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Fa
torization method and irregular in
lusions in EIT 21. Introdu
tionLet us 
onsider the inverse boundary value problem 
orresponding to ele
tri
alimpedan
e tomography (EIT): Determine the 
ondu
tivity tensor σ(x) > 0 in the ellipti
equation
∇ · σ∇u = 0 in Ωwhen all possible pairs of Neumann and Diri
hlet boundary values of the ele
tromagneti
potential u are measured on ∂Ω. This problem was posed by Calderón in 1980 [14℄ andits unique solvability for isotropi
, i.e. s
alar, 
ondu
tivities of a wide 
lass was obtainedin three and higher spa
e dimensions by Sylvester and Uhlmann in 1987 [42℄ and in twodimensions by Na
hman in 1996 [34℄. Their regularity assumptions on the 
ondu
tivityand the boundary ∂Ω have been redu
ed by several authors sin
e [1, 8, 33, 36, 37℄.Re
ently, 
onsiderable progress was made as Astala and Päivärinta solved the isotropi
problem in two dimensions under the natural regularity σ ∈ L∞(Ω) [4℄. On the otherhand, it is well known that the inverse problem of EIT is not uniquely solvable withoutthe isotropy assumption (see, e.g., [40℄).The re
onstru
tion methods of EIT 
an be divided into two 
ategories: iterativeand dire
t algorithms. An iterative method produ
es a sequen
e of approximationsfor the unknown 
ondu
tivity. The iteration is �nished when some beforehand 
hosenstopping 
riterion is satis�ed. In most 
ases, the used optimization pro
edure is basedon the output least squares formulation of the inverse problem and on some regularizedNewton-type algorithm. The most fundamental of the dire
t re
onstru
tion algorithmsis the one by Siltanen, Mueller and Isaa
son [38℄ sin
e it is a numeri
al implementation ofNa
hman's 
onstru
tive uniqueness proof in two dimensions [34℄. Other dire
t methodsin
lude the layer stripping algorithm [39, 41℄, the fa
torization method [10, 11, 29℄and the probe method [28℄ together with their variants. For more details on there
onstru
tion algorithms, we refer to the review arti
les [6, 15℄ and the referen
estherein.Various pra
ti
ally important imaging problems 
onsider lo
ating inhomogeneitiesinside obje
ts with known ba
kground 
ondu
tivities. For example, dete
tion of 
ra
ksand air bubbles in some building material and distinguishing 
an
erous tissue fromhealthy ba
kground fall into this 
ategory of problems. The fa
torization method,introdu
ed within inverse obsta
le s
attering by Kirs
h [29℄ and modi�ed to theframework of EIT by Brühl and Hanke [9, 10, 11℄, provides a tool that 
an be appliedto these kinds of situations. When the fa
torization method is 
onsidered within EIT,its fun
tionality 
an be se
ured by assuming that the in
lusions are either more orless 
ondu
tive than the ba
kground and the 
ondu
tivity or one of its higher normalderivatives jumps on the boundaries of the in
lusions, 
f. [9, 10, 11, 17, 20, 25, 30℄, andthe preprint of Na
hman, Päivärinta and Teirilä [35℄. However, some inhomogeneitiesmay a�e
t di�erent normal derivatives on di�erent parts of their boundaries or theperturbed 
ondu
tivity 
an be altogether smooth, in whi
h 
ase earlier results do nottell if the fa
torization method works or not. In addition, previous works assume that



Fa
torization method and irregular in
lusions in EIT 3the in
lusion boundaries are at least Lips
hitz 
ontinuous.In this work, we merely assume that the union of the in
lusions is an open set with
onne
ted 
omplement and the 
orresponding L∞-perturbation of the 
ondu
tivity ispositive (or negative) semide�nite. We show that the fa
torization method �nds everypoint of the inhomogeneity that has an open neighbourhood where the perturbation isstri
tly positive (or negative). Noti
e that the size of the neighbourhood and the lowerbound for the 
ondu
tivity may depend on the 
onsidered point and we do not pose anyregularity on the in
lusion boundary. Inhomogeneities where every interior point hassu
h a neighbourhood are herein 
alled lo
ally stri
tly positive (or negative). This kindof irregular in
lusions 
an be 
hara
terized via boundary measurements in the mannerdes
ribed originally in [9℄, with the slight drawba
k that the out
ome of the range testis un
ertain if the probe lo
ation is exa
tly on the boundary of the inhomogeneity. Inparti
ular, note that we do not set any 
onditions on the behaviour of the perturbed
ondu
tivity at the in
lusion boundary.This text is organized as follows. In se
tion 2, we state and prove our
hara
terization result. Se
tion 3 presents the numeri
al experiments and se
tion 4
ontains 
on
luding remarks.2. Chara
terization of an irregular in
lusionLet Ω ⊂ R
n, n ≥ 2, be a smooth domain and σ : Ω → R

n×n the 
orrespondingsymmetri
 
ondu
tivity tensor. The stati
 forward problem of EIT is as follows: Forthe input 
urrent f ∈ L2
⋄
(∂Ω), �nd the ele
tromagneti
 potential u ∈ H1(Ω)/R that isthe weak solution of

