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Fatorization method and irregular inlusions in EIT 21. IntrodutionLet us onsider the inverse boundary value problem orresponding to eletrialimpedane tomography (EIT): Determine the ondutivity tensor σ(x) > 0 in the elliptiequation
∇ · σ∇u = 0 in Ωwhen all possible pairs of Neumann and Dirihlet boundary values of the eletromagnetipotential u are measured on ∂Ω. This problem was posed by Calderón in 1980 [14℄ andits unique solvability for isotropi, i.e. salar, ondutivities of a wide lass was obtainedin three and higher spae dimensions by Sylvester and Uhlmann in 1987 [42℄ and in twodimensions by Nahman in 1996 [34℄. Their regularity assumptions on the ondutivityand the boundary ∂Ω have been redued by several authors sine [1, 8, 33, 36, 37℄.Reently, onsiderable progress was made as Astala and Päivärinta solved the isotropiproblem in two dimensions under the natural regularity σ ∈ L∞(Ω) [4℄. On the otherhand, it is well known that the inverse problem of EIT is not uniquely solvable withoutthe isotropy assumption (see, e.g., [40℄).The reonstrution methods of EIT an be divided into two ategories: iterativeand diret algorithms. An iterative method produes a sequene of approximationsfor the unknown ondutivity. The iteration is �nished when some beforehand hosenstopping riterion is satis�ed. In most ases, the used optimization proedure is basedon the output least squares formulation of the inverse problem and on some regularizedNewton-type algorithm. The most fundamental of the diret reonstrution algorithmsis the one by Siltanen, Mueller and Isaason [38℄ sine it is a numerial implementation ofNahman's onstrutive uniqueness proof in two dimensions [34℄. Other diret methodsinlude the layer stripping algorithm [39, 41℄, the fatorization method [10, 11, 29℄and the probe method [28℄ together with their variants. For more details on thereonstrution algorithms, we refer to the review artiles [6, 15℄ and the referenestherein.Various pratially important imaging problems onsider loating inhomogeneitiesinside objets with known bakground ondutivities. For example, detetion of raksand air bubbles in some building material and distinguishing anerous tissue fromhealthy bakground fall into this ategory of problems. The fatorization method,introdued within inverse obstale sattering by Kirsh [29℄ and modi�ed to theframework of EIT by Brühl and Hanke [9, 10, 11℄, provides a tool that an be appliedto these kinds of situations. When the fatorization method is onsidered within EIT,its funtionality an be seured by assuming that the inlusions are either more orless ondutive than the bakground and the ondutivity or one of its higher normalderivatives jumps on the boundaries of the inlusions, f. [9, 10, 11, 17, 20, 25, 30℄, andthe preprint of Nahman, Päivärinta and Teirilä [35℄. However, some inhomogeneitiesmay a�et di�erent normal derivatives on di�erent parts of their boundaries or theperturbed ondutivity an be altogether smooth, in whih ase earlier results do nottell if the fatorization method works or not. In addition, previous works assume that



Fatorization method and irregular inlusions in EIT 3the inlusion boundaries are at least Lipshitz ontinuous.In this work, we merely assume that the union of the inlusions is an open set withonneted omplement and the orresponding L∞-perturbation of the ondutivity ispositive (or negative) semide�nite. We show that the fatorization method �nds everypoint of the inhomogeneity that has an open neighbourhood where the perturbation isstritly positive (or negative). Notie that the size of the neighbourhood and the lowerbound for the ondutivity may depend on the onsidered point and we do not pose anyregularity on the inlusion boundary. Inhomogeneities where every interior point hassuh a neighbourhood are herein alled loally stritly positive (or negative). This kindof irregular inlusions an be haraterized via boundary measurements in the mannerdesribed originally in [9℄, with the slight drawbak that the outome of the range testis unertain if the probe loation is exatly on the boundary of the inhomogeneity. Inpartiular, note that we do not set any onditions on the behaviour of the perturbedondutivity at the inlusion boundary.This text is organized as follows. In setion 2, we state and prove ourharaterization result. Setion 3 presents the numerial experiments and setion 4ontains onluding remarks.2. Charaterization of an irregular inlusionLet Ω ⊂ R
n, n ≥ 2, be a smooth domain and σ : Ω → R

n×n the orrespondingsymmetri ondutivity tensor. The stati forward problem of EIT is as follows: Forthe input urrent f ∈ L2
⋄
(∂Ω), �nd the eletromagneti potential u ∈ H1(Ω)/R that isthe weak solution of

