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a monotonicity argument to generalize these results: We show that the factorization
method provides a characterization of an open inclusion (modulo its boundary) if each
point inside the inhomogeneity has an open neighbourhood where the perturbation
of the conductivity is strictly positive (or negative) definite. In particular, we do not
assume any regularity of the inclusion boundary or set any conditions on the behaviour
of the perturbed conductivity at the inclusion boundary. Our theoretical findings are
verified by two-dimensional numerical experiments.
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1. Introduction

Let us consider the inverse boundary value problem corresponding to electrical
impedance tomography (EIT): Determine the conductivity tensor o(z) > 0 in the elliptic
equation

V-oVu=0 1in

when all possible pairs of Neumann and Dirichlet boundary values of the electromagnetic
potential u are measured on 9f2. This problem was posed by Calderon in 1980 [T4] and
its unique solvability for isotropic, i.e. scalar, conductivities of a wide class was obtained
in three and higher space dimensions by Sylvester and Uhlmann in 1987 [42] and in two
dimensions by Nachman in 1996 [34]. Their regularity assumptions on the conductivity
and the boundary 9 have been reduced by several authors since [T, B, B3, B6, B7].
Recently, considerable progress was made as Astala and Paivéarinta solved the isotropic
problem in two dimensions under the natural regularity o € L>°(Q) [4]. On the other
hand, it is well known that the inverse problem of EIT is not uniquely solvable without
the isotropy assumption (see, e.g., [40]).

The reconstruction methods of EIT can be divided into two categories: iterative
and direct algorithms. An iterative method produces a sequence of approximations
for the unknown conductivity. The iteration is finished when some beforehand chosen
stopping criterion is satisfied. In most cases, the used optimization procedure is based
on the output least squares formulation of the inverse problem and on some regularized
Newton-type algorithm. The most fundamental of the direct reconstruction algorithms
is the one by Siltanen, Mueller and Isaacson [38] since it is a numerical implementation of
Nachman’s constructive uniqueness proof in two dimensions [34]. Other direct methods
include the layer stripping algorithm [39, AT], the factorization method [I0, [IT], 29]
and the probe method [28] together with their variants. For more details on the
reconstruction algorithms, we refer to the review articles [6, [[5] and the references
therein.

Various practically important imaging problems consider locating inhomogeneities
inside objects with known background conductivities. For example, detection of cracks
and air bubbles in some building material and distinguishing cancerous tissue from
healthy background fall into this category of problems. The factorization method,
introduced within inverse obstacle scattering by Kirsch [29] and modified to the
framework of EIT by Briihl and Hanke [9] [I0, [TT], provides a tool that can be applied
to these kinds of situations. When the factorization method is considered within EIT,
its functionality can be secured by assuming that the inclusions are either more or
less conductive than the background and the conductivity or one of its higher normal
derivatives jumps on the boundaries of the inclusions, cf. [9 [0, [T, 7, 20, 25, B0], and
the preprint of Nachman, Piivirinta and Teirild [35]. However, some inhomogeneities
may affect different normal derivatives on different parts of their boundaries or the
perturbed conductivity can be altogether smooth, in which case earlier results do not
tell if the factorization method works or not. In addition, previous works assume that
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the inclusion boundaries are at least Lipschitz continuous.

In this work, we merely assume that the union of the inclusions is an open set with
connected complement and the corresponding L*-perturbation of the conductivity is
positive (or negative) semidefinite. We show that the factorization method finds every
point of the inhomogeneity that has an open neighbourhood where the perturbation is
strictly positive (or negative). Notice that the size of the neighbourhood and the lower
bound for the conductivity may depend on the considered point and we do not pose any
regularity on the inclusion boundary. Inhomogeneities where every interior point has
such a neighbourhood are herein called locally strictly positive (or negative). This kind
of irregular inclusions can be characterized via boundary measurements in the manner
described originally in [9], with the slight drawback that the outcome of the range test
is uncertain if the probe location is exactly on the boundary of the inhomogeneity. In
particular, note that we do not set any conditions on the behaviour of the perturbed
conductivity at the inclusion boundary.