∇ · σ∇u = 0 in Ω, ν · σ∇u = f on ∂Ω, (2.1)where ν is the exterior unit normal on ∂Ω and
L2
⋄
(∂Ω) =

{

v ∈ L2(∂Ω)
∣

∣

∣

∫

∂Ω

v dS = 0

}

.If the 
ondu
tivity σ ∈ L∞(Ω, Rn×n) satis�es the estimate
0 < cI ≤ σ, c ∈ R+, (2.2)the forward problem (2.1) has a unique solution that depends 
ontinuously on the input
urrent. Here and in the following, we use "<" in the sense of positive de�nitenessalmost everywhere in Ω.When solving the inverse problem of EIT, one tries to re
onstru
t the 
ondu
tivity

σ from the knowledge of the Neumann-to-Diri
hlet, or 
urrent-to-voltage, map
Λσ : f 7→ u|∂Ω, L2

⋄
(∂Ω) → L2(∂Ω)/R.The use of the quotient spa
es above emphasizes the freedom to 
hoose the ground levelof the potential as one wishes. For our purposes, it is 
onvenient to �x the ground levelso that the Diri
hlet boundary value of the solution to (2.1) is interpreted as an elementof L2

⋄
(∂Ω), whi
h 
orresponds to identifying L2

⋄
(∂Ω) with its dual spa
e L2(∂Ω)/R. Withthis 
onvention, Λσ is a linear, bounded and self-adjoint map from L2

⋄
(∂Ω) to itself.



Fa
torization method and irregular in
lusions in EIT 42.1. The main resultIn this work, we assume that the 
ondu
tivity inside Ω is of the form
σ =

{

I + κ in D,

I in Ω \ D,
(2.3)where D is open, D ⊂ Ω and Ω \ D is 
onne
ted. Furthermore, the symmetri
perturbation κ ∈ L∞(D, Rn×n) is assumed to be su
h that σ satis�es (2.2). Take notethat the results presented below would remain valid if the unit 
ondu
tivity in (2.3) wasrepla
ed by any other a priori known ba
kground 
ondu
tivity that satis�es (2.2) andenables unique 
ontinuation of Cau
hy data from ∂Ω to the interior of Ω. The same
omment applies to the smoothness of the boundary ∂Ω, as well. For example, in thepreprint [35℄ it is assumed that the ba
kground 
ondu
tivity and the boundary ∂Ω areof Lips
hitz 
lass.In what follows, we will denote the Neumann-to-Diri
hlet boundary map
orresponding to the perturbed 
ondu
tivity σ by Λ and the map 
orresponding tothe unit ba
kground 
ondu
tivity by Λ0. Our goal is to lo
ate the in
lusion Dvia boundary measurements, under only mild 
onditions on the perturbation κ, byextra
ting information from the range of the square root of |Λ0 − Λ| in a 
onstru
tivemanner. Noti
e that in real life |Λ0 − Λ| 
an be approximated through ele
trodemeasurements, 
f. [22℄ and the preprint [32℄. The te
hniques applied here stem from [29℄and they have been used in the framework of inverse ellipti
 boundary value problemsin [2, 5, 9, 10, 11, 12, 13, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30℄ and the preprints[19, 32, 35℄, as well.We �rst introdu
e a singular solution for s
anning the obje
t Ω. Fix y ∈ Ω, let

α̂ ∈ R
n be an arbitrary unit ve
tor, and 
onsider the solution Φy of the followinghomogeneous Neumann problem

∆Φ(x) = α̂ · ∇xδ(x − y) in Ω,
∂Φ

∂ν
= 0 on ∂Ω,where δ is the delta fun
tional and the ground level of the potential is 
hosen so that

∫

∂Ω
ΦydS = 0. Physi
ally, Φy 
orresponds to the ele
trostati
 potential 
reated by adipole sour
e at y pointing in the dire
tion α̂.We 
an now state our main result.Theorem 2.1. Assume that either κ ≥ 0 or κ ≤ 0. If y ∈ D has a neighbourhood

U ⊂ D su
h that ess inf |κ|U | > 0, then the boundary potential Φy|∂Ω belongs to therange of |Λ0 − Λ|1/2. Conversely, the boundary potential Φy|∂Ω is not in
luded in therange of |Λ0 − Λ|1/2 if y ∈ Ω \ D.In many appli
ations, the assumption of the �rst part of Theorem 2.1 is ful�lled forevery point in D. We say that the in
lusion D (or the perturbation κ) is lo
ally stri
tlypositive if for ea
h y ∈ D there exist s
alar 
onstants ǫy, ry > 0 su
h that
κ > ǫyI almost everywhere in B(y, ry) ⊂ D, (2.4)