∇ · σ∇u = 0 in Ω, ν · σ∇u = f on ∂Ω, (2.1)where ν is the exterior unit normal on ∂Ω and
L2
⋄
(∂Ω) =

{

v ∈ L2(∂Ω)
∣

∣

∣

∫

∂Ω

v dS = 0

}

.If the ondutivity σ ∈ L∞(Ω, Rn×n) satis�es the estimate
0 < cI ≤ σ, c ∈ R+, (2.2)the forward problem (2.1) has a unique solution that depends ontinuously on the inputurrent. Here and in the following, we use "<" in the sense of positive de�nitenessalmost everywhere in Ω.When solving the inverse problem of EIT, one tries to reonstrut the ondutivity

σ from the knowledge of the Neumann-to-Dirihlet, or urrent-to-voltage, map
Λσ : f 7→ u|∂Ω, L2

⋄
(∂Ω) → L2(∂Ω)/R.The use of the quotient spaes above emphasizes the freedom to hoose the ground levelof the potential as one wishes. For our purposes, it is onvenient to �x the ground levelso that the Dirihlet boundary value of the solution to (2.1) is interpreted as an elementof L2

⋄
(∂Ω), whih orresponds to identifying L2

⋄
(∂Ω) with its dual spae L2(∂Ω)/R. Withthis onvention, Λσ is a linear, bounded and self-adjoint map from L2

⋄
(∂Ω) to itself.



Fatorization method and irregular inlusions in EIT 42.1. The main resultIn this work, we assume that the ondutivity inside Ω is of the form
σ =

{

I + κ in D,

I in Ω \ D,
(2.3)where D is open, D ⊂ Ω and Ω \ D is onneted. Furthermore, the symmetriperturbation κ ∈ L∞(D, Rn×n) is assumed to be suh that σ satis�es (2.2). Take notethat the results presented below would remain valid if the unit ondutivity in (2.3) wasreplaed by any other a priori known bakground ondutivity that satis�es (2.2) andenables unique ontinuation of Cauhy data from ∂Ω to the interior of Ω. The sameomment applies to the smoothness of the boundary ∂Ω, as well. For example, in thepreprint [35℄ it is assumed that the bakground ondutivity and the boundary ∂Ω areof Lipshitz lass.In what follows, we will denote the Neumann-to-Dirihlet boundary maporresponding to the perturbed ondutivity σ by Λ and the map orresponding tothe unit bakground ondutivity by Λ0. Our goal is to loate the inlusion Dvia boundary measurements, under only mild onditions on the perturbation κ, byextrating information from the range of the square root of |Λ0 − Λ| in a onstrutivemanner. Notie that in real life |Λ0 − Λ| an be approximated through eletrodemeasurements, f. [22℄ and the preprint [32℄. The tehniques applied here stem from [29℄and they have been used in the framework of inverse ellipti boundary value problemsin [2, 5, 9, 10, 11, 12, 13, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30℄ and the preprints[19, 32, 35℄, as well.We �rst introdue a singular solution for sanning the objet Ω. Fix y ∈ Ω, let

α̂ ∈ R
n be an arbitrary unit vetor, and onsider the solution Φy of the followinghomogeneous Neumann problem

∆Φ(x) = α̂ · ∇xδ(x − y) in Ω,
∂Φ

∂ν
= 0 on ∂Ω,where δ is the delta funtional and the ground level of the potential is hosen so that

∫

∂Ω
ΦydS = 0. Physially, Φy orresponds to the eletrostati potential reated by adipole soure at y pointing in the diretion α̂.We an now state our main result.Theorem 2.1. Assume that either κ ≥ 0 or κ ≤ 0. If y ∈ D has a neighbourhood