This text is organized as follows. In section 2, we state and prove our
characterization result. Section 3 presents the numerical experiments and section 4
contains concluding remarks.

2. Characterization of an irregular inclusion

Let Q C R", n > 2, be a smooth domain and ¢ : Q — R™ " the corresponding
symmetric conductivity tensor. The static forward problem of EIT is as follows: For
the input current f € L2(09Q), find the electromagnetic potential v € H'(Q)/R that is
the weak solution of

V-oVu=0 in Q, v-oVu=f on 09, (2.1)

where v is the exterior unit normal on 02 and

L2(0Q) = {v e L2(99) ) / vdS = 0} .
o0
If the conductivity o € L>®(2, R™*") satisfies the estimate
0<cl <o, ce Ry, (2.2)

the forward problem (7)) has a unique solution that depends continuously on the input
current. Here and in the following, we use "<" in the sense of positive definiteness
almost everywhere in 2.

When solving the inverse problem of EIT, one tries to reconstruct the conductivity
o from the knowledge of the Neumann-to-Dirichlet, or current-to-voltage, map

Ay f = ulsq, L2(09Q) — L*(09)/R.
The use of the quotient spaces above emphasizes the freedom to choose the ground level
of the potential as one wishes. For our purposes, it is convenient to fix the ground level
so that the Dirichlet boundary value of the solution to (EZT) is interpreted as an element

of L2(99), which corresponds to identifying L2(9) with its dual space L?(9Q)/R. With
this convention, A, is a linear, bounded and self-adjoint map from LZ(99) to itself.
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2.1. The main result

In this work, we assume that the conductivity inside €2 is of the form

{I—i—n in D,
g =

I in Q\ D, (2:3)

where D is open, D C Q and Q \ D is connected. Furthermore, the symmetric
perturbation x € L®(D,R™™) is assumed to be such that o satisfies (Z2). Take note
that the results presented below would remain valid if the unit conductivity in (23 was
replaced by any other a priori known background conductivity that satisfies (222) and
enables unique continuation of Cauchy data from 0f) to the interior of 2. The same
comment applies to the smoothness of the boundary 0f2, as well. For example, in the
preprint [35] it is assumed that the background conductivity and the boundary 9 are
of Lipschitz class.

In what follows, we will denote the Neumann-to-Dirichlet boundary map
corresponding to the perturbed conductivity ¢ by A and the map corresponding to
the unit background conductivity by Ag. Our goal is to locate the inclusion D
via boundary measurements, under only mild conditions on the perturbation k, by
extracting information from the range of the square root of |[Ag — A| in a constructive
manner. Notice that in real life |Ag — A| can be approximated through electrode
measurements, cf. [22] and the preprint [32]. The techniques applied here stem from [29]
and they have been used in the framework of inverse elliptic boundary value problems
in [2L B, ©, 00, 01, 02, 03, 06, 17, 20, 21, 22, 23, P4, 25, 26, 27, B0] and the preprints
19, B2, 35, as well.

We first introduce a singular solution for scanning the object €2. Fix y € €, let
& € R™ be an arbitrary unit vector, and consider the solution ®, of the following
homogeneous Neumann problem
0d
v
where 0 is the delta functional and the ground level of the potential is chosen so that
faﬂ ®,dS = 0. Physically, ®, corresponds to the electrostatic potential created by a

Ad(z) =a -V, i(z —vy) in €, 0 on 012,

dipole source at y pointing in the direction a.
We can now state our main result.

Theorem 2.1. Assume that either k > 0 or kK < 0. Ify € D has a neighbourhood
U C D such that ess inf |k|y| > 0, then the boundary potential ®,|sq belongs to the

range of |Ag — A|'/2. Conversely, the boundary potential D, |aq is not included in the
range of |Ag — A|Y? if y € Q\ D.

