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Abstract. Transient excitation currents generate electromagnetic fields which in

turn induce electric currents in proximal conductors. For slowly varying fields, this

can be described by the eddy current equations, which are obtained by neglecting the

dielectric displacement currents in Maxwell’s equations. The eddy current equations

are of parabolic-elliptic type: In insulating regions, the field instantaneously adapts

to the excitation (elliptic behavior), while in conducting regions, this adaptation takes

some time due to the induced eddy currents (parabolic behavior).

The subject of this work is to locate the conductor(s) surrounded by a non-

conducting medium from electromagnetic measurements, i.e., from knowledge of the

excitation currents and measurements of the corresponding electromagnetic fields. We

show, that the conductors are uniquely determined by the measurements, and give an

explicit criterion to decide whether a given point is inside or outside the conducting

domain. This criterion serves as a base for rigorously justified non-iterative numerical

reconstruction strategies.
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1. Introduction

Transient excitation currents J(x, t) through excitation coils generate electromagnetic

fields E(x, t) and H(x, t). These fields induce electric currents inside proximal

conductors which in turn affect the fields. The resulting fields can be measured by

sensing coils. The aim in several practical applications is to obtain information about

the electromagnetic properties from such measurements.

The electromagnetic fields can be described by Maxwell’s equations

curlH = ε∂tE + σE + J,

curlE = −µ∂tH,

where the curl-operator acts on the three spatial coordinates, ∂t denotes the time-

derivative, and (under the assumption of linear and isotropic time-independent material

laws) σ(x), ε(x) and µ(x) are the conductivity, permittivity and permeability of the

considered domain. For slowly varying fields, the displacement currents ε∂E
∂t

can be

neglected. Then, elimination of H leads to the transient eddy current equation

∂t(σE) + curl

(
1

µ
curlE

)
= I (1)

with the source term I := −∂tJ . A rigorous mathematical justification for the eddy

current model has been derived by Alonso [2], Pepperl [29] and Ammari, Buffa and

Nédélec [3] for the (low-frequency) time-harmonic case. This also justifies the transient

model when the excitation is composed of low-frequency components; cf. [3, Section 8].

Inferring information about the electromagnetic properties from knowledge of the

excitation currents and the corresponding measured fields corresponds to the inverse

problem of reconstructing the coefficients σ and µ in (1) from knowledge of the

excitations I and a part of the solutions E of (1).

Various applications of inverse eddy current problems have been studied in the

engineering literature. Reconstruction of electromagnetic properties in time harmonic

problems is the subject of magnetic induction tomography (MIT) which is used for

medical and industrial imaging (see for example [22, 30] and the references therein).

An overview about non-destructive evaluation is given in [9], see also [27, 32]. Inverse

problems in transient eddy current problems are considered, for instance, in [19, 13].

In the mathematical literature, a more detailed analysis on inverse time harmonic eddy

current problems is provided, for instance, in [4, 33, 31].

In this paper the main focus is on locating the conductors surrounded by a non-

conducting medium. Mathematically this corresponds to detecting the support of the

conductivity coefficient σ in (1). The measurements are modeled in the following way (cf.

[20, 21]): Transient excitation currents through an idealized measurement instrument

given by a two-dimensional sheet S (representing infinitely many infinitesimal excitation

coils and measurement coils) are used to generate the fields. Then, the induced voltages

in the sensing coils are detected on S, again. Mathematically, this is encoded in a
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measurement operator Λ, that maps I (the negative time-derivative of the transient

excitation current J) on the electric field E, the solution of (1), restricted to S:

Λ : I 7→ E|S.

A proper definition of Λ is given in section 4.