U ⊂ D suh that ess inf |κ|U | > 0, then the boundary potential Φy|∂Ω belongs to therange of |Λ0 − Λ|1/2. Conversely, the boundary potential Φy|∂Ω is not inluded in therange of |Λ0 − Λ|1/2 if y ∈ Ω \ D.In many appliations, the assumption of the �rst part of Theorem 2.1 is ful�lled forevery point in D. We say that the inlusion D (or the perturbation κ) is loally stritlypositive if for eah y ∈ D there exist salar onstants ǫy, ry > 0 suh that
κ > ǫyI almost everywhere in B(y, ry) ⊂ D, (2.4)



Fatorization method and irregular inlusions in EIT 5where B(y, ry) denotes the open ball of radius ry entered at y. Similarly, the inlusion
D is alled loally stritly negative if κ satis�es (2.4) with κ > ǫyI replaed by κ < −ǫyI.Notie that a loally stritly positive (or loally stritly negative) perturbation may havevanishing traes on ∂D or on some subsets of ∂D. In partiular, the resulting perturbedondutivity σ may be smooth in a neighbourhood of ∂D.Corollary 2.2. Assume that the inhomogeneity D is either loally stritly positive orloally stritly negative. If y ∈ D, the boundary potential Φy|∂Ω belongs to the range of
|Λ0 − Λ|1/2. Conversely, the boundary potential Φy|∂Ω is not inluded in the range of
|Λ0 − Λ|1/2 if y ∈ Ω \ D.Unlike the results presented in [11, 17, 25, 30℄ and the preprint [35℄, this orollarydoes not tell that Φy|∂Ω /∈ |Λ0 − Λ|1/2 when y ∈ ∂D. However, from the pratial pointof view, our expliit haraterization is as good as the ones presented in earlier work.On the positive side, our assumptions on the inlusion D and the perturbation κare muh weaker than in previous artiles on the fatorization method within di�usetomography. Thus far, the weakest regularity assumption on the inlusion boundaryhas been used in the preprint [35℄, where D is Lipshitz, but only perfetly ondutinginhomogeneities are onsidered. The theoretial artiles dealing with penetrableinlusions have been based on the assumption that D has at least C2-boundary (f.,e.g., [30℄), although in [10℄ it is noted that the method also works with Lipshitzinhomogeneities. In this work, D is just open. Moreover, the only artile that hasso far takled perturbations that are not uniformly stritly positive (or negative) in D,namely [25℄, assumes that ∂D and κ > 0 are smooth and all ondutivities are isotropi.Furthermore, in [25℄ the way that κ is allowed to behave on ∂D is quite spei�: Forsome m ≥ 1, the ondutivity and its m−1 lowest normal derivatives are assumed to beontinuous over the inlusion boundary whereas the mth normal derivative is assumedto jump everywhere on ∂D. In this work, di�erent normal derivatives of the ondutivitymay jump on di�erent parts of ∂D or the ondutivity an be altogether smooth as the
L∞-perturbation κ is only assumed to be loally stritly positive (or negative).2.2. Proof of the main resultApart from some onsiderations in the original artile by Brühl [11℄, the haraterizationresults obtained through the fatorization tehnique within di�use tomography methodshave been based on a fatorization of the type (see, e.g., [17℄)

Λ0 − Λ = LFL∗,where the last operator L depends on the shape of D, not on the properties inside
D. By showing that the intermediate operator F is an 'almost oerive' (f. [30℄)isomorphism between suitable dual Sobolev spaes, one has been able to prove that therange of |Λ0 − Λ|1/2 oinides with the range of L (f. [17, 25, 30℄). Finally, the atualharaterization results have followed from the speial struture of L together with thepriniple of unique ontinuation.