In many applications, the assumption of the first part of Theorem EZTlis fulfilled for
every point in D. We say that the inclusion D (or the perturbation k) is locally strictly
positive if for each y € D there exist scalar constants ¢,,r, > 0 such that

K> €l almost everywhere in B(y,r,) C D, (2.4)
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where B(y,r,) denotes the open ball of radius 7, centered at y. Similarly, the inclusion
D is called locally strictly negative if x satisfies (24 with x > ¢,I replaced by k < —¢, 1.
Notice that a locally strictly positive (or locally strictly negative) perturbation may have
vanishing traces on dD or on some subsets of 0D. In particular, the resulting perturbed
conductivity ¢ may be smooth in a neighbourhood of 9D.

Corollary 2.2. Assume that the inhomogeneity D s either locally strictly positive or
locally strictly negative. If y € D, the boundary potential ®,|sq belongs to the range of

|Ao — A|Y2. Conversely, the boundary potential ®,|sq is not included in the range of
Ao — A|V2 ify € Q\ D.

Unlike the results presented in [I1], 17, 25, B0] and the preprint [35], this corollary
does not tell that ®,|aq ¢ |Ag — A|/2 when y € dD. However, from the practical point
of view, our explicit characterization is as good as the ones presented in earlier work.

On the positive side, our assumptions on the inclusion D and the perturbation s
are much weaker than in previous articles on the factorization method within diffuse
tomography. Thus far, the weakest regularity assumption on the inclusion boundary
has been used in the preprint [33], where D is Lipschitz, but only perfectly conducting
inhomogeneities are considered. The theoretical articles dealing with penetrable
inclusions have been based on the assumption that D has at least C*-boundary (cf.,
e.g., [30]), although in [TI0] it is noted that the method also works with Lipschitz
inhomogeneities. In this work, D is just open. Moreover, the only article that has
so far tackled perturbations that are not uniformly strictly positive (or negative) in D,
namely [25], assumes that 0D and x > 0 are smooth and all conductivities are isotropic.
Furthermore, in [25] the way that x is allowed to behave on 0D is quite specific: For
some m > 1, the conductivity and its m — 1 lowest normal derivatives are assumed to be
continuous over the inclusion boundary whereas the mth normal derivative is assumed
to jump everywhere on dD. In this work, different normal derivatives of the conductivity
may jump on different parts of D or the conductivity can be altogether smooth as the
L*>-perturbation x is only assumed to be locally strictly positive (or negative).

2.2. Proof of the main result

Apart from some considerations in the original article by Briihl [I1], the characterization
results obtained through the factorization technique within diffuse tomography methods
have been based on a factorization of the type (see, e.g., [11])

Ao — A =LFL",

where the last operator L depends on the shape of D, not on the properties inside
D. By showing that the intermediate operator F' is an ’'almost coercive’ (cf. [30])
isomorphism between suitable dual Sobolev spaces, one has been able to prove that the
range of |[Ag — A|'/? coincides with the range of L (cf. [T7, 5, B0]). Finally, the actual
characterization results have followed from the special structure of L together with the
principle of unique continuation.
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In this work, we take a different approach. The idea is to extend the already known
characterization results to more irregular surroundings by using certain monotonicity
properties of the range of |[Ag — A|*/2. Tt should be noted that similar arguments were
used already in [9, [[T]. We begin with a simple well known lemma. Physically speaking,
it states that the power needed when applying a boundary current pattern is decreasing
with respect to the conductivity.

Lemma 2.3. Let Ay and Ay be the Neumann-to-Dirichlet maps corresponding to the
symmetric conductivities oy,09 € L¥(Q,R™™), respectively. Assume that o1 and o9
satisfy (ZA) and o1 < 03. Then it holds that

(f, (A1 = A2) f)1290) = 0
for any current f € L2(09Q).

Proof. The proof for isotropic conductivities can be found, for example, in [I1]. The
generalization to the anisotropic case follows by using a similar line of reasoning. O

We note that Lemma yields, in particular, that the absolute value of the
difference of the Neumann-to-Dirichlet maps in Theorem [ZT] is simply the difference
itself (for k > 0) or minus the difference (for x < 0).

Next we will transform the above monotonicity result into a form that considers
ranges of square roots. A similar consideration can be found in [II]. Notice that all
square root operators below are obtained by treating the original maps as positive and
self-adjoint operators from L2(9Q) to itself and taking the unique positive and self-
adjoint square root.

