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Abstract. In this work we study localized electric potentials that have an
arbitrarily high energy on some given subset of a domain and low energy on
another. We show that such potentials exist for general L

∞
+

-conductivities in
almost arbitrarily shaped subregions of a domain, as long as these regions are
connected to the boundary and a unique continuation principle is satisfied.
From this we deduce a simple, but new, theoretical identifiability result for
the famous Calderón problem with partial data. We also show how to con-
struct such potentials numerically and use a connection with the factorization
method to derive a new non-iterative algorithm for the detection of inclusions
in electrical impedance tomography.

1. Introduction. Consider a steady electric current g that is applied to an open
part S ⊆ ∂B of the otherwise insulated surface ∂B of a body B ⊂ Rn, n ≥ 2.
Denoting by σ(x) > 0 the spatially dependent conductivity distribution inside the
body, the applied currents give rise to an electric potential u, which solves, in the
state of equilibrium, the boundary value problem

∇ · σ∇u = 0 in B,

with Neumann boundary data σ∂νu = g on S and σ∂νu = 0 on ∂B \ S.
The steady flow of electric currents through the body leads to a permanent

absorption of electrical power with the density σ|∇u|2 heating up the body. In
addition to the obvious dependance of the conductivity σ, this energy distribution
also strongly depends on the applied currents g. Roughly speaking, one would
expect fast spatial variations in the applied currents on S to lead to higher electric
currents (and thus higher heating effects) close to the surface, while the heating
caused by slowly spatially varying currents penetrates deeper into the body.

We want to study the question whether the shape of this energy distribution
can be controlled by the applied currents, i.e., whether we can create localized
potentials with a high energy in some given part of the body and a low energy in
some other part. For the case that ∂B \ S is grounded rather than insulated, and
the conductivity is smooth, an answer to this question can be found in the classical
papers of Kohn and Vogelius [27, 28]. Under the assumption that σ ∈ Cr, r > n

2 ,
in some neighbourhood of a boundary point z, they construct a series of potentials
with rapidly oscillating boundary values whose energy tends to zero outside every
neighbourhood of z but not on neighbourhoods containing z. These potentials are
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252 Bastian Gebauer

easily scaled to have diverging energy around z and Kohn and Vogelius also show
how the high energy part can be ”shifted” inside the domain B using Runge’s
approximation property.

Using these localized potentials Kohn and Vogelius show that the set of all
current-voltage-pairs measured on S determine, for smooth conductivities, the
boundary trace of σ and its derivatives and, for piecewise analytic conductivities, the
conductivity also in the interior of the domain B. Using singular potentials, Isakov
shows in [21] that local boundary measurements uniquely determine an inclusion
with C2-conductivity in a known C2-background and Druskin shows uniqueness for
piecewise constant conductivities in a half space in [12]. For the case of measuring
currents on S for voltages applied on some complementary part, Kenig, Sjöstrand
and Uhlmann show unique identifiabilty of C2-conductivities for n ≥ 3 in [23], cf.
also the preceding work of Bukhgeim and Uhlmann [8]. The unique identifiabilty of
C2-conductivities for local current-to-voltage measurements has been proven only
recently by Isakov [22] for the special case of spherical or plane boundaries.

For measurements on the whole boundary, i.e. S = ∂B, the identifiability ques-
tion was studied by Calderón in 1980 [9, 10]. Positive identifiabilty results were
obtained under appropriate smoothness conditions in the seminal works of Sylvester
and Uhlmann in 1987 [33] for three and higher space dimensions and of Nachmann
in 1996 [31] for two space dimensions. Subsequent works reduced the smoothness
assumptions and, recently, for two space dimensions the identifiabilty question was
answered positively by Astala and Päivärinta [3] without any additional smoothness
conditions, i.e., for L∞-conductivities σ.

In this work we will present a new approach to construct localized potentials that
enables us to weaken the regularity assumption on the conductivity σ down to a
unique continuation principle (see Theorem 2.7). From this we deduce a simple, but
new, identifiabilty result for the local current-to-voltage map. Roughly speaking, we
show that we can distinguish between two conductivites when one is larger in some
part of the body connected to S irrespective of smoothness (except for the unique
continuation principle), or the geometry of the rest of the body, cf. Theorem 3.2
for the rigorous formulation of our identifiability result. Note that this covers the
classical Kohn-Vogelius result and is not covered by the recent result of Isakov.
On the other hand, using infinitely fast oscillating functions, one easily constructs
C2-conductivities for which our result does not apply. Note also, that our result is
based on comparatively simple arguments that can easily be carried over to other
real elliptic equations.

Our arguments are closely related to a class of non-iterative reconstruction al-
gorithms known as sampling or factorization methods that have been developed
for the special problem of detecting inclusions where a physical parameter differs
from an otherwise known background value. The original factorization method was
developed by Kirsch in 1998 [24] for inverse scattering problems and has been ex-
tended to electrical impedance tomography by Brühl and Hanke [7, 6, 17]. We
show that the factorization method can also be interpreted in the sense of localized
potentials and derive a new non-iterative reconstruction algorithm that might serve
as a slightly less powerful but computationally cheaper alternative.

The outline of this paper is as follows. In Section 2 we proof the existence
of localized potentials, and show how they can be constructed. In Section 3, we
use these potentials to derive our new identifiability result for the Calderón problem
with partial data, give a new interpretation of the factorization method and develop
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Localized potentials in EIT 253

a similar non-iterative reconstruction method. Finally, we give some numerical
examples for localized potentials and for the new reconstruction method in Section 4.

2. Existence and construction of localized potentials. As stated in the in-
troduction, the major tool for our new approach to construct localized potentials
comes from a relatively new class of non-iterative methods for inverse scattering
and diffusive tomography known as linear sampling or factorization methods. These
methods are based on the observation that a subregion Ω of some domain B can
be reconstructed from so-called virtual measurements, that correspond to applying
currents on ∂Ω from the inside of Ω and measuring the resulting electric potential
on the outer boundary of the domain. In this section we introduce a variant of these
virtual measurements that have essentially the same properties but correspond to
an electric source term on Ω rather than on its boundary ∂Ω (see also Kirsch [26],
where such a variant is used for the factorization method). With the help of these
operators we will give two independent proofs for the existence of localized poten-
tials, the first is non-constructive but remarkably short, while the second one is
slightly more technical, but constructive.