Fa
torization method and irregular in
lusions in EIT 5where B(y, ry) denotes the open ball of radius ry 
entered at y. Similarly, the in
lusion
D is 
alled lo
ally stri
tly negative if κ satis�es (2.4) with κ > ǫyI repla
ed by κ < −ǫyI.Noti
e that a lo
ally stri
tly positive (or lo
ally stri
tly negative) perturbation may havevanishing tra
es on ∂D or on some subsets of ∂D. In parti
ular, the resulting perturbed
ondu
tivity σ may be smooth in a neighbourhood of ∂D.Corollary 2.2. Assume that the inhomogeneity D is either lo
ally stri
tly positive orlo
ally stri
tly negative. If y ∈ D, the boundary potential Φy|∂Ω belongs to the range of
|Λ0 − Λ|1/2. Conversely, the boundary potential Φy|∂Ω is not in
luded in the range of
|Λ0 − Λ|1/2 if y ∈ Ω \ D.Unlike the results presented in [11, 17, 25, 30℄ and the preprint [35℄, this 
orollarydoes not tell that Φy|∂Ω /∈ |Λ0 − Λ|1/2 when y ∈ ∂D. However, from the pra
ti
al pointof view, our expli
it 
hara
terization is as good as the ones presented in earlier work.On the positive side, our assumptions on the in
lusion D and the perturbation κare mu
h weaker than in previous arti
les on the fa
torization method within di�usetomography. Thus far, the weakest regularity assumption on the in
lusion boundaryhas been used in the preprint [35℄, where D is Lips
hitz, but only perfe
tly 
ondu
tinginhomogeneities are 
onsidered. The theoreti
al arti
les dealing with penetrablein
lusions have been based on the assumption that D has at least C2-boundary (
f.,e.g., [30℄), although in [10℄ it is noted that the method also works with Lips
hitzinhomogeneities. In this work, D is just open. Moreover, the only arti
le that hasso far ta
kled perturbations that are not uniformly stri
tly positive (or negative) in D,namely [25℄, assumes that ∂D and κ > 0 are smooth and all 
ondu
tivities are isotropi
.Furthermore, in [25℄ the way that κ is allowed to behave on ∂D is quite spe
i�
: Forsome m ≥ 1, the 
ondu
tivity and its m−1 lowest normal derivatives are assumed to be
ontinuous over the in
lusion boundary whereas the mth normal derivative is assumedto jump everywhere on ∂D. In this work, di�erent normal derivatives of the 
ondu
tivitymay jump on di�erent parts of ∂D or the 
ondu
tivity 
an be altogether smooth as the
L∞-perturbation κ is only assumed to be lo
ally stri
tly positive (or negative).2.2. Proof of the main resultApart from some 
onsiderations in the original arti
le by Brühl [11℄, the 
hara
terizationresults obtained through the fa
torization te
hnique within di�use tomography methodshave been based on a fa
torization of the type (see, e.g., [17℄)

Λ0 − Λ = LFL∗,where the last operator L depends on the shape of D, not on the properties inside
D. By showing that the intermediate operator F is an 'almost 
oer
ive' (
f. [30℄)isomorphism between suitable dual Sobolev spa
es, one has been able to prove that therange of |Λ0 − Λ|1/2 
oin
ides with the range of L (
f. [17, 25, 30℄). Finally, the a
tual
hara
terization results have followed from the spe
ial stru
ture of L together with theprin
iple of unique 
ontinuation.



Fa
torization method and irregular in
lusions in EIT 6In this work, we take a di�erent approa
h. The idea is to extend the already known
hara
terization results to more irregular surroundings by using 
ertain monotoni
ityproperties of the range of |Λ0 − Λ|1/2. It should be noted that similar arguments wereused already in [9, 11℄. We begin with a simple well known lemma. Physi
ally speaking,it states that the power needed when applying a boundary 
urrent pattern is de
reasingwith respe
t to the 
ondu
tivity.Lemma 2.3. Let Λ1 and Λ2 be the Neumann-to-Diri
hlet maps 
orresponding to thesymmetri
 
ondu
tivities σ1, σ2 ∈ L∞(Ω, Rn×n), respe
tively. Assume that σ1 and σ2satisfy (2.2) and σ1 ≤ σ2. Then it holds that
〈f, (Λ1 − Λ2)f〉L2(∂Ω) ≥ 0for any 
urrent f ∈ L2

⋄
(∂Ω).Proof. The proof for isotropi
 
ondu
tivities 
an be found, for example, in [11℄. Thegeneralization to the anisotropi
 
ase follows by using a similar line of reasoning.We note that Lemma 2.3 yields, in parti
ular, that the absolute value of thedi�eren
e of the Neumann-to-Diri
hlet maps in Theorem 2.1 is simply the di�eren
eitself (for κ ≥ 0) or minus the di�eren
e (for κ ≤ 0).Next we will transform the above monotoni
ity result into a form that 
onsidersranges of square roots. A similar 
onsideration 
an be found in [11℄. Noti
e that allsquare root operators below are obtained by treating the original maps as positive andself-adjoint operators from L2