Lemma 2.4. Assume that 01 < oy are as in Lemma [ZZ3 and let og € L®(Q, R™™™) be

yet another symmetric conductivity that satisfies (Z3). If oo < o1,
RA{(Ao— M)} CR{(Ao — A2)'V2}.
Conversely, if o9 < 09, it holds that
R {(Ag — AO)W} CR {(A1 — AO)W} .
Proof. A functional analytic lemma that is frequently used for the factorization method

is that for any continuous linear operator A : H; — H,, between Hilbert spaces H; and
HQa

y€ R(A) ifand only if 3C >0: (y,2)nu, < C||A"2|y, Vo € Hy.

In a Banach space formulation, this is called the "14th important property of Banach
spaces" in [7], cf. e.g. |16l Lemma 3.4| for an elementary proof. An immediate
consequence is that for self-adjoint operators A, B : H; — H; the existence of a constant
C > 0 that satisfies

|Az|| < C'||Bz||, for all x € Hy,
implies that R(A) C R(B).
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Let 09 < 01 < 09. From Lemma 23 we know that for all f € L2(0Q)

(fs (Ao — A1)f>L2(aQ) = (f, (Ao — A2)f>L2(aQ) —(f, (A = A2)f>L2(aQ)
< (f, (Mo = A2) ) 12000 »
meaning that ||(Ag — Ay)Y2f|| < ||(Ao — A2)/?f]| and, thus,
RA{(Ao— M)} CR{(Ao — A2)'2}.

Since the second part of the assertion follows from the same line of reasoning, the
proof is complete. 0

Before we can formulate the proof of Theorem [ZT], we still need a characterization
result that can be extended using lemma EZ4l We choose a simplified version of the
original theorem presented in [IT].

Lemma 2.5. Suppose that the conditions and notations of Theorem [Z1 are valid. In
addition, assume that D is connected and has a smooth boundary, and the corresponding
perturbation is given as k = 01, where 6 # 0 is a constant. Then ®,|sq belongs to the
range of |Ag — A|Y/? if and only if y € D.

By combining the three lemmas above, we are now ready to present the proof of

Theorem P11

Proof of Theorem[ZJl To begin with, assume that x > 0. If y € D has a neighbourhood
U C D such that ess inf |k|y| > 0, there exist scalars €,,r, > 0 such that x > ¢,/ almost
everywhere in B(y,r,) C U. We define an auxiliary conductivity tensor by

{ I+¢€,1 in B(y,ry),
oy =

I in Q\ B(y,ry),

and denote the associated Neumann-to-Dirichlet map by A,. Due to Lemma E.3, we see
straight away that ®,|sn € R{(Ag— A,)/2}. Furthermore, since o, < o, it follows from
the first part of Lemma P24 that also

bylon € R {(Ao — A7} =R {|Ag — A]'?},

which proves the first part of the claim.

Continue assuming that x > 0 and let now y € Q \ D. Since Q\ D is open and
connected, there exists a connected open set D, such that y ¢ D,, D C D,, Q\ D, is
connected and the boundary 0D, is smooth. We redefine the auxiliary conductivity by

S I+ kI in D,,
A in Q\ D,,
where the scalar constant & > 0 is chosen so that o, > ¢ almost everywhere in 2. Now
the first part of Lemma EZ4] and Lemma tell us that
Dylon & R{(Ao— A2} DR{(Ag — M)V} =R {|Ao — A]'?},

where A, is once again the Neumann-to-Dirichlet map corresponding to o,. This proves
the claim for x > 0.
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The case that x < 0 can be handled in the same way, with the exception that this
time one uses the second part of Lemma P4 instead of the first part. This completes
the proof. 0

3. Numerical experiments

To verify our theoretical findings, we consider three test examples that are not covered by
previous works on the factorization method. In all three cases, €2 is the two-dimensional
unit disk and on 9 we apply the L?-orthonormal basis functions