2.1. Virtual measurements. We start with some notations. For a real Hilbert
spaces H we use round brackets (·, ·) for the inner product and angle brackets 〈·, ·〉
for the dual pairing on H and its dual space H ′. For an operator A ∈ L(H1, H2)
between real Hilbert spaces H1 and H2 we will we use the notation A′ ∈ L(H ′

2, H
′
1)

for the dual operator and A∗ ∈ L(H2, H1) for the adjoint operator.
Throughout this work we fix B ⊂ Rn, n ≥ 2, to be a bounded domain with

smooth boundary and S ⊆ ∂B to be a relatively open subset of the boundary where
we can apply electric currents and measure boundary potentials. The outer normal
on ∂B is denoted by ν and, for an open subset Ω ⊆ B, we denote by H1

⋄ (Ω)′ the
space of all linear functionals f ∈ H1(Ω)′ that vanish on locally constant functions,
i.e.,

〈f, v〉 = 0 for all v ∈ H1(Ω) with ∇v = 0.

Its dual space H1
⋄ (Ω) is the quotient space H1(Ω) modulo the locally constant

functions. If Ω is connected then we can identify H1
⋄ (Ω) with the subspace of

H1(Ω)-functions that have vanishing integral mean. Analogously, we define H1
⋄ (B),

L2
⋄(B) and L2

⋄(S) and identify L2
⋄(B) and L2

⋄(S) with their duals.
In this work we will always assume without further notice that the conductivity

is an isotropic real function σ ∈ L∞
+ (B), where the subscript + denotes the subset

of L∞-functions with positive essential infima. For most of the results we will also
need the following assumption. For an open connected subset V ⊆ B with S ⊆ ∂V ,
we say that σ satisfies the unique continuation property (UCP) in V if constant
functions are the only solutions of

∇ · σ∇u = 0 in V,

that are constant on an open subset of V and only the trivial solution possesses zero
Cauchy data u|S = 0 and σ∂νu|S = 0. If σ is Lipschitz continuous then σ fulfills
(UCP) in B, cf. e.g. Miranda [30], and by sequentially solving Cauchy problems this
can be extended to piecewise Lipschitz continuous conductivities (see also Druskin
[12]).

We define the operator of virtual measurements LΩ by

LΩ : H1
⋄ (Ω)′ → L2

⋄(S), f 7→ u|S ,
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where u ∈ H1
⋄ (B) solves

(1)

∫

B

σ∇u · ∇w dx = 〈f, w|Ω〉 for all w ∈ H1
⋄ (B).

Note that when Ω ⊂ B then we can consider H1
⋄ (Ω)′ as a subset of H−1(B) and

(1) is then equivalent to

∇ · σ∇u = f and σ∂νu|∂B = 0.

On the other hand, if Ω contains some part of ∂B then H1
⋄ (Ω)′ has to be con-

sidered as a subspace of H1(B)′, so that in general (1) might also contain a non-
homogeneous Neumann condition.

Lemma 2.1. The range of LΩ does not depend on σ|Ω.

Proof. Let σ1, σ2 ∈ L∞
+ (B) with supp (σ1−σ2) ⊆ Ω and denote by L

(j)
Ω the operator

of virtual measurements for the conductivity σ = σj , j = 1, 2. If ϕ ∈ R(L
(1)
Ω ) then

there exists f1 ∈ H1
⋄ (Ω)′ and u1 ∈ H1

⋄ (B) such that ϕ = u1|S and
∫

B

σ1∇u1 · ∇w dx = 〈f1, w|Ω〉 for all w ∈ H1
⋄ (B).

We define f2 ∈ H1(Ω)′ by setting

〈f2, w〉 :=

∫

Ω

(σ2 − σ1)∇u1∇w dx for all w ∈ H1
⋄ (Ω),

then obviously f2 ∈ H1
⋄ (Ω)′ and

∫

B

σ2∇u1 · ∇w dx =

∫

B

(σ2 − σ1)∇u1 · ∇w dx+

∫

B

σ1∇u1 · ∇w dx

= 〈f2, w|Ω〉 + 〈f1, w|Ω〉

for all w ∈ H1
⋄ (B) which yields that ϕ = u1|S = L

(2)
Ω (f1 + f2).

Hence, R(L
(1)
Ω ) ⊆ R(L

(2)
Ω ) and the converse follows from interchanging L

(1)
Ω and

L
(2)
Ω .

The dual operator of LΩ

L′
Ω : L2

⋄(S) → H1
⋄ (Ω)

can be characterized as the composition of the solution operator and the restriction
to Ω.

Lemma 2.2. Let σ ∈ L∞
+ (B) and Ω ⊂ B be an open set . For g ∈ L2

⋄(S) let
v ∈ H1

⋄ (B) be the solution of the Neumann problem

(2) ∇ · σ∇v = 0 and σ∂νv|∂B =

{

g on S,
0 on ∂B \ S.

Then L′
Ωg = v|Ω.

Proof. Let f ∈ H1
⋄ (Ω)′, g ∈ L2

⋄(S) and u, v ∈ H1
⋄ (B) solve (1), resp., (2). Then

〈f, L′
Ωg〉 = (g, LΩf) =

∫

B

σ∇v · ∇u dx = 〈f, v|Ω〉.
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Localized potentials in EIT 255

If σ satisfies (UCP) then L′
Ω is injective for every open subset Ω ⊂ B and

thus R(LΩ) is dense in L2
⋄(S). For two nested open subsets Ω1 ⊆ Ω2 ⊂ B the

ranges of the corresponding virtual measurements are obviously nested too, i.e.,
R(LΩ1

) ⊆ R(LΩ2
). The next lemma shows that under appropriate conditions

also for two disjoint subsets of B, the ranges of the virtual measurements have no
common (non-zero) elements.

Lemma 2.3. Let Ω1,Ω2 ⊂ B be two open sets with Ω1 ∩ Ω2 = ∅. Futhermore
let B \ (Ω1 ∪ Ω2) be connected, B \ (Ω1 ∪ Ω2) contain S, and σ satisfy (UCP) on
B \ (Ω1 ∪ Ω2). Then

R(LΩ1
) ∩R(LΩ2

) = {0}.