Fatorization method and irregular inlusions in EIT 6In this work, we take a di�erent approah. The idea is to extend the already knownharaterization results to more irregular surroundings by using ertain monotoniityproperties of the range of |Λ0 − Λ|1/2. It should be noted that similar arguments wereused already in [9, 11℄. We begin with a simple well known lemma. Physially speaking,it states that the power needed when applying a boundary urrent pattern is dereasingwith respet to the ondutivity.Lemma 2.3. Let Λ1 and Λ2 be the Neumann-to-Dirihlet maps orresponding to thesymmetri ondutivities σ1, σ2 ∈ L∞(Ω, Rn×n), respetively. Assume that σ1 and σ2satisfy (2.2) and σ1 ≤ σ2. Then it holds that
〈f, (Λ1 − Λ2)f〉L2(∂Ω) ≥ 0for any urrent f ∈ L2

⋄
(∂Ω).Proof. The proof for isotropi ondutivities an be found, for example, in [11℄. Thegeneralization to the anisotropi ase follows by using a similar line of reasoning.We note that Lemma 2.3 yields, in partiular, that the absolute value of thedi�erene of the Neumann-to-Dirihlet maps in Theorem 2.1 is simply the di�ereneitself (for κ ≥ 0) or minus the di�erene (for κ ≤ 0).Next we will transform the above monotoniity result into a form that onsidersranges of square roots. A similar onsideration an be found in [11℄. Notie that allsquare root operators below are obtained by treating the original maps as positive andself-adjoint operators from L2

⋄
(∂Ω) to itself and taking the unique positive and self-adjoint square root.Lemma 2.4. Assume that σ1 ≤ σ2 are as in Lemma 2.3 and let σ0 ∈ L∞(Ω, Rn×n) beyet another symmetri ondutivity that satis�es (2.2). If σ0 ≤ σ1,

R
{

(Λ0 − Λ1)
1/2

}

⊆ R
{

(Λ0 − Λ2)
1/2

}

.Conversely, if σ2 ≤ σ0, it holds that
R

{

(Λ2 − Λ0)
1/2

}

⊆ R
{

(Λ1 − Λ0)
1/2

}

.Proof. A funtional analyti lemma that is frequently used for the fatorization methodis that for any ontinuous linear operator A : H1 → H2, between Hilbert spaes H1 and
H2,

y ∈ R(A) if and only if ∃C > 0 : 〈y, x〉H2
≤ C ‖A∗x‖H1

∀x ∈ H2.In a Banah spae formulation, this is alled the "14th important property of Banahspaes" in [7℄, f. e. g. [16, Lemma 3.4℄ for an elementary proof. An immediateonsequene is that for self-adjoint operators A, B : H1 → H1 the existene of a onstant
C > 0 that satis�es

‖Ax‖ ≤ C ‖Bx‖ , for all x ∈ H1,implies that R(A) ⊆ R(B).



Fatorization method and irregular inlusions in EIT 7Let σ0 ≤ σ1 ≤ σ2. From Lemma 2.3 we know that for all f ∈ L2
⋄
(∂Ω)

〈f, (Λ0 − Λ1)f〉L2(∂Ω) = 〈f, (Λ0 − Λ2)f〉L2(∂Ω) − 〈f, (Λ1 − Λ2)f〉L2(∂Ω)

≤ 〈f, (Λ0 − Λ2)f〉L2(∂Ω) ,meaning that ∥

∥(Λ0 − Λ1)
1/2f

∥

∥ ≤
∥

∥(Λ0 − Λ2)
1/2f

∥

∥ and, thus,
R

{

(Λ0 − Λ1)
1/2

}

⊆ R
{

(Λ0 − Λ2)
1/2

}

.Sine the seond part of the assertion follows from the same line of reasoning, theproof is omplete.Before we an formulate the proof of Theorem 2.1, we still need a haraterizationresult that an be extended using lemma 2.4. We hoose a simpli�ed version of theoriginal theorem presented in [11℄.Lemma 2.5. Suppose that the onditions and notations of Theorem 2.1 are valid. Inaddition, assume that D is onneted and has a smooth boundary, and the orrespondingperturbation is given as κ = δI, where δ 6= 0 is a onstant. Then Φy|∂Ω belongs to therange of |Λ0 − Λ|1/2 if and only if y ∈ D.By ombining the three lemmas above, we are now ready to present the proof ofTheorem 2.1.Proof of Theorem 2.1. To begin with, assume that κ ≥ 0. If y ∈ D has a neighbourhood
U ⊂ D suh that ess inf |κ|U | > 0, there exist salars ǫy, ry > 0 suh that κ > ǫyI almosteverywhere in B(y, ry) ⊂ U . We de�ne an auxiliary ondutivity tensor by