⋄
(∂Ω) to itself and taking the unique positive and self-adjoint square root.Lemma 2.4. Assume that σ1 ≤ σ2 are as in Lemma 2.3 and let σ0 ∈ L∞(Ω, Rn×n) beyet another symmetri
 
ondu
tivity that satis�es (2.2). If σ0 ≤ σ1,

R
{

(Λ0 − Λ1)
1/2

}

⊆ R
{

(Λ0 − Λ2)
1/2

}

.Conversely, if σ2 ≤ σ0, it holds that
R

{

(Λ2 − Λ0)
1/2

}

⊆ R
{

(Λ1 − Λ0)
1/2

}

.Proof. A fun
tional analyti
 lemma that is frequently used for the fa
torization methodis that for any 
ontinuous linear operator A : H1 → H2, between Hilbert spa
es H1 and
H2,

y ∈ R(A) if and only if ∃C > 0 : 〈y, x〉H2
≤ C ‖A∗x‖H1

∀x ∈ H2.In a Bana
h spa
e formulation, this is 
alled the "14th important property of Bana
hspa
es" in [7℄, 
f. e. g. [16, Lemma 3.4℄ for an elementary proof. An immediate
onsequen
e is that for self-adjoint operators A, B : H1 → H1 the existen
e of a 
onstant
C > 0 that satis�es

‖Ax‖ ≤ C ‖Bx‖ , for all x ∈ H1,implies that R(A) ⊆ R(B).



Fa
torization method and irregular in
lusions in EIT 7Let σ0 ≤ σ1 ≤ σ2. From Lemma 2.3 we know that for all f ∈ L2
⋄
(∂Ω)

〈f, (Λ0 − Λ1)f〉L2(∂Ω) = 〈f, (Λ0 − Λ2)f〉L2(∂Ω) − 〈f, (Λ1 − Λ2)f〉L2(∂Ω)

≤ 〈f, (Λ0 − Λ2)f〉L2(∂Ω) ,meaning that ∥

∥(Λ0 − Λ1)
1/2f

∥

∥ ≤
∥

∥(Λ0 − Λ2)
1/2f

∥

∥ and, thus,
R

{

(Λ0 − Λ1)
1/2

}

⊆ R
{

(Λ0 − Λ2)
1/2

}

.Sin
e the se
ond part of the assertion follows from the same line of reasoning, theproof is 
omplete.Before we 
an formulate the proof of Theorem 2.1, we still need a 
hara
terizationresult that 
an be extended using lemma 2.4. We 
hoose a simpli�ed version of theoriginal theorem presented in [11℄.Lemma 2.5. Suppose that the 
onditions and notations of Theorem 2.1 are valid. Inaddition, assume that D is 
onne
ted and has a smooth boundary, and the 
orrespondingperturbation is given as κ = δI, where δ 6= 0 is a 
onstant. Then Φy|∂Ω belongs to therange of |Λ0 − Λ|1/2 if and only if y ∈ D.By 
ombining the three lemmas above, we are now ready to present the proof ofTheorem 2.1.Proof of Theorem 2.1. To begin with, assume that κ ≥ 0. If y ∈ D has a neighbourhood
U ⊂ D su
h that ess inf |κ|U | > 0, there exist s
alars ǫy, ry > 0 su
h that κ > ǫyI almosteverywhere in B(y, ry) ⊂ U . We de�ne an auxiliary 
ondu
tivity tensor by

σy =

{

I + ǫyI in B(y, ry),

I in Ω \ B(y, ry),and denote the asso
iated Neumann-to-Diri
hlet map by Λy. Due to Lemma 2.5, we seestraight away that Φy|∂Ω ∈ R{(Λ0 −Λy)
1/2}. Furthermore, sin
e σy < σ, it follows fromthe �rst part of Lemma 2.4 that also

Φy|∂Ω ∈ R
{

(Λ0 − Λ)1/2
}

= R
{

|Λ0 − Λ|1/2
}

,whi
h proves the �rst part of the 
laim.Continue assuming that κ ≥ 0 and let now y ∈ Ω \ D. Sin
e Ω \ D is open and
onne
ted, there exists a 
onne
ted open set Dy su
h that y /∈ Dy, D ⊂ Dy, Ω \ Dy is
onne
ted and the boundary ∂Dy is smooth. We rede�ne the auxiliary 
ondu
tivity by
σy =

{

I + kI in Dy,

I in Ω \ Dy,where the s
alar 
onstant k > 0 is 
hosen so that σy > σ almost everywhere in Ω. Nowthe �rst part of Lemma 2.4 and Lemma 2.5 tell us that
Φy|∂Ω /∈ R