Proof. The proof is a standard application of the unique continuation principle. If
ϕ ∈ L2

⋄(S) belongs to R(LΩ1
) ∩R(LΩ2

), then there exist u1, u2 ∈ H1
⋄ (B) such that

u1|S = u2|S = ϕ and
∫

B

σ∇uj · ∇w dx = 0,

for all w ∈ H1
⋄ (B) with suppw ⊆ B \ Ωj , j = 1, 2. In particular

∇ · σ∇u1 = 0 in B \ Ω1, ∇ · σ∇u2 = 0 in B \ Ω2.

and σ∂νu1|S = σ∂νu2|S = 0. The unique continuation principle yields that u1 = u2

in B \ (Ω1 ∪ Ω2), so the function

u :=

{

u1 in B \ Ω1,

u2 in B \ Ω2.

is well-defined. Since u ∈ H1
⋄ (B) satisfies

∫

B

σ∇u · ∇w dx = 0,

for all w ∈ H1
⋄ (B) with support in B \Ω1 and also for all w ∈ H1

⋄ (B) with support
in B \ Ω2, it follows that u = 0 and thus ϕ = u|S = 0.

2.2. Existence of localized potentials. Our short proof of the existence of local-
ized potentials is based on the following functional analytic lemma that frequently
appears in some form or another in applications of the factorization method. We
state in the form as it is called the “14th important property of Banach spaces” in
Bourbaki [5].

Lemma 2.4. Let X,Y be two Banach spaces, let A ∈ L(X ;Y ) and x′ ∈ X ′. Then

x′ ∈ R(A′) if and only if ∃C > 0 : |〈x′, x〉| ≤ C ‖Ax‖ ∀x ∈ X.

Proof. For convenience of the reader we copy our elementary proof from [14].
If x′ ∈ R(A′) then there exists y′ ∈ Y ′ such that x′ = A′y′. Thus

|〈x′, x〉| = |〈y′, Ax〉| ≤ ‖y′‖ ‖Ax‖ ∀x ∈ X,

and the assertion holds with C = ‖y′‖ .
Now let x′ ∈ X ′ be such that there exists C > 0 with |〈x′, x〉| ≤ C ‖Ax‖ for all

x ∈ X . Define

f(z) := 〈x′, x〉 for every z = Ax ∈ R(A).
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256 Bastian Gebauer

Then f is a well-defined, continuous linear functional, with ‖f(z)‖ ≤ C ‖z‖ . Using
the Hahn-Banach theorem there exists y′ ∈ Y ′ with y′|R(A) = f . For all x ∈ X we
have

〈A′y′, x〉 = 〈y′, Ax〉 = f(A(x)) = 〈x′, x〉
and thus x′ = A′y′ ∈ R(A′).

From this lemma we deduce that the question whether one operator is bounded
by another is related to the ranges of the corresponding dual operators.

Lemma 2.5. Let X, Y1 and Y2 be three reflexive Banach spaces and let Ai ∈
L(Yi, X), i = 1, 2. Then

R(A1) ⊆ R(A2) if and only if ∃C > 0 : ‖A′
1x

′‖ ≤ C ‖A′
2x

′‖ ∀x′ ∈ X ′.

Proof. If there exists a C > 0 such that ‖A′
1x

′‖ ≤ C ‖A′
2x

′‖ for all x′ ∈ X ′ then
R(A1) ⊆ R(A2) immediately follows from Lemma 2.4.

To prove the converse, let R(A1) ⊆ R(A2). The restriction of A2 to an operator
from the quotient space Y2/N (A2) to X is injective and has the same range as A2.
Therefore the mapping

B : Y1 → Y2/N (A2), By1 := y2 + N (A2), where y2 solves A2y2 = A1y1,

is well-defined and obviously linear. To show that B is bounded we will apply

the closed graph theorem. Let (y
(1)
m )m∈N ⊂ Y1 converge to some y(1) ∈ Y1 and

(By
(1)
m )m∈N converge to some y(2) + N (A2) ∈ Y2/N (A2). With the usual identi-

fication of (Y2/N (A2))
′ with N (A2)

⊥ = R(A′
2) (cf., e.g., Rudin [32, Chp. 4]) we

obtain for all x′ ∈ X ′

〈A′
2x

′, y(2) + N (A2)〉 = lim
m→∞

〈A′
2x

′, By(1)
m 〉 = lim

m→∞
〈x′, A1y

(1)
m 〉

= 〈x′, A1y
(1)〉 = 〈A′

2x,By
(1)〉.

From the denseness of R(A′
2) in N (A2)

⊥, it follows that y(2) +N (A2) = By(1) and
thus the continuity of B.

We thus obtain the existence of a continuous dual operator B′ : R(A2) → Y ′
1 .

Since

〈B′A′
2x

′, y1〉 = 〈A′
2x

′, By1〉 = 〈x′, A1y1〉 = 〈A′
1x

′, y1〉
holds for all x′ ∈ X ′, y1 ∈ Y1, we obtain that B′A′

2 = A′
1 and thus

‖A′
1x

′‖ ≤ ‖B′‖ ‖A′
2x

′‖ for all x′ ∈ X ′.

An immediate consequence is the following corollary.

Corollary 2.6. Let X, Y1 and Y2 be three reflexive Banach spaces and let Ai ∈
L(Yi, X), i = 1, 2. If R(A1) is not a subspace of R(A2) then there exists a sequence
(x′m)m∈N ⊂ X ′ with

lim
m→∞

‖A′
1x

′
m‖2 = ∞ and lim

m→∞
‖A′

2x
′
m‖2 = 0.

We now apply this result to the virtual measurements and obtain:
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Theorem 2.7. Let Ω1,Ω2 ⊂ B be two open sets with Ω1 ∩ Ω2 = ∅. Futhermore
let B \ (Ω1 ∪ Ω2) be connected, B \ (Ω1 ∪ Ω2) contain S, and σ satisfy (UCP) on
B \ (Ω1 ∪ Ω2).

Then there exists a sequence of currents (gm)m∈N ⊆ L2
⋄(S) such that the electrical

energy of the corresponding potentials (um)m∈N, i.e., the solutions of

∇ · σ∇um = 0 and σ∂νum|∂B =

{

gm on S,
0 on ∂B \ S

diverges on Ω1 while tending to zero on Ω2, i.e.,

lim
m→∞

∫

Ω1

|∇um|2 dx = ∞ and lim
m→∞

∫

Ω2

|∇um|2 dx = 0.