{%sin(mﬁ), %Cos(mb) n=1,. .. 128}

as input currents. Here and in the following, the pair (r, ¢) denotes the polar coordinates
with respect to the center of (2. We denote the potentials corresponding to the perturbed
conductivity (23) and the unit background conductivity by u and wug, respectively,
and use the commercial finite element software Comsol to compute the difference
v:i=1ug—u € H'(Q)/R by solving the variational problem

/ oVv-Vwdr = / kVug - Vwdz for all w € H'(Q), (3.1)
Q

D
which is obtained by subtracting the variational equations for v and wg. Since (o — I)
vanishes in a neighbourhood of 092, ([BIJ) is equivalent to

V-oVuo=V-(0c—1)Vuy

with homogeneous Neumann boundary condition on 9€2. On the right hand side we use
the exact solution

sin(ng)r",  resp., up= cos(ng)r".

1
Uy =
N~/ 7T

1
ny/m
As the difference of u and wug is considerably smaller than w and wg, this approach
leads to a higher precision than computing u and wug separately. The boundary data
v|og = (up — u)|sq is then expanded in the aforementioned trigonometric basis, which
gives a discrete approximation M € R?6%2% of the operator Ag — A.

Recall that Corollary yields a binary criterion to decide whether a point lies
inside the inclusion D or not, i.e., for every y & 0D

D,lon € R(JAo — A|'?) < yeD.
For the numerical implementation of this range test, we follow [TI8]. Let
(AO — A)Uk = A\pUk, keN,

be the spectral decomposition of the compact, self-adjoint, and injective operator Ag—A
with orthonormal basis of eigenfunctions {vy} C LZ(0f2) and eigenvalues {\;} C R
(sorted in decreasing order of absolute value). The Picard criterion yields that

®ylon € R(|Ag — A|'?)
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if and only if
1 = (P, o0, k) r2(00) |*
| Akl

fly) =

2
||q)y|8ﬂ||L2(aQ) k=1

Using a singular value decomposition of the discrete approximation M ¢ R256x256

M7y, = A, M* Gy, = A0, k=1,...,256,

with nonnegative {\;} C R (sorted in decreasing order) and orthonormal bases
{ag}, {0} C R*C we approximate the function f(y) by

£ ._m((i)y"&k)2 S e 2
fly) =Y ===/ (D W),
k=1 Akl k=1

where @, € R? contains the Fourier coefficients of ®,|asq and m is chosen so that A,
is the first singular value below the expected measurement error. For a theoretical study
of the connection between the infinite Picard series for the Neumann-to-Dirichlet map
Ao — A and the truncated Picard series for its finite-dimensional approximation M, we
refer the reader to a recent work of Lechleiter [3T].

To obtain a numerical criterion telling whether a point y belongs to the unknown
inclusion D or not, one has to decide if the infinite sum f(y) attains the value co by
using the approximate value f(y), which is always finite. Thus, a threshold Cy > 0 is
needed to distinguish points with large values f(y) > (' from those with small values
f(y) < Cs. A reconstruction of D is then obtained by evaluating f(y) on a grid of
points {y,} C Q and saying that all points with f(y,) < Cs belong to the inclusion.
Choosing different threshold values C, corresponds to choosing different level contours
of f(y) or, equivalently, of a monotone function of f(y).

In our numerical experiments, we plot the indicator function

Ind(y) = (108 f(v)) (32

on an equidistant grid {y,} C €2, which is chosen independently of the finite element
mesh that is used for solving the forward problems. We also show the largest level
contour that is still inside the true inclusion D, i.e., the one corresponding to the
threshold value

C. :=inf {C’oo eR ’ Ind ™ (]Cy, o0[) C D} )

In our numerical experiments we obtained Ca by comparing the level contours
to the true inclusion D. In practice, the choice of the threshold requires additional
information, e.g., from previous experiments, and there is no guarantee that an optimal
contour is found. To illustrate the sensitivity of our reconstructions with respect to the
threshold, we also plot the level contours Ind~!(C..) for Cy = 0.9-C. and C, = 1.1-C...