{

(Λ0 − Λy)
1/2

}

⊇ R
{

(Λ0 − Λ)1/2
}

= R
{

|Λ0 − Λ|1/2
}

,where Λy is on
e again the Neumann-to-Diri
hlet map 
orresponding to σy. This provesthe 
laim for κ ≥ 0.
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torization method and irregular in
lusions in EIT 8The 
ase that κ ≤ 0 
an be handled in the same way, with the ex
eption that thistime one uses the se
ond part of Lemma 2.4 instead of the �rst part. This 
ompletesthe proof. �3. Numeri
al experimentsTo verify our theoreti
al �ndings, we 
onsider three test examples that are not 
overed byprevious works on the fa
torization method. In all three 
ases, Ω is the two-dimensionalunit disk and on ∂Ω we apply the L2-orthonormal basis fun
tions
{

1√
π

sin(nφ),
1√
π

cos(nφ)
∣

∣

∣
n = 1, . . . , 128

}as input 
urrents. Here and in the following, the pair (r, φ) denotes the polar 
oordinateswith respe
t to the 
enter of Ω. We denote the potentials 
orresponding to the perturbed
ondu
tivity (2.3) and the unit ba
kground 
ondu
tivity by u and u0, respe
tively,and use the 
ommer
ial �nite element software Comsol to 
ompute the di�eren
e
v := u0 − u ∈ H1(Ω)/R by solving the variational problem

∫

Ω

σ∇v · ∇w dx =

∫

D

κ∇u0 · ∇w dx for all w ∈ H1(Ω), (3.1)whi
h is obtained by subtra
ting the variational equations for u and u0. Sin
e (σ − I)vanishes in a neighbourhood of ∂Ω, (3.1) is equivalent to
∇ · σ∇v = ∇ · (σ − I)∇u0with homogeneous Neumann boundary 
ondition on ∂Ω. On the right hand side we usethe exa
t solution
u0 =

1

n
√

π
sin(nφ)rn, resp., u0 =

1

n
√

π
cos(nφ)rn.As the di�eren
e of u and u0 is 
onsiderably smaller than u and u0, this approa
hleads to a higher pre
ision than 
omputing u and u0 separately. The boundary data

v|∂Ω = (u0 − u)|∂Ω is then expanded in the aforementioned trigonometri
 basis, whi
hgives a dis
rete approximation M ∈ R
256×256 of the operator Λ0 − Λ.Re
all that Corollary 2.2 yields a binary 
riterion to de
ide whether a point liesinside the in
lusion D or not, i.e., for every y 6∈ ∂D

Φy|∂Ω ∈ R(|Λ0 − Λ|1/2) ⇐⇒ y ∈ D.For the numeri
al implementation of this range test, we follow [18℄. Let
(Λ0 − Λ)vk = λkvk, k ∈ N,be the spe
tral de
omposition of the 
ompa
t, self-adjoint, and inje
tive operator Λ0−Λwith orthonormal basis of eigenfun
tions {vk} ⊂ L2

⋄
(∂Ω) and eigenvalues {λk} ⊂ R(sorted in de
reasing order of absolute value). The Pi
ard 
riterion yields that

Φy|∂Ω ∈ R(|Λ0 − Λ|1/2)
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lusions in EIT 9if and only if
f(y) :=

1

‖Φy|∂Ω‖2
L2(∂Ω)

∞
∑

k=1

|〈Φy|∂Ω, vk〉L2(∂Ω)|2
|λk|

< ∞.Using a singular value de
omposition of the dis
rete approximation M ∈ R
256×256

Mṽk = λ̃kũk, M∗ũk = λ̃kṽk, k = 1, . . . , 256,with nonnegative {λ̃k} ⊂ R (sorted in de
reasing order) and orthonormal bases
{ũk}, {ṽk} ⊂ R

256, we approximate the fun
tion f(y) by
f̃(y) :=

m
∑

k=1

(Φ̃y · ṽk)
2

|λ̃k|
/

m
∑

k=1

(Φ̃y · ṽk)
2,where Φ̃y ∈ R

256 
ontains the Fourier 
oe�
ients of Φy|∂Ω and m is 
hosen so that λ̃m+1is the �rst singular value below the expe
ted measurement error. For a theoreti
al studyof the 
onne
tion between the in�nite Pi
ard series for the Neumann-to-Diri
hlet map
Λ0 − Λ and the trun
ated Pi
ard series for its �nite-dimensional approximation M , werefer the reader to a re
ent work of Le
hleiter [31℄.To obtain a numeri
al 
riterion telling whether a point y belongs to the unknownin
lusion D or not, one has to de
ide if the in�nite sum f(y) attains the value ∞ byusing the approximate value f̃(y), whi
h is always �nite. Thus, a threshold C̃∞ > 0 isneeded to distinguish points with large values f̃(y) ≥ C̃∞ from those with small values
f̃(y) < C̃∞. A re
onstru
tion of D is then obtained by evaluating f̃(y) on a grid ofpoints {yn} ⊂ Ω and saying that all points with f̃(yn) < C̃∞ belong to the in
lusion.Choosing di�erent threshold values C̃∞ 
orresponds to 
hoosing di�erent level 
ontoursof f̃(y) or, equivalently, of a monotone fun
tion of f̃(y).In our numeri
al experiments, we plot the indi
ator fun
tion