Proof. Since u 7→ (
∫

Ωi

|∇u|2 dx)1/2 defines an equivalent norm on H1
⋄ (Ωi), i =

1, 2, the assertion follows from the combination of Lemma 2.3, Lemma 2.2 and
Corollary 2.6.

Theorem 2.7 guarantees that, by applying currents on S, we can generate an
electric potential with arbitrarily high energy in any given part Ω1 of the body B
and arbitrarily low energy in some other given part Ω2. The assumption on the
complement B \ (Ω1 ∪ Ω2) can be interpreted in the way that there must exist a
connection from the boundary part S to the high energy part Ω1 that does not
intersect the low energy part Ω2.

2.3. Construction of localized potentials. In this subsection we will show how
to construct the localized potentials of Theorem 2.7. We start by proving a con-
structive version of Corollary 2.6 in Hilbert spaces.

Lemma 2.8. Let X, Y1 and Y2 be three Hilbert spaces and let Ai ∈ L(Yi, X),
i = 1, 2. Furthermore we assume that A∗

2 is injective.
If x ∈ R(A1) but x 6∈ R(A2) and xα ∈ X, α > 0, is defined by

xα :=
ξα

‖A∗
2ξα‖

3

2

, where ξα := (A2A
∗
2 + αI)−1x,

then

lim
α→0

‖A∗
1xα‖ = ∞ and lim

α→0
‖A∗

2xα‖ = 0.

Proof. Let y ∈ Y1 be such that x = A1y. Then the scaled Tikhonov approximations
A∗

2ξα satisfy

‖A∗
2ξα‖2 = (A2A

∗
2ξα, ξα) = (x− αξα, ξα) = (x, ξα) − α‖ξα‖2

≤ (x, ξα) = (y,A∗
1ξα) ≤ ‖y‖ ‖A∗

1ξα‖ .
Since x 6∈ R(A2) in particular implies that x 6= 0, it follows that ξα 6= 0 and y 6= 0.
We now obtain

(3) ‖A∗
1xα‖ =

‖A∗
1ξα‖

‖A∗
2ξα‖

3

2

≥ ‖A∗
2ξα‖

1

2

‖y‖ .

Hence, the assertion follows if we can show that ‖A∗
2ξα‖ → ∞.

If ‖A∗
2ξα‖ had a bounded subsequence for α→ 0 then there would be a bounded

subsequence (A∗
2ξαm

)m∈N, αm → 0, that weakly converges against some y2 ∈ Y2.
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258 Bastian Gebauer

But then we would have for all z = A2η2 ∈ R(A2)

(z,A2y2) = lim
m→∞

(z,A2A
∗
2ξαm

) = lim
m→∞

((z, (A2A
∗
2 + αmI)ξαm

) − αm(z, ξαm
))

= lim
m→∞

((z, x) − αm(η2, A
∗
2ξαm

)) = (z, x)

and since R(A2) is dense in X it would follow that x = A2y2 ∈ R(A2) which con-
tradicts our assumptions. Therefore ‖A∗

2ξα‖ cannot have a bounded subsequence
which proves ‖A∗

2ξα‖ → ∞ and thus the assertion.

To apply Lemma 2.8 on our problem of constructing localized potentials, we need
a function that belongs to the range of the virtual measurements of some domain
Ω1 but not to that of another domain Ω2. According to Lemma 2.3 we could take
any non-zero function in the range of LΩ for any subset Ω ⊆ Ω1. If σ is constant in
a neighbourhood of some point z ∈ Ω1 we can even shrink the subset to this point
and take the boundary data of the electric potential of a dipole in z with arbitrary
direction d ∈ R3, |d| = 1, i.e., vz,d|S , where vz,d solves

∇ · σ∇vz,d = d · ∇δz
with homogeneous Neumann boundary condition σ∂νvz,d|∂B = 0. These dipole
functions are also used by linear sampling or factorization methods to show that the
range of the virtual measurements uniquely determines the corresponding domain
(cf. Brühl and Hanke [7, 6, 17]). The shrinkage of a subset to a point is studied in
the context of asymptotic factorization methods for the detection of small inclusions,
cf., e.g., the recent work of Ammari, Griesmaier and Hanke [1] and the references
therein.

Lemma 2.9. Let σ satisfy (UCP) in B and be constant in a neighbourhood of some
point z ∈ B. Furthermore let Ω ⊆ B be an open set, such that z 6∈ ∂Ω, B \ Ω is
connected and B \ Ω contains S. Then

vz,d|S ∈ R(LΩ) if and only if z ∈ Ω.

Proof. For virtual measurement operators that are defined on the subregion’s bound-
ary ∂Ω and constant conductivity σ = 1 this was shown by Brühl in [6, Lemma 3.5],
and in [26, Theorem 4.2] Kirsch shows a similar result for virtual measurement
operators that are defined on a subregion rather that on its boundary. For the
convenience of the reader we give a short independent proof here.

We first note that vz,d|S 6= 0, since otherwise our unique continuation assumption
(UCP) would yield that vz,d vanishes on B \ {z} which contradicts the fact that
vz,d has the same singularity in the point z as the directional derivative of the
fundamental solution of the Laplace equation, so that in particular vz,d 6∈ L2(B \
{z}).

From Lemma 2.3 we deduce that if vz,d|S ∈ R(LΩ) for every Ω that contains

z, then it cannot be in the range of some LΩ′ where z 6∈ Ω′. So we only have to
show that vz,d|S ∈ R(LΩ) for every Ω that contains z. To this end let ǫ > 0 be

small enough such that Bǫ(z) ⊆ Ω and u ∈ H1(Bǫ(z)) be a function whose trace
on ∂Bǫ(z) coincides with vz,d|∂Bǫ(z). We use u to replace the singular part of vz,d,
i.e., we define

ṽ :=

{

vz,d in B \Bǫ(z)
u in Bǫ(z).
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Since ṽ is piecewise defined by H1-functions that have the same traces on ∂Bǫ(z),
it is easily seen that ṽ ∈ H1(B); cf., e.g., [15, Section 2.1]. From

(4) ∇ · σ∇ṽ = ∇ · σ∇vz,d = 0 in B \Bǫ(z)

we obtain that
∫

B

σ∇ṽ · ∇w dx = 〈f, w|Ω〉 for all w ∈ H1(B),

where f ∈ H1(Ω)′ is defined by

〈f, w〉 :=

∫

Bǫ(z)

∇ṽ · ∇w dx− 〈σ∂νvz,d|∂Bǫ(z), w|∂Bǫ(z)〉 for all w ∈ H1(Ω).