Figure [l shows the exact conductivities o for the three test examples. In the first
example, the inclusion D is a disk of radius R = 0.3 and the perturbation « is given
by exp(R™! — (R? — p?)~1/2), where p is the distance from the center of D. Notice that
this results in a smooth ¢ with maximal value 2. In the second example, the object €2 is
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1.8
1.6
1.4

1.2

Figure 1. Exact conductivities for the three test cases.

Figure 2. Numerical reconstructions for exact simulated data.

contaminated by two inhomogeneities that are constructed by multiplying the smooth
perturbation introduced in the first test by the characteristic function of a semidisk to
obtain inclusions with a jump of conductivity on one side and a smooth transition on
the other side. In the last test, we use the smooth inclusion of the first experiment
together with an inhomogeneity where the conductivity jumps by a constant value. The
boundaries of the inclusions, i.e. of the supports of the perturbations, are plotted by
dashed white line.

FigureBPlillustrates the reconstructions that we obtained using exact simulated data.
The first row shows the graph of the indicator function Ind, defined by (B2), for the
three tests and the second row shows the corresponding level curves for the threshold
Co (solid line), that is optimal in the sense explained above, and for the two perturbed
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thresholds 0.9-C'», (outer dotted line) and 1.1-C., (inner dotted line). The true inclusions
are once again marked with a dashed line. As Figure Pl demonstrates, all inclusions were
found in all three tests. Although the gradient of the indicator Ind is a little bit steeper
over the parts of the inclusion boundary where the perturbed conductivity jumps than
over those parts where the transition is smooth, the quality of the reconstructions does
not seem to depend very much on the behaviour of the perturbed conductivity at the
inclusion boundary.

Since one might be tempted to compare the first row of Figure [ directly with the
exact conductivities in Figure [I let us stress that the factorization method is designed
only to reconstruct the support of the unknown perturbation but not the perturbation
itself. The indicator function Ind attains much larger values inside the inclusion D
than on its outside; however, we have no theoretical evidence that these values can
be directly related to the actual perturbed conductivity. In fact, the second and the
third example suggest that the behaviour of Ind depends mainly on the distance to the
inclusion boundary 9D, cf. also the work of Arens [3] for theoretical results of such a
dependence in the context of inverse scattering.

In addition to using the unperturbed simulated measurement matrix M, we also
test the method after adding 0.1% noise to M. More precisely, we generate a random
matrix E € R?%%2% with uniformly distributed entries between —1 and 1. Then E is
scaled to the noise level with respect to its spectral norm | E||, and added to M, i.e.,
we replace M with

_ E
Me :M+1O BHMHQ W
2

Accordingly, only singular values larger than 1073 ||M,| are now used in the truncated
Picard series in the definition of f(y).

Figure B, which is organized in the same way as Figure Bl illustrates the
reconstructions corresponding to our three test cases with noisy simulated data. As
one might expect, the graphs of the indicator function Ind shown on the first row of
Figure Blare more blurred than the corresponding ones in the noiseless case. In addition,
the level curves of Ind, plotted on the second row, do not capture the shapes of the
inclusions very well and it seems that the quality of the obtained reconstructions is
rather sensitive to the choice of the threshold. Anyway, with this relatively low noise
level, the reconstructions still contain information on the size, location and number of the
inclusions. For more detailed studies on the effect of noise on the general performance
of the factorization method, we refer the reader to the works cited in our introduction.

All above examples confirm our theoretical result: The factorization method does
not rely on a jump in the conductivity but merely on the fact that the conductivity
at each point inside the inclusion is higher (or lower) than the conductivity of the
background medium.
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Figure 3. Numerical reconstructions for noisy data.

4. Conclusions

We have shown that in EIT the factorization method works even if the inclusions have
no boundary regularity and there is no sharp jump in the conductivity or in one of its
higher derivatives on the inclusion boundary. Numerical examples with simulated data
confirm our theoretical results.

Our analysis is based on a monotonicity argument which allows us to generalize
previously known results on the factorization method. Although we restricted our
attention to EIT, the same arguments hold when applying the factorization method
to other real elliptic inverse boundary value problems (cf. [I7]) like optical tomography
or elasticity measurements. We also expect that similar results can be obtained in
inverse obstacle scattering.
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