The aim of this work is to show, that the conducting domains are uniquely

determined by Λ. Moreover, we propose a strategy for the reconstruction of the shape

of the conductor. To this end we consider (1) on both, conducting regions (σ(x) > 0)

and non-conducting regions (σ(x) = 0). The consequence is that equation (1) is of

parabolic-elliptic type. Several well-posed variational formulations have been proposed

for the transient eddy current equation, cf., e.g., [10, 28, 1, 26], but these approaches

concentrate on solving the equation with a fixed conducting region. Accordingly, the

variational formulations, with their underlying solution spaces, depend on the support of

the conductivity. Our main tool to treat the inverse problem is a variational formulation

for (1) derived by the authors in [8], that is unified with respect to σ.

A well-established method for shape reconstruction in several inverse problems is

the factorization method invented by Kirsch [24]. Here, an explicit criterion is developed,

which determines whether a given point is inside or outside the domain of interest. In

[25], Kirsch applies this method to an inverse problem involving the time harmonic

Maxwell system. In the context of land mine detection, the magnetostatic limit of

Maxwell’s equations is treated in [21]. Results on a scalar parabolic-elliptic problem

can be found in [18]. Another approach are linear sampling methods, originated by

Colton and Kirsch in [14]. Like the factorization method, a sufficient (but not necessary)

condition on a point to be inside the domain of interest is produced.

In this paper we apply the linear sampling method for shape detection in transient

eddy current problems. Beyond that, considering diamagnetic materials, we show that

the conducting domain is uniquely determined by the measurement operator and state

an explicit criterion to determine whether a given point is inside or outside the domain.

Finally we show that this criterion is equivalent to the one used in the factorization

method.

This paper is organized as follows. In section 2 we introduce the necessary notations

and assumptions. Section 3 summarizes our variational solution theory from [8] for

the direct problem. The setting for the inverse problem and the definition of the

measurement operator is provided in section 4. In section 5, we show that the linear

sampling method can be applied to detect a subset of the conducting domain. Our

main result is presented in section 6: In case of diamagnetic materials, the conductor is

uniquely determined by the measurement operator. We present an explicit criterion for

detecting the conducting domain and show its equivalence to the factorization method.

Finally, section 7 contains the proof of our main result. A conclusion can be found in

section 8.
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2. Notations and assumptions

Let Ω ⊂ R3 denote the conductor, i.e., let the closure of Ω be the support of the

conductivity σ ∈ L∞(R3). We assume, that

∃ s ∈ N : Ω = ∪si=1Ωi, where Ωi, i = 1, . . . , s, are smoothly bounded

domains such that Ωi ∩ Ωj = ∅, i 6= j, and R3 \ Ω is connected,

and that σ|Ω ∈ L∞+ (Ω), where we denote by L∞+ (Ω) the space of L∞(Ω)-functions with

positive (essential) infima. Let Γ denote the union of the boundaries of Ωi and ν the

outer unit normal on Γ. The permeability µ ∈ L∞+ (R3) is assumed to be constant outside

of Ω, for simplicity we assume

µ|R3\Ω ≡ 1.

Let T > 0. D(R3), respectively, D(R3×]0, T [) denotes the space of C∞-functions

which are compactly supported in R3, respectively, R3×]0, T [. We will also use the

notation D(R3 × [0, T [) for the space of restrictions of functions from D(R3×]−∞, T [)

to R3×]0, T [ and analogously for any closed subset of R3. D′(R3) denotes the space

of distributions, i.e., continuous linear mappings from D(R3) to R. D′(R3×]0, T [)3 is

defined likewise. We will also use the spaces

L2
ρ(R3) := {E ∈ D′(R3) | (1 + |x|2)−

1
2E ∈ L2(R3)},

W (curl,R3) := {E ∈ L2
ρ(R3)3 | curlE ∈ L2(R3)3},

W 1(R3) := {E ∈ L2
ρ(R3) | ∇E ∈ L2(R3)3},

W 1(R3)3 := {E ∈ L2
ρ(R3)3 | ∇E ∈ L2(R3)3×3}.