From (4) and ∂νvz,d|S = 0 it follows immediately that 〈σ∂νvz,d|∂Bǫ(z), 1〉 = 0. We

conclude that f ∈ H1
⋄ (Ω) and thus

vz,d|S = ṽ|S = LΩf ∈ R(LΩ).

Combining Lemma 2.8 with Lemma 2.9 we obtain our constructive version of
Theorem 2.7.

Theorem 2.10. Let σ be constant in a neighbourhood of some point z ∈ B and
Ω ⊆ B be an open set, such that z 6∈ Ω, B \ Ω is connected, B \ Ω contains S and
σ satisfies (UCP) in B.

We define electric currents (gα)α>0 ⊆ L2
⋄(S) by setting

gα :=
1

‖L∗
Ωγα‖3/2

γα, where γα := (LΩL
∗
Ω + αI)−1vz,d|S .

Then the electrical energy of the corresponding potentials (uα)α>0, i.e., the solutions
of

∇ · σ∇uα = 0 and σ∂νuα|∂B =

{

gα on S,
0 on ∂B \ S,

diverges on any neigbourhood of z while tending to zero on Ω, i.e., for any open U
with z ∈ U ,

lim
α→0

∫

U

|∇uα|2 dx = ∞ and lim
α→0

∫

Ω

|∇uα|2 dx = 0.

Proof. Lemma 2.9 yields that vz,d|S 6∈ R(LΩ) and vz,d|S ∈ R(LU ) for any open
U ⊆ B containing z. The assertion thus follows from Lemma 2.8.

We finish this section with an interpretation of the operator LΩL
∗
Ω.

Remark 2.11. The operator

LΩL
∗
Ω : L2

⋄(S) → L2
⋄(S)

maps an applied current g ∈ L2
⋄(S) to the boundary values u|S of a solution u ∈

H1
⋄ (B) of

(5)

∫

B

σ∇u · ∇w dx =

∫

Ω

∇v · ∇w dx for all w ∈ H1
⋄ (B),

where v ∈ H1
⋄ (B) solves

∇ · σ∇v = 0 and σ∂νv|∂B =

{

g on S,
0 on ∂B \ S.
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If Ω ⊂ B then (5) is equivalent to

∇ · σ∇u = ∇ · χΩ∇v and σ∂νu|∂B = 0.

The analogous equation

∇ · σ1∇(u0 − u1) = ∇ · χΩ∇u0 and σ∂νu|∂B = 0.

also determines the difference u0 − u1 of electric potentials u0, u1 ∈ H1
⋄ (B) that

result from an applied current g in a body B with conductivity σ0 = σ, resp.,
σ1 = σ + χΩ. Such differences appear in the study of the factorization method,
where the current-to-voltage-mapping of a homogenous body is compared to that
of a body which contains an inclusion Ω; cf., e.g., [16, Sect. 3]. We will use this
connection in Section 3.2 to develop a new interpretation of the factorization method
and to derive a related new reconstruction algorithm.

3. Applications of localized potentials.

3.1. An identifiability result. The existence of localized potentials has a con-
sequence for the famous Calderón problem, that is, to the question whether the
conductivity σ is uniquely determined by the Neumann-to-Dirichlet (or current-to-
voltage) map

Λσ : L2
⋄(S) → L2

⋄(S), Λσg := u|S ,
where u ∈ H1

⋄ (B) solves

(6) ∇ · σ∇u = 0 and σ∂νu|∂B =

{

g on S,
0 on ∂B \ S.

Note that in this work we consider local Neumann-to-Dirichlet operators; the
measurements are taken on the (arbitrarily small) open part S of the boundary B.
The Neumann-to-Dirichlet operators satisfy the following well-known monotonicity
property; cf., e.g., [6, Lemma 2.1] for a similar result.

Lemma 3.1. Let σ1, σ2 ∈ L∞
+ (B) and Λ1,Λ2 : L2

⋄(S) → L2
⋄(S) be the Neumann-

to-Dirichlet operators corresponding to the conductivity σ = σ1, resp., σ = σ2.
Then

(7)

∫

B

(σ1 − σ2)|∇u2|2 dx ≥ ((Λ2 − Λ1)g, g) ≥
∫

B

(σ1 − σ2)|∇u1|2 dx,

for all g ∈ L2
⋄(S), where u1, resp., u2 are the solutions of (6) with σ = σ1, resp.,

σ = σ2.

Proof. We proceed as in the work of Brühl [6, Lemma 2.1]; cf. also [15, Lemma 3.3] or
[14, Lemma 3.3]. Let g ∈ L2

⋄(S) and u1, u2 ∈ H1
⋄ (B) be the potentials corresponding

to the conductivity σ = σ1, resp., σ = σ2. From the Lax-Milgram-Theorem (cf.,
e.g., Dautray and Lions [11, Chp. VII, §1, Remark 3]) it follows that u1 minimizes
the functional

w 7→
∫

B

σ1|∇w|2 dx− 2

∫

S

g w|S ds
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in H1
⋄ (B), so that

−
∫

B

σ1|∇u1|2 dx =

∫

B

σ1|∇u1|2 dx− 2

∫

S

g u1|S ds

≤
∫

B

σ1|∇u2|2 dx− 2

∫

S

g u2|S ds

=

∫

B

σ1|∇u2|2 dx− 2

∫

B

σ2|∇u2|2 dx,

and thus

((Λ2 − Λ1)g, g) =

∫

B

σ2|∇u2|2 dx−
∫

B

σ1|∇u1|2 dx

≤
∫

B

σ2|∇u2|2 dx+

∫

B

σ1|∇u2|2 dx− 2

∫

B

σ2|∇u2|2 dx

=

∫

B

(σ1 − σ2)|∇u2|2 dx.

This yields the first inequality in (7). The second inequality then follows from
interchanging Λ1 and Λ2.

Before we rigorously state our identifiability result, let us give an intuitive deriva-
tion of it. Consider the second inequality in Lemma 3.1,

(8) ((Λ2 − Λ1)g, g) ≥
∫

B

(σ1 − σ2)|∇u1|2 dx.