σy =

{

I + ǫyI in B(y, ry),

I in Ω \ B(y, ry),and denote the assoiated Neumann-to-Dirihlet map by Λy. Due to Lemma 2.5, we seestraight away that Φy|∂Ω ∈ R{(Λ0 −Λy)
1/2}. Furthermore, sine σy < σ, it follows fromthe �rst part of Lemma 2.4 that also

Φy|∂Ω ∈ R
{

(Λ0 − Λ)1/2
}

= R
{

|Λ0 − Λ|1/2
}

,whih proves the �rst part of the laim.Continue assuming that κ ≥ 0 and let now y ∈ Ω \ D. Sine Ω \ D is open andonneted, there exists a onneted open set Dy suh that y /∈ Dy, D ⊂ Dy, Ω \ Dy isonneted and the boundary ∂Dy is smooth. We rede�ne the auxiliary ondutivity by
σy =

{

I + kI in Dy,

I in Ω \ Dy,where the salar onstant k > 0 is hosen so that σy > σ almost everywhere in Ω. Nowthe �rst part of Lemma 2.4 and Lemma 2.5 tell us that
Φy|∂Ω /∈ R

{

(Λ0 − Λy)
1/2

}

⊇ R
{

(Λ0 − Λ)1/2
}

= R
{

|Λ0 − Λ|1/2
}

,where Λy is one again the Neumann-to-Dirihlet map orresponding to σy. This provesthe laim for κ ≥ 0.



Fatorization method and irregular inlusions in EIT 8The ase that κ ≤ 0 an be handled in the same way, with the exeption that thistime one uses the seond part of Lemma 2.4 instead of the �rst part. This ompletesthe proof. �3. Numerial experimentsTo verify our theoretial �ndings, we onsider three test examples that are not overed byprevious works on the fatorization method. In all three ases, Ω is the two-dimensionalunit disk and on ∂Ω we apply the L2-orthonormal basis funtions
{

1√
π

sin(nφ),
1√
π

cos(nφ)
∣

∣

∣
n = 1, . . . , 128

}as input urrents. Here and in the following, the pair (r, φ) denotes the polar oordinateswith respet to the enter of Ω. We denote the potentials orresponding to the perturbedondutivity (2.3) and the unit bakground ondutivity by u and u0, respetively,and use the ommerial �nite element software Comsol to ompute the di�erene
v := u0 − u ∈ H1(Ω)/R by solving the variational problem

∫

Ω

σ∇v · ∇w dx =

∫

D

κ∇u0 · ∇w dx for all w ∈ H1(Ω), (3.1)whih is obtained by subtrating the variational equations for u and u0. Sine (σ − I)vanishes in a neighbourhood of ∂Ω, (3.1) is equivalent to
∇ · σ∇v = ∇ · (σ − I)∇u0with homogeneous Neumann boundary ondition on ∂Ω. On the right hand side we usethe exat solution
u0 =

1

n
√

π
sin(nφ)rn, resp., u0 =

1

n
√

π
cos(nφ)rn.As the di�erene of u and u0 is onsiderably smaller than u and u0, this approahleads to a higher preision than omputing u and u0 separately. The boundary data

v|∂Ω = (u0 − u)|∂Ω is then expanded in the aforementioned trigonometri basis, whihgives a disrete approximation M ∈ R
256×256 of the operator Λ0 − Λ.Reall that Corollary 2.2 yields a binary riterion to deide whether a point liesinside the inlusion D or not, i.e., for every y 6∈ ∂D

Φy|∂Ω ∈ R(|Λ0 − Λ|1/2) ⇐⇒ y ∈ D.For the numerial implementation of this range test, we follow [18℄. Let
(Λ0 − Λ)vk = λkvk, k ∈ N,be the spetral deomposition of the ompat, self-adjoint, and injetive operator Λ0−Λwith orthonormal basis of eigenfuntions {vk} ⊂ L2