Ind(y) :=
(

log f̃(y)
)

−1 (3.2)on an equidistant grid {yn} ⊂ Ω, whi
h is 
hosen independently of the �nite elementmesh that is used for solving the forward problems. We also show the largest level
ontour that is still inside the true in
lusion D, i.e., the one 
orresponding to thethreshold valuê
C∞ := inf

{

C∞ ∈ R

∣

∣

∣
Ind−1(]C∞,∞[) ⊆ D

}

.In our numeri
al experiments we obtained Ĉ∞ by 
omparing the level 
ontoursto the true in
lusion D. In pra
ti
e, the 
hoi
e of the threshold requires additionalinformation, e.g., from previous experiments, and there is no guarantee that an optimal
ontour is found. To illustrate the sensitivity of our re
onstru
tions with respe
t to thethreshold, we also plot the level 
ontours Ind−1(C∞) for C∞ = 0.9·Ĉ∞ and C∞ = 1.1·Ĉ∞.Figure 1 shows the exa
t 
ondu
tivities σ for the three test examples. In the �rstexample, the in
lusion D is a disk of radius R = 0.3 and the perturbation κ is givenby exp(R−1 − (R2 − ρ2)−1/2), where ρ is the distan
e from the 
enter of D. Noti
e thatthis results in a smooth σ with maximal value 2. In the se
ond example, the obje
t Ω is
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Figure 1. Exa
t 
ondu
tivities for the three test 
ases.

Figure 2. Numeri
al re
onstru
tions for exa
t simulated data.
ontaminated by two inhomogeneities that are 
onstru
ted by multiplying the smoothperturbation introdu
ed in the �rst test by the 
hara
teristi
 fun
tion of a semidisk toobtain in
lusions with a jump of 
ondu
tivity on one side and a smooth transition onthe other side. In the last test, we use the smooth in
lusion of the �rst experimenttogether with an inhomogeneity where the 
ondu
tivity jumps by a 
onstant value. Theboundaries of the in
lusions, i.e. of the supports of the perturbations, are plotted bydashed white line.Figure 2 illustrates the re
onstru
tions that we obtained using exa
t simulated data.The �rst row shows the graph of the indi
ator fun
tion Ind, de�ned by (3.2), for thethree tests and the se
ond row shows the 
orresponding level 
urves for the threshold
Ĉ∞ (solid line), that is optimal in the sense explained above, and for the two perturbed
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lusionsare on
e again marked with a dashed line. As Figure 2 demonstrates, all in
lusions werefound in all three tests. Although the gradient of the indi
ator Ind is a little bit steeperover the parts of the in
lusion boundary where the perturbed 
ondu
tivity jumps thanover those parts where the transition is smooth, the quality of the re
onstru
tions doesnot seem to depend very mu
h on the behaviour of the perturbed 
ondu
tivity at thein
lusion boundary.Sin
e one might be tempted to 
ompare the �rst row of Figure 2 dire
tly with theexa
t 
ondu
tivities in Figure 1, let us stress that the fa
torization method is designedonly to re
onstru
t the support of the unknown perturbation but not the perturbationitself. The indi
ator fun
tion Ind attains mu
h larger values inside the in
lusion Dthan on its outside; however, we have no theoreti
al eviden
e that these values 
anbe dire
tly related to the a
tual perturbed 
ondu
tivity. In fa
t, the se
ond and thethird example suggest that the behaviour of Ind depends mainly on the distan
e to thein
lusion boundary ∂D, 
f. also the work of Arens [3℄ for theoreti
al results of su
h adependen
e in the 
ontext of inverse s
attering.In addition to using the unperturbed simulated measurement matrix M , we alsotest the method after adding 0.1% noise to M . More pre
isely, we generate a randommatrix E ∈ R
256×256 with uniformly distributed entries between −1 and 1. Then E iss
aled to the noise level with respe
t to its spe
tral norm ‖E‖2 and added to M , i.e.,we repla
e M with
Mǫ := M + 10−3 ‖M‖2