Using localized potentials we can make the energy |∇u1|2 arbitrarily large on any
part of any neighbourhood of the measurement area S while staying arbitrarily
small outside this neighbourhood. This means, that if σ1 is larger than σ2 in some
part U of B and this part can be connected to S by a neighbourhood V where
σ1 − σ2 does not change its sign, i.e., is not negative, then a potential u1 with high
energy in U and low energy outside V , will lead to a positive integral on the right
hand side of (8), so that in particular Λ1 6= Λ2. In other words, a region of higher
conductivity that can be connected to the measurement area without crossing a
region of lower conductivity can always be detected from the knowledge of the
Neumann-to-Dirichlet-operator.

Theorem 3.2. Let σ1, σ2 ∈ L∞
+ (B) and Λ1,Λ2 be the corresponding Neumann-to-

Dirichlet maps. Assume that there exists an open, connected set V , with S ⊆ ∂V ,
on which σ2 ≥ σ1 and σ1 satisfies the unique continuation property (UCP) in V .

If furthermore σ2|U − σ1|U ∈ L∞
+ (U) on an open subset U ⊆ V , then there exists

a sequence (gm)m∈N ⊂ L2
⋄(S) such that

((Λ2 − Λ1)gm, gm) → ∞.

In particular Λ1 6= Λ2.

Proof. Without loss of generality we can assume that U is an open ball, with U ⊂
V , so that V \ U is connected, its closure contains S and σ1 satisfies the unique
continuation property (UCP) in V \ U . Now, we apply Theorem 2.7 with σ := σ1,
Ω1 := U and Ω2 := B \ V to obtain a sequence of currents (gm)m∈N ⊂ L2

⋄(S) such
that the corresponding solutions um ∈ H1

⋄ (B) of

∇ · σ1∇um = 0 and σ1∂νum|∂B =

{

gm on S,
0 on ∂B \ S.

Inverse Problems and Imaging Volume 2, No. 2 (2008), 251–269

First published in Inverse Problems and Imaging in Vol. 2, No.2, 2008,
published by the American Institute of Mathematical Sciences



262 Bastian Gebauer

satisfy

lim
m→∞

∫

U

|∇um|2 dx = ∞ and lim
m→∞

∫

B\V

|∇um|2 dx = 0.

Then the assertion follows from Lemma 3.1.

Note that Theorem 3.2 yields in particular that piecewise analytic conductivities
are uniquely determined by the local Neumann-to-Dirichlet-map. We would also
like to stress that our arguments solely rely on the unique continuation principle and
the ellipticity of the equations of impedance tomography. Thus, analogous results
can be achieved for similar real elliptic problems, e.g., for linear elasticity, electro-
or magnetostatics.

3.2. Detecting inclusions in EIT. In Remark 2.11 we already observed a connec-
tion between localized potentials and the factorization method. We will now study
this connection in more detail and derive a new interpretation of the factorization
method as well as a related new reconstruction algorithm.

Consider the specific task of detecting an inclusion Ω inside a body B with an
otherwise homogenous conductivity. We assume that the inclusion Ω is an open set
with Ω ⊆ B and that the conductivity in the body is given by σ1 = 1 + κ(x)χΩ(x)
with κ ∈ L∞

+ (Ω). The factorization method determines Ω from comparing the
corresponding Neumann-to-Dirichlet operator Λ1 with that of a reference body with
constant conductivity σ0 = 1, denoted as Λ0. Their difference Λ := Λ0 −Λ1 can be
related to the virtual measurements LΩ that we define as in Section 2.1 with respect
to the homogenous conductivity σ = σ0. (Note that the results of this section would
also stay valid for inhomogenous σ0 or negative perturbations κ).

Lemma 3.3. There exist c, C > 0 such that

c‖L∗
Ωg‖2 ≤ (Λg, g) ≤ C ‖L∗

Ωg‖2 for all g ∈ L2
⋄(S).

Proof. Denote by u0, u1 ∈ H1
⋄ (B) the solutions of (6) for the conductivity σ0, resp.,

σ1. From Lemma 3.1 we obtain with c′ := inf κ and C′ := supκ that

c′
∫

Ω

|∇u1|2 dx ≤ (Λg, g) ≤ C′

∫

Ω

|∇u0|2 dx.

Since Lemma 2.1 and Lemma 2.5 yield that
∫

Ω |∇u1|2 dx and ‖L∗
Ωg‖2 =

∫

Ω |∇u0|2 dx
are (up to multiplicative constants) bounded by each other, the assertion fol-
lows.

Since Λ is positive and symmetric, there exists a positive and symmetric square
root Λ1/2 and Lemma 3.3 can be restated in the form that ‖Λ1/2g‖ and ‖L∗

Ωg‖
are bounded by each other, up to multiplicative constants. Thus R(Λ1/2) = R(LΩ)
by Lemma 2.5, and we obtain, together with Lemma 2.9, the key result of the
factorization method.

Corollary 3.4. For every z 6∈ ∂Ω and arbitrary direction d ∈ Rn

vz,d|S ∈ R(L∗
Ω) = R(Λ1/2) if and only if z ∈ Ω,

where vz,d is the electric dipole potential introduced in Section 2.3 for σ = σ0, i.e.,
the solution of

∆vz,d = d · ∇δz, ∂νvz,d|∂B = 0.
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Such a characterization was originally proven for inverse scattering problems by
Kirsch in [24]. For the case of impedance tomography that we consider here it is
proven in Brühl [6], cf. also the works of Brühl and Hanke [7, 17], the related work
on the halfspace case by Hanke and Schappel [18], on electrode models by Hyvönen
[19], Hyvönen, Hakula and Pursiainen [20], and Lechleiter, Hyvönen and Hakula
[29]. Generalizations to more general elliptic equations are developed in Kirsch [25]
and [15], irregularly bounded inclusions and smooth conductivity deviations are
treated in [16], and Azzouz, Hanke, Oesterlein and Schilcher apply the method to
real EIT data in [4].

Corollary 3.4 provides a binary criterion to decide whether a point belongs to the
inclusion or not from knowledge of the measurements Λ. It is usually implemented
by constructing regularized approximations ψα to the solution of

(9) Λ1/2ψ = vz,d|S
and checking whether the norm of ψα stays bounded for α→ 0 (implying that (9)
has a solution, i.e., that vz,d|S ∈ R(Λ1/2)), or not (implying that vz,d|S 6∈ R(Λ1/2)).

