrow \infty ,

where (E(\ell ), H(\ell )) \in H(curl, O)\times H(curl, O) solve (3.2)--(3.4) in O.

Proof. Let (e, h) \in H(curl, O) \times H(curl, O) solve (4.1)--(4.2). With the operator
\scrL O introduced in section 3, we shall show that

(e, h) \in R(\scrL O) =
\bigl( 
R(\scrL O)

\bot \bigr) \bot = N (\scrL \ast 
O)

\bot ,(4.3)
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where the closure and the orthogonal complement are understood with respect to the
L2(O)3\times L2(O)3-scalar product. This shows that the assertion holds with a sequence\bigl\{ 
f (\ell )

\bigr\} 
\ell \in \BbbN \subset H(\Gamma ), and it follows by density that the assertion holds with a sequence\bigl\{ 

f (\ell )
\bigr\} 
\ell \in \BbbN \subset C\infty 

c (\Gamma ).

To prove (4.3), we let (J,K) \in N (\scrL \ast 
O) \subseteq L2(O)3 \times L2(O)3. Then, by Lemma

3.1, there exists (E,H) \in H(curl, O)\times H(curl, O) that solves\left\{     
\nabla \times E + ik\mu H = K\chi O in \Omega ,

\nabla \times H  - ik\epsilon E = J\chi O in \Omega ,

\nu \times E| \partial \Omega = 0 on \partial \Omega 

with \nu \times (H \times \nu )| \Gamma = \scrL \ast 
O(J,K) = 0. The UCP in Theorem 2.2 implies that (E,H) =

(0, 0) on \Omega \setminus O and thus

\nu \times E| \partial O = 0 = \nu \times H| \partial O.

Hence, using the integration by parts formula (2.1), it follows that

\int 
O

\bigl( 
e \cdot J + h \cdot K

\bigr) 
dx

=

\int 
O

e \cdot 
\bigl( 
\nabla \times H + ik\epsilon E

\bigr) 
dx+

\int 
O

h \cdot 
\bigl( 
\nabla \times E  - ik\mu H

\bigr) 
dx

=

\int 
O

\bigl( 
(\nabla \times e) \cdot H + ik\epsilon e \cdot E

\bigr) 
dx+

\int 
O

\bigl( 
(\nabla \times h) \cdot E  - ik\mu h \cdot H

\bigr) 
dx

=

\int 
O

(\nabla \times e - ik\mu h) \cdot H dx+

\int 
O

(\nabla \times h+ ik\epsilon e) \cdot E dx = 0.

This shows (e, h) \bot (J,K) so that (4.3) holds, and thus the assertion is proved.

Remark 4.1. The Runge approximation property in Theorem 4.1 implies the lo-
calization property in Theorem 1.1 by the following argument. Let D \Subset \Omega be a closed
set with a connected complement \Omega \setminus D, and M \subseteq \Omega be an open set with M \not \subseteq D (see
again Figure 1). By shrinking M and enlarging D, we can assume that M is an open
set and D is a closed set with Lipschitz boundaries, M \cup D \Subset \Omega , and M \cap D = \emptyset and
that \Omega \setminus (M \cup D) is connected.

The UCP in Theorem 2.2 implies that a solution of the Maxwell system in \Omega with
nontrivial boundary data cannot vanish identically onM . This shows that there exists
a nonzero solution of the Maxwell system on M . We extend this solution by zero on
D and obtain a solution (e, h) \in H(curl, O) \times H(curl, O) on O := M \cup intD with
(e, h)| intD \equiv (0, 0) and (e, h)| M \not \equiv (0, 0). Then the Runge approximation sequence
from Theorem 4.1 converges to zero on D but not onM and a simple scaling argument
as in the proof of Theorem 1.1 in section 3 gives a sequence of electromagnetic fields
such that\int 

M

\Bigl( 
| E(\ell )| 2 + | H(\ell )| 2

\Bigr) 
dx\rightarrow \infty and

\int 
D

\Bigl( 
| E(\ell )| 2 + | H(\ell )| 2

\Bigr) 
dx\rightarrow 0 as \ell \rightarrow \infty ,

and \nu \times E(\ell ) \in C\infty 
c (\Gamma ) for all \ell \in \BbbN , which also proves Theorem 1.1.
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5. Concluding remarks. We considered field localizing and concentrating for
the electromagnetic waves governed by the time-harmonic Maxwell system in a bounded
domain occupied by a given medium that is generic and could be anisotropic. It has
been shown that through proper boundary inputs, one can generate electromagnetic
fields with the corresponding energy concentrated in a given subregion while nearly
vanishing in another given subregion. We would like to emphasize that the localiz-
ing results are known previously for several scalar models including the conductivity
equation and the Helmholtz equation, but the extension to the Maxwell system with
nonsmooth anisotropic coefficients requires considerable care and technical involve-
ment. As pointed out in Remark 3.1, the result can be used to develop monotonicity-
based reconstruction methods for inverse problems associated with the electromag-
netic waves. In fact, with the localizing result established in the present article, this
can be done by following a spirit similar to the one in [20] for the Helmholtz equation
by one of the authors of this article. We also propose more applications of practical
interest, including telecommunications and inductive charging. This new perspective
poses interesting problems for future investigation. For example, for certain given
boundary inputs, one may consider to construct a specific medium configuration for
localizing and concentrating the electromagnetic fields in a desirable way.

Acknowledgment. The authors would like to thank the anonymous referees for
many constructive comments and suggestions, which have led to significant improve-
ment on the result and presentation of the paper.
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