They are Hilbert spaces with respect to the norms

‖ · ‖2
L2
ρ(R3) = ‖(1 + |x|2)−

1
2 · ‖2

L2(R3), ‖ · ‖2
W (curl,R3) = ‖ · ‖2

L2
ρ(R3)3 + ‖ curl · ‖2

L2(R3)3 ,

‖ · ‖W 1(R3) = ‖∇ · ‖L2(R3)3 , ‖ · ‖W 1(R3)3 = ‖∇ · ‖L2(R3)3×3 .

The spaces W 1(R3 \ Ω), W (curl,R3 \ Ω), W (curl,R3 \ Γ) and H(curl,Ω) are defined

likewise. We frequently use the closed subspace W 1
♦ ⊂ W 1(R3)3 of functions with

vanishing divergence. Beyond that, we make use of the space TH−1/2(curlΓ) and its

dual space TH−1/2(divΓ), cf., e.g., [12, Chp. 2], and the surjective trace mappings

H(curl,Ω)→ TH−1/2(curlΓ), E 7→ γΓE := (ν × E|Γ)× ν,
H(curl,Ω)→ TH−1/2(divΓ), E 7→ ν × E|Γ.

For a Banach space X, C(0, T,X) and L2(0, T,X) denote the space of vector-valued

functions

E : [0, T ]→ X

which are continuous, respectively, square integrable; cf. e.g., [16, XVIII, §1].

H1(0, T,X) is defined likewise.
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The inner product on a real Hilbert space H is denoted by ( · , · )H and the dual

pairing on H ′ × H by 〈 · , · 〉H . They are related by the isometry ιH : H → H ′, that

“identifies H with its dual”:

〈ιHu, · 〉H := (u, · )H for all u ∈ H.

We denote the dual operator of an operator A ∈ L(H1, H2) between real Hilbert spaces

H1, H2 by A′. For all h′2 ∈ H ′2, A′ is defined by

〈A′h′2, h1〉H1 := 〈h′2, Ah1〉H2 for all h1 ∈ H1.

Throughout this work we rigorously distinguish between the dual and the adjoint

operator (denoted by A∗). They satisfy the identity A∗ = ι−1
H1
A′ιH2 .

We usually omit the arguments x and t and only use them where we expect them

to improve readability.

3. The direct problem

This section summarizes the results of [8] on the solution theory of the direct problem.

All proofs and details can be found there.

We assume that we are given an arbitrary right hand side l ∈ L2(0, T,W (curl,R3)′)

that obeys div l = 0 and initial values σE0 with E0 ∈ L2(R3)3 that fulfill div(σE0) = 0.

Theorem 3.1. ([8, Thm. 2.1]) Let E ∈ L2(0, T,W (curl,R3)). The eddy current

problem reads

∂t(σ(x)E(x, t)) + curl

(
1

µ(x)
curlE(x, t)

)
= l(x, t) in R3×]0, T [, (2)√

σ(x)E(x, 0) =
√
σ(x)E0(x) in R3. (3)

The following holds:

a) For every solution E ∈ L2(0, T,W (curl,R3)) of (2) it holds, that
√
σE ∈

C(0, T, L2(R3)3).

b) E ∈ L2(0, T,W (curl,R3)) solves (2)–(3) if and only if E solves

−
∫ T

0

∫
R3

σE · ∂tΦ dx dt+

∫ T

0

∫
R3

1

µ
curlE · curl Φ dx dt

=

∫ T

0

〈l,Φ〉W (curl,R3) dt+

∫
R3

σE0 · Φ(0) dx (4)

for all Φ ∈ D(R3 × [0, T [)3.

c) Equations (2)–(3) uniquely determine curlE and
√
σE. Moreover, if E ∈

L2(0, T,W (curl,R3)) solves (2)–(3), then every F ∈ L2(0, T,W (curl,R3)) with

curlF = curlE and
√
σF =

√
σE also solves (2)–(3).