E

‖E‖2

.A

ordingly, only singular values larger than 10−3 ‖Mǫ‖ are now used in the trun
atedPi
ard series in the de�nition of f̃(y).Figure 3, whi
h is organized in the same way as Figure 2, illustrates there
onstru
tions 
orresponding to our three test 
ases with noisy simulated data. Asone might expe
t, the graphs of the indi
ator fun
tion Ind shown on the �rst row ofFigure 3 are more blurred than the 
orresponding ones in the noiseless 
ase. In addition,the level 
urves of Ind, plotted on the se
ond row, do not 
apture the shapes of thein
lusions very well and it seems that the quality of the obtained re
onstru
tions israther sensitive to the 
hoi
e of the threshold. Anyway, with this relatively low noiselevel, the re
onstru
tions still 
ontain information on the size, lo
ation and number of thein
lusions. For more detailed studies on the e�e
t of noise on the general performan
eof the fa
torization method, we refer the reader to the works 
ited in our introdu
tion.All above examples 
on�rm our theoreti
al result: The fa
torization method doesnot rely on a jump in the 
ondu
tivity but merely on the fa
t that the 
ondu
tivityat ea
h point inside the in
lusion is higher (or lower) than the 
ondu
tivity of theba
kground medium.
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Figure 3. Numeri
al re
onstru
tions for noisy data.4. Con
lusionsWe have shown that in EIT the fa
torization method works even if the in
lusions haveno boundary regularity and there is no sharp jump in the 
ondu
tivity or in one of itshigher derivatives on the in
lusion boundary. Numeri
al examples with simulated data
on�rm our theoreti
al results.Our analysis is based on a monotoni
ity argument whi
h allows us to generalizepreviously known results on the fa
torization method. Although we restri
ted ourattention to EIT, the same arguments hold when applying the fa
torization methodto other real ellipti
 inverse boundary value problems (
f. [17℄) like opti
al tomographyor elasti
ity measurements. We also expe
t that similar results 
an be obtained ininverse obsta
le s
attering.A
knowledgmentsThis work was motivated by the Oberwolfa
h workshop on "Inverse Problems in WaveS
attering" in Mar
h 2007. We would like to thank the workshop organizers MartinHanke-Bourgeois, Andreas Kirs
h and William Rundell, as well as the Oberwolfa
h
rew, for inviting us to this wonderful pla
e, resp., maintaining it.The work of the se
ond author was supported by the A
ademy of Finland (proje
t115013).



Fa
torization method and irregular in
lusions in EIT 13Referen
es[1℄ Alessandrini G 1990 Singular solutions of ellipti
 equations and the determination of 
ondu
tivityby boundary measurements J. Di�erential Equations 84 252�72[2℄ Ammari H, Griesmaier R and Hanke M 2007 Identi�
ation of small inhomogeneities: asymptoti
fa
torization Math. Comp. 76 1425�48[3℄ Arens T 2004 Why linear sampling works Inverse Problems 20 163�73[4℄ Astala K and Päivärinta L 2006 Calderón's inverse 
ondu
tivity problem in the plane Ann. ofMath. 163 265�99[5℄ Bal G 2005 Re
onstru
tions in impedan
e and opti
al tomography with singular interfa
es InverseProblems 21 113�31[6℄ Bor
ea L 2002 Ele
tri
al impedan
e tomography Inverse Problems 18 R99�R136[7℄ Bourbaki N 2003 Topologi
al Ve
tor Spa
es, Chapters 1�5, Elem. Math. (Berlin:Springer-Verlag)[8℄ Brown R M and Uhlmann G 1997 Uniqueness in the inverse 
ondu
tivity problem for non-smooth
ondu
tivities in two dimensions Comm. Partial Di�erential Equations 22 1009�27[9℄ Brühl M 1999 Gebietserkennung in der elektris
hen Impedanztomographie DissertationUniversität Karlsruhe[10℄ Brühl M and Hanke M 2000 Numeri
al implementation of two noniterative methods for lo
atingin
lusions by impedan
e tomography Inverse Problems 16 1029�42[11℄ Brühl M 2001 Expli
it 
hara
terization of in
lusions in ele
tri
al impedan
e tomography SIAMJ. Math. Anal. 32 1327�41[12℄ Brühl M, Hanke M and Pid
o
k M 2001 Cra
k dete
tion using ele
trostati
 measurements Math.Model. Numer. Anal. 35 595�605[13℄ Brühl M, Hanke M and Vogelius M S 2003 A dire
t impedan
e tomography algorithm for lo
atingsmall inhomogeneities Numer. Math. 93 635�654[14℄ Calderón A P 1980 On an inverse boundary value problem Seminar on Numeri
al Analysis andits Appli
ation to Continuum Physi
s ed W H Meyer and M A Raupp (Rio de Janeiro: Brasil.Math. So
.) pp 65�73[15℄ Cheney M, Isaa
son D and Newell J C 1999 Ele
tri
al impedan
e tomography SIAM Review 4185�101[16℄ Frühauf F, Gebauer B and S
herzer O 2007 Dete
ting interfa
es in a paraboli
-ellipti
 problemfrom surfa
e measurements SIAM J. Numer. Anal. 45 810�36[17℄ Gebauer B 2006 The fa
torization method for real ellipti
 problems Z. Anal. Anwend. 25 81�102[18℄ Gebauer B, Hanke M, Kirs
h A, Muniz W and S
hneider C 2005 A sampling method for dete
tingburied obje
ts using ele
tromagneti
 s
attering Inverse Problems 21 2035�2050.[19℄ Griesmaier R 2007 An asymptoti
 fa
torization method for dete
ting small ob-je
ts using ele
tromagneti
 s
attering submitted preprint available online athttp://numerik.mathematik.uni-mainz.de/ griesmaier/publi
ations/asymptfa
t.pdf[20℄ Hanke M and Brühl M 2003 Re
ent progress in ele
tri
al impedan
e tomography Inverse Problems19 S65�S90.[21℄ Hanke M and S
happel B 2007 The fa
torization method for ele
tri
al impedan
e tomography inthe half spa
e a