⋄
(∂Ω) and eigenvalues {λk} ⊂ R(sorted in dereasing order of absolute value). The Piard riterion yields that

Φy|∂Ω ∈ R(|Λ0 − Λ|1/2)



Fatorization method and irregular inlusions in EIT 9if and only if
f(y) :=

1

‖Φy|∂Ω‖2
L2(∂Ω)

∞
∑

k=1

|〈Φy|∂Ω, vk〉L2(∂Ω)|2
|λk|

< ∞.Using a singular value deomposition of the disrete approximation M ∈ R
256×256

Mṽk = λ̃kũk, M∗ũk = λ̃kṽk, k = 1, . . . , 256,with nonnegative {λ̃k} ⊂ R (sorted in dereasing order) and orthonormal bases
{ũk}, {ṽk} ⊂ R

256, we approximate the funtion f(y) by
f̃(y) :=

m
∑

k=1

(Φ̃y · ṽk)
2

|λ̃k|
/

m
∑

k=1

(Φ̃y · ṽk)
2,where Φ̃y ∈ R

256 ontains the Fourier oe�ients of Φy|∂Ω and m is hosen so that λ̃m+1is the �rst singular value below the expeted measurement error. For a theoretial studyof the onnetion between the in�nite Piard series for the Neumann-to-Dirihlet map
Λ0 − Λ and the trunated Piard series for its �nite-dimensional approximation M , werefer the reader to a reent work of Lehleiter [31℄.To obtain a numerial riterion telling whether a point y belongs to the unknowninlusion D or not, one has to deide if the in�nite sum f(y) attains the value ∞ byusing the approximate value f̃(y), whih is always �nite. Thus, a threshold C̃∞ > 0 isneeded to distinguish points with large values f̃(y) ≥ C̃∞ from those with small values
f̃(y) < C̃∞. A reonstrution of D is then obtained by evaluating f̃(y) on a grid ofpoints {yn} ⊂ Ω and saying that all points with f̃(yn) < C̃∞ belong to the inlusion.Choosing di�erent threshold values C̃∞ orresponds to hoosing di�erent level ontoursof f̃(y) or, equivalently, of a monotone funtion of f̃(y).In our numerial experiments, we plot the indiator funtion

Ind(y) :=
(

log f̃(y)
)

−1 (3.2)on an equidistant grid {yn} ⊂ Ω, whih is hosen independently of the �nite elementmesh that is used for solving the forward problems. We also show the largest levelontour that is still inside the true inlusion D, i.e., the one orresponding to thethreshold valuê
C∞ := inf

{

C∞ ∈ R

∣

∣

∣
Ind−1(]C∞,∞[) ⊆ D

}

.In our numerial experiments we obtained Ĉ∞ by omparing the level ontoursto the true inlusion D. In pratie, the hoie of the threshold requires additionalinformation, e.g., from previous experiments, and there is no guarantee that an optimalontour is found. To illustrate the sensitivity of our reonstrutions with respet to thethreshold, we also plot the level ontours Ind−1(C∞) for C∞ = 0.9·Ĉ∞ and C∞ = 1.1·Ĉ∞.Figure 1 shows the exat ondutivities σ for the three test examples. In the �rstexample, the inlusion D is a disk of radius R = 0.3 and the perturbation κ is givenby exp(R−1 − (R2 − ρ2)−1/2), where ρ is the distane from the enter of D. Notie thatthis results in a smooth σ with maximal value 2. In the seond example, the objet Ω is
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Figure 1. Exat ondutivities for the three test ases.