The square root operator Λ1/2 seems to have no natural physical interpretation;
one would rather work with regularized approximations gα to the equation Λg =
vz,d|S . If we use Tikhonov regularization and define

(10) gα
z,d := (Λ∗Λ + αI)−1Λ∗vz,d|S ,

then we can interpret gα
z,d as (regularized approximations to) an applied current for

which the difference of the corresponding potentials u0 and u1 looks like that of a
dipole in z. Using these currents we obtain the following characterization result.

Lemma 3.5. For every z 6∈ ∂Ω and arbitrary direction d ∈ Rn, ‖Λ1/2gα
z,d‖ stays

bounded if and only if z ∈ Ω.

Proof. Note that Λ is a compact, symmetric and injective operator. Thus, it has
dense range and also Λ1/2 is injective.

For z 6∈ ∂Ω, Corollary 3.4 yields that z ∈ Ω is equivalent to vz,d|S ∈ R(Λ1/2).

From the injectivity of Λ1/2, it follows that this is equivalent to Λ1/2vz,d|S ∈ R(Λ).

Since Λ1/2 commutes with (Λ∗Λ+αI)−1Λ∗, the functions Λ1/2gα
z,d are simply the

Tikhonov regularized preimages of Λ1/2vz,d with respect to the operator Λ. Thus we
obtain from classical theory on Tikhonov regularization (cf., e.g., Engl, Hanke and
Neubauer [13, Sect. 5.1]) that Λ1/2gα

z,d converges against Λ−1Λ1/2vz,d for Λ1/2vz,d ∈
R(Λ) and (cf., e.g., [13, Prop. 3.6]) that ‖Λ1/2gα

z,d‖ → ∞ for Λ1/2vz,d 6∈ R(Λ).

Since, by Lemma 3.3, the boundedness of ‖Λ1/2g‖ is equivalent to that of ‖L∗
Ωg‖ ,

the criterion in Lemma 3.5 allows the interpretation that (the energy of) the ho-
mogeneous potentials uα

z,d created by the currents gα
z,d diverges on the unknown

inclusion if z 6∈ Ω, while staying bounded for z ∈ Ω. The next theorem shows that
it even suffices to examine the energy in the point z and that uα

z,d can be interpreted
as localized potentials.

Theorem 3.6. Let d ∈ Rn be an arbitrary direction, for every z ∈ Ω we define gα
z,d

by (10) and let uα
z,d ∈ H1

⋄ (B) be the corresponding homogeneous potentials, i.e., the
solutions of

∆uα
z,d = 0 and ∂νu

α
z,d|∂B =

{

gα
z,d on S,

0 on ∂B \ S.
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(a) For every z 6∈ ∂Ω,

|∇uα
z,d(z)| → ∞ if and only if z 6∈ Ω.

(b) For every z 6∈ Ω the energy of the normalized potential

x 7→
uα

z,d(x)

(Λgα
z,d, g

α
z,d)

3/2

diverges in the point z while tending to zero on Ω. More precisely,

|∇uα
z,d(z)|

(Λgα
z,d, g

α
z,d)

3/2
→ ∞ and

∫

Ω

|∇uα
z,d(x)|2

(

Λgα
z,d, g

α
z,d

)3/2
dx→ 0 for α→ 0.

Proof. From standard regularity theory for the Laplace equation it follows that uα
z,d

is smooth in a neighbourhood of z and, if z ∈ Ω, the evaluation ∇uα
z,d(z) depends

continuously on ∇uα
z,d|Ω ∈ L2(Ω)n and thus on L∗

Ωg
α
z,d. In particular, |∇uα

z,d(z)|
stays bounded if z ∈ Ω.

To prove the converse we apply Lemma 3.3 and obtain a C > 0 such that

1

C
‖L∗

Ωg
α
z,d‖2 ≤ (Λgα

z,d, g
α
z,d) =

(

ΛΛ∗(ΛΛ∗ + αI)−1vz,d|S , gα
z,d

)

=
(

vz,d|S , gα
z,d

)

− α((ΛΛ∗ + αI)−1vz,d|S ,Λ∗(ΛΛ∗ + αI)−1vz,d|S)

≤
(

vz,d|S , gα
z,d

)

.

For the last term one can show that
(

vz,d|S , gα
z,d

)

= d · ∇uα
z,d(z).

Formally, this is just Green’s formula; rigorously, it follows from approximating vz,d

by a regularized sequence and using that uα
z,d is smooth in a neighbourhood of z.

Thus, we obtain

(11) |∇uα
z,d(z)| ≥ ‖L∗

Ωg
α
z,d‖2,

which yields that |∇uα
z,d(z)| → ∞ for z 6∈ Ω.

Assertion b) follows from (11) and Lemma 3.3.

For the inverse problem of detecting Ω from the boundary measurements Λ,
Theorem 3.6 contains two different reconstruction strategies. The first one consists
in calculating uα

z,d for every z in B, and checking for each z whether the energy of

the corresponding homogeneous potential |∇uα
z,d(z)|, evaluated in the same point

z, tends to infinity or not. This is essentially the factorization method, however,
the term |∇uα

z,d(z)| is physically interpretable and does not utilize the square root

operator Λ1/2. For inverse scattering problems an analogous criterion was already
proposed by Arens in [2].

The new second method is to calculate uα
z,d for a single z in B, that is known to lie

outside the inclusion, and to check for every x ∈ B whether (after the normalization
in Theorem 3.6(b)) |∇uα

z,d(x)| tends to infinity or not. The advantage of this method

is that the dipole potential has to be calculated only once and (10) has to be solved
only for a single z. The disadvantage is that Theorem 3.6(b) does not guarantee
that (after normalization) |∇uα

z,d(x)| diverges in every point x outside the inclusion,
so that the second method may find a larger set than Ω. However, our numerical
experiments in the next section suggest that this is still enough to obtain a quick
rough estimate of the inclusion’s location.
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S
Ω

z

S

Ω

z

Figure 1. Geometry of the two examples.

4. Numerical examples. In this section we will consider some numerical exam-
ples to demonstrate the construction of localized potentials in Theorem 2.10 and
for the new reconstruction strategy from Theorem 3.6. We will restrict ourselves to
simple cases that will serve as a proof of concept. Detailed studies of the numerical
construction of localized potentials and of the performance of the new reconstruc-
tion strategy are beyond the scope of this article and will be the subject of further
work. In all cases B is the two-dimensional unit circle and S ⊂ ∂B is the subset of
all points on the boundary with angle ϕ ∈ (5

4π,
7
4π).