epted to SIAM J. Appl. Math.[22℄ Hyvönen N 2004 Complete ele
trode model of ele
tri
al impedan
e tomography: Approximationproperties and 
hara
terization of in
lusions SIAM J. Appl. Math. 64 902�31[23℄ Hyvönen N 2004 Chara
terizing in
lusions in opti
al tomography Inverse Problems 20 737�51[24℄ Hyvönen N 2005 Appli
ation of a weaker formulation of the fa
torization method to the
hara
terization of absorbing in
lusions in opti
al tomography Inverse Problems 21 1331�43[25℄ Hyvönen N 2007 Appli
ation of the fa
torization method to the 
hara
terization of weak in
lusionsin ele
tri
al impedan
e tomography Adv. in Appl. Math. 39 197�221[26℄ Hyvönen N 2007 Lo
ating transparent regions in opti
al absorption and s
attering tomographySIAM J. Appl. Math. 67 1101�1123

http://numerik.mathematik.uni-mainz.de/~griesmaier/publications/asymptfact.pdf


Fa
torization method and irregular in
lusions in EIT 14[27℄ Hyvönen N, Hakula H and Pursiainen S 2007 Numeri
al implementation of the fa
torizationmethod within the 
omplete ele
trode model of ele
tri
al impedan
e tomography Inverse Probl.Imaging 1 299�317[28℄ Ikehata M 2005 A new formulation of the probe method and related problems Inverse Problems21 413-26[29℄ Kirs
h A 1998 Chara
terization of the shape of a s
attering obsta
le using the spe
tral data ofthe far �eld operator Inverse Problems 14 1489�512[30℄ Kirs
h A 2005 The fa
torization method for a 
lass of inverse ellipti
 problems Math. Na
hr. 278258-77[31℄ Le
hleiter A 2006 A regularization te
hnique for the fa
torization method Inverse Problems 221605�25[32℄ Le
hleiter A, Hyvönen N and Hakula H 2007 The fa
torization method applied to the
omplete ele
trode model of impedan
e tomography submitted preprint available online athttp://users.tkk.fi/u/nhyvonen/Papers/approximationCEM.pdf[33℄ Na
hman A I 1988 Re
onstru
tions from boundary measurements Ann. of Math. 128 531�76[34℄ Na
hman A I 1996 Global uniqueness for a two-dimensional inverse boundary value problem Ann.of Math. 143 71�96[35℄ Na
hman A I, Päivärinta L and Teirilä A 2007 On imaging obsta-
les inside inhomogeneous media submitted preprint available online athttp://www.rni.helsinki.fi/ ljp/files/NaPaTe2006.pdf[36℄ Na
hman A I, Sylvester J and Uhlmann G 1988 An n-dimensional Borg-Levinson theorem Comm.Math. Phys. 115 595�605[37℄ Päivärinta L, Pan
henko A and Uhlmann G 2003 Complex geometri
al opti
s solutions forLips
hitz 
ondu
tivities Rev. Mat. Iberoameri
ana 19 57�72[38℄ Siltanen S, Mueller J and Isaa
son D 2000 An implementation of the re
onstru
tion algorithm ofA Na
hman for the 2d inverse 
ondu
tivity problem Inverse Problems 16 681�99[39℄ Somersalo E, Cheney M, Isaa
son D and Isaa
son E 1991 Layer stripping: a dire
t numeri
almethod for impedan
e imaging Inverse Problems 7 899�926[40℄ Sylvester J 1990 An anisotropi
 inverse boundary value problem Comm. Pure and Appl. Math.43 201�32[41℄ Sylvester J 1992 A 
onvergent layer stripping algorithm for the radially symmetri
 impedan
etomography problem Comm. Partial Di�erential Equations 17 1955�94[42℄ Sylvester J and Uhlmann G 1987 A global uniqueness theorem for an inverse boundary valueproblem Ann. of Math. 125 153�69

http://users.tkk.fi/u/nhyvonen/Papers/approximationCEM.pdf
http://www.rni.helsinki.fi/~ljp/files/NaPaTe2006.pdf

	Introduction
	Characterization of an irregular inclusion
	The main result
	Proof of the main result

	Numerical experiments
	Conclusions