Figure 2. Numerial reonstrutions for exat simulated data.ontaminated by two inhomogeneities that are onstruted by multiplying the smoothperturbation introdued in the �rst test by the harateristi funtion of a semidisk toobtain inlusions with a jump of ondutivity on one side and a smooth transition onthe other side. In the last test, we use the smooth inlusion of the �rst experimenttogether with an inhomogeneity where the ondutivity jumps by a onstant value. Theboundaries of the inlusions, i.e. of the supports of the perturbations, are plotted bydashed white line.Figure 2 illustrates the reonstrutions that we obtained using exat simulated data.The �rst row shows the graph of the indiator funtion Ind, de�ned by (3.2), for thethree tests and the seond row shows the orresponding level urves for the threshold
Ĉ∞ (solid line), that is optimal in the sense explained above, and for the two perturbed



Fatorization method and irregular inlusions in EIT 11thresholds 0.9·Ĉ∞ (outer dotted line) and 1.1·Ĉ∞ (inner dotted line). The true inlusionsare one again marked with a dashed line. As Figure 2 demonstrates, all inlusions werefound in all three tests. Although the gradient of the indiator Ind is a little bit steeperover the parts of the inlusion boundary where the perturbed ondutivity jumps thanover those parts where the transition is smooth, the quality of the reonstrutions doesnot seem to depend very muh on the behaviour of the perturbed ondutivity at theinlusion boundary.Sine one might be tempted to ompare the �rst row of Figure 2 diretly with theexat ondutivities in Figure 1, let us stress that the fatorization method is designedonly to reonstrut the support of the unknown perturbation but not the perturbationitself. The indiator funtion Ind attains muh larger values inside the inlusion Dthan on its outside; however, we have no theoretial evidene that these values anbe diretly related to the atual perturbed ondutivity. In fat, the seond and thethird example suggest that the behaviour of Ind depends mainly on the distane to theinlusion boundary ∂D, f. also the work of Arens [3℄ for theoretial results of suh adependene in the ontext of inverse sattering.In addition to using the unperturbed simulated measurement matrix M , we alsotest the method after adding 0.1% noise to M . More preisely, we generate a randommatrix E ∈ R
256×256 with uniformly distributed entries between −1 and 1. Then E issaled to the noise level with respet to its spetral norm ‖E‖2 and added to M , i.e.,we replae M with
Mǫ := M + 10−3 ‖M‖2

E

‖E‖2

.Aordingly, only singular values larger than 10−3 ‖Mǫ‖ are now used in the trunatedPiard series in the de�nition of f̃(y).Figure 3, whih is organized in the same way as Figure 2, illustrates thereonstrutions orresponding to our three test ases with noisy simulated data. Asone might expet, the graphs of the indiator funtion Ind shown on the �rst row ofFigure 3 are more blurred than the orresponding ones in the noiseless ase. In addition,the level urves of Ind, plotted on the seond row, do not apture the shapes of theinlusions very well and it seems that the quality of the obtained reonstrutions israther sensitive to the hoie of the threshold. Anyway, with this relatively low noiselevel, the reonstrutions still ontain information on the size, loation and number of theinlusions. For more detailed studies on the e�et of noise on the general performaneof the fatorization method, we refer the reader to the works ited in our introdution.All above examples on�rm our theoretial result: The fatorization method doesnot rely on a jump in the ondutivity but merely on the fat that the ondutivityat eah point inside the inlusion is higher (or lower) than the ondutivity of thebakground medium.
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Figure 3. Numerial reonstrutions for noisy data.4. ConlusionsWe have shown that in EIT the fatorization method works even if the inlusions haveno boundary regularity and there is no sharp jump in the ondutivity or in one of itshigher derivatives on the inlusion boundary. Numerial examples with simulated dataon�rm our theoretial results.Our analysis is based on a monotoniity argument whih allows us to generalizepreviously known results on the fatorization method. Although we restrited ourattention to EIT, the same arguments hold when applying the fatorization methodto other real ellipti inverse boundary value problems (f. [17℄) like optial tomographyor elastiity measurements. We also expet that similar results an be obtained ininverse obstale sattering.AknowledgmentsThis work was motivated by the Oberwolfah workshop on "Inverse Problems in WaveSattering" in Marh 2007. We would like to thank the workshop organizers MartinHanke-Bourgeois, Andreas Kirsh and William Rundell, as well as the Oberwolfahrew, for inviting us to this wonderful plae, resp., maintaining it.The work of the seond author was supported by the Aademy of Finland (projet115013).
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