4.1. Construction of localized potentials. Figure 1 shows two examples of a set
Ω and a point z ∈ B for which we try to find an electric potential in a homogenous
body (σ = 1) that is large in z but stays small in Ω. According to Theorem 2.10
such a potential is created by the input current

(12) gα
z,d :=

1

‖L∗
Ωγα‖3/2

γα, where γα := (LΩL
∗
Ω + αI)−1vz,d|S ,

for small α > 0. The numerical implementation of LΩL
∗
Ω is done similar as in [16].

According to Remark 2.11, LΩL
∗
Ω maps an input current g ∈ L2

⋄(S) to the boundary
values u|S of the solution u ∈ H1

⋄ (B) of

(13)

∫

B

∇u · ∇w dx =

∫

Ω

∇v · ∇w dx for all w ∈ H1
⋄ (B),

where v ∈ H1
⋄ (B) solves

(14) ∆v = 0 and ∂νv|∂B =

{

g on S,
0 on ∂B \ S.

As input currents we apply on ∂B the L2
⋄(S)-orthonormal functions

(15)

{

2√
π

cos(4kϕ− 5π)χS ,
2√
π

sin(4kϕ− 5π)χS

∣

∣

∣
k = 1, . . . , 128

}

,

where here and in the following (r, ϕ) denotes the polar coordinates. These currents
are expanded into L2

⋄(B)-orthonormal basis functions
{

1√
π

cos(mϕ),
1√
π

sin(mϕ)
∣

∣

∣
m = 1, . . . , 512

}

,
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Figure 2. Localized potentials for the two examples.

for which the solution v of (14) is explicitly known,

v =
1

m
√
π

cos(mϕ)rm, resp., v =
1

m
√
π

sin(mϕ)rm.

Using these exact expressions for v we compute u by solving (13) with the commer-
cial finite element software Comsol and expand u|S into the orthonormal functions
given in (15). The boundary data of the dipole function vz,d|S can be written as
(cf., e.g., Brühl and Hanke [6])

vz,d(x) =
1

π

(z − x) · d
|z − x|2 , for all x ∈ ∂B.

vz,d|S is then also expanded into the orthonormal functions in (15). Thus we obtain
a discrete approximation M ∈ R256,256 of LΩL

∗
Ω and a discrete approximation

Vz,d ∈ R256 of vz,d|S . Applying (12) we now calculate a discrete approximation
Gα

z,d ∈ R256 of gα
z,d:

Gα
z,d :=

1

(Γ∗
αMΓα)3/4

Γα, where Γα := (M + αI)−1Vz,d.

If there was no discretization error then the potentials uα
z,d created by the input

currents corresponding to Gα
z,d would diverge in z while tending to zero on Ω for

α→ 0. However, since LΩ is a compact operator, a smaller α also leads to a stronger
amplification of discretization errors, so that the result will worsen when α is chosen
too small. For our examples we choose α by hand and set d := (1, 0)T . Figure 2
shows the energy |∇uα

z,d| of the resulting potentials for the two examples. The color
axes are truncated in order to obtain a good color contrast in the interesting regions
of the plots. More precisely, every energy value that is more than twice as high as
the energy in the point z is plotted with the brightest (white) color. The point
z, resp., the set Ω are plotted with a cyan cross, resp., a cyan dashed line. The
potentials clearly show the theoretically expected behaviour and attain large energy
values around the point z while staying small in the set Ω.

4.2. Reconstruction of inclusions. We now turn to the new reconstruction strat-
egy from Theorem 3.6(b). Consider the set Ω that consists of the two inclusions
plotted in the top left position of Figure 3. We assume that the conductivity equals
one outside Ω and equals two inside Ω. As in Section 3.2 we denote by Λ1 the
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S

Ω

Ω

Figure 3. Reconstruction of two inclusions.

Neumann-to-Dirichlet map for a body with these two inclusions and by Λ0 the
one for a body without these inclusions. According to Remark 2.11 their differ-
ence Λ := Λ0 − Λ1 is described by the same kind of equation as LΩL

∗
Ω, so that

a discretized approximation M to Λ can be calculated as in Section 4.1. For a
point z ∈ B we also calculate a discrete approximation Vz,d ∈ R256 of vz,d|S as
in Section 4.1 and obtain an approximation Gα

z,d ∈ R256 to gα
z,d defined in (10) by

setting

Gα := M∗(MM∗ + αI)−1Vz,d.
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For the input currents corresponding to Gα
z,d we denote by uα

z,d the resulting electric
potential for a domain without inclusions Ω. Theorem 3.6 now suggests that the
inclusion Ω can be reconstructed from M by choosing a fixed point z that is known
to lie outside the inclusion Ω and checking whether the indicator function

I(x) :=
|uα

z,d(x)|
(G∗

αMGα)3/2

is large (indicating that x 6∈ Ω) or not.
Figure 3 shows I(x) for different choices of z (marked by a cyan cross). As in

Section 4.1, α is chosen by hand and the brightest (white) color is used for all values
above 2 I(z). From Figure 3 it seems that I(x) tends to have some more or less
uniform decay between the point z and the boundary part S. If the inclusions Ω
lie between z and S then they distort this uniform behavior and local minima of
I(x) indicate the inclusions position. If the point z is not too far away from the
inclusions then also a rough estimate about their shape can be obtained. This first
numerical result indicates that Theorem 3.6(b) can indeed be used to obtain a quick
rough estimate of the inclusions shapes and positions.

5. Conclusion. We have proven that localized potentials exist for general L∞
+ -

conductivities in almost arbitrarily shaped subregions of a domain, as long as these
regions are connected to the boundary and a unique continuation principle is satis-
fied. From the existence of these potentials we deduced a new identifiability result
for the Calderón problem with partial data, showing that two conductivities can be
distinguished from each other if one is larger than the other in some part of the do-
main that is connected to the boundary. We also showed how such potentials can be
constructed, discussed their relation to the factorization method and derived a new
non-iterative reconstruction algorithm for the detection of inclusions in impedance
tomography. Our theoretical results were supported by first numerical experiments.
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