Here, the time-derivative of σE is to be understood in the following way: Every

solution E ∈ L2(0, T,W (curl,R3)) of (2) is an element of the space

Wσ :=
{
E ∈ L2(0, T,W (curl,R3)) | (σE)· ∈ L2(0, T,W (curl,R3)′)

}
,
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cf. [8, Lemma 2.3], where (σE)· denotes the time-derivative of σE ∈ L2(0, T, L2(R3)3)

in the sense of vector-valued distributions with respect to the canonical injection

L2(R3)3 ↪→ W (curl,R3)′. For E,F ∈ Wσ the following integration by parts formula

holds: ∫ T

0

[
〈(σE)·(t), F (t)〉W (curl,R3) + 〈(σF )·(t), E(t)〉W (curl,R3)

]
dt

=

∫
R3

[σE(T ) · F (T )− σE(0) · F (0)] dx, (5)

cf., e.g., [16, XVIII, §1, Thms. 1,2] and [8, Lemma 2.2]. Note, that it is equivalent to

find E ∈ L2(0, T,W (curl,R3)) that solves (4), or to find E ∈ Wσ that solves (3) and∫ T

0

〈(σE)·, F 〉W (curl,R3) dt+

∫ T

0

∫
R3

1

µ
curlE · curlF dx dt =

∫ T

0

〈l, F 〉W (curl,R3) dt (6)

for all F ∈ L2(0, T,W (curl,R3)), see [8, Thm. 2.4].

Lemma 3.2. ([8, Lemma 3.1]) There is a continuous linear map

L2
ρ(R3)3 → H(curl 0,R3) := {E ∈ L2(R3)3 | curlE = 0}, E 7→ ∇uE,

with div(σ(E +∇uE)) = 0 in R3.

We define the bilinear form aσ : L2(0, T,W 1(R3)3)×H1(0, T,W 1(R3)3)→ R by

aσ(E,Φ) := −
∫ T

0

∫
R3

σ(E +∇uE) · Φ̇ dx dt+

∫ T

0

∫
R3

1

µ
curlE · curl Φ dx dt.

Theorem 3.3. (Well-posedness of the eddy current problem, [8, Thm. 3.2])

a) If E ∈ L2(0, T,W 1
♦) solves

aσ(E,Φ) =

∫ T

0

〈l,Φ〉W (curl,R3) dt+

∫
R3

σE0 · Φ(0) dx for all Φ ∈ H1
T0(0, T,W 1

♦), (7)

then E +∇uE ∈ L2(0, T,W (curl,R3)) solves (2)–(3), where

H1
T0(0, T,W 1

♦) := {Ψ ∈ H1(0, T,W 1
♦) |Ψ(T ) = 0}.

b) There is a unique solution E ∈ L2(0, T,W 1
♦) of (7). E depends continuously on

l and
√
σE0. E + ∇uE solves the eddy current equations (2)–(3) and any other

solution F ∈ L2(0, T,W (curl,R3)) of (2)–(3) fulfills

curlF = curlE,
√
σF =

√
σ(E +∇uE).

curlF and
√
σF depend continuously on l and

√
σE0.

We will also consider the case σ ≡ 0 and µ ≡ 1, that we will call the reference

problem. This case corresponds to the eddy current problem without any conducting

medium. Then, theorem 3.1 and theorem 3.3 reduce to

Theorem 3.4. (Well-posedness of the reference problem, cf. [8, Thm. 3.3])

Let E ∈ L2(0, T,W (curl,R3)).
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a) The reference problem reads

curl curlE(x, t) = l(x, t) in R3×]0, T [. (8)

b) E solves (8) if and only if E solves

a0(E,Φ) :=

∫ T

0

∫
R3

curlE · curl Φ dx dt

=

∫ T

0

〈l,Φ〉W (curl,R3) dt for all Φ ∈ L2(0, T,W 1
♦), (9)

where a0 : L2(0, T,W (curl,R3))2 → R.

c) There exists a unique solution E ∈ L2(0, T,W 1
♦) of (9) and this solution depends

continuously on l. Any other solution F ∈ L2(0, T,W (curl,R3)) fulfills

curlF = curlE

and curlF depends continuously on l.

4. Electromagnetic measurements

We now turn to the description of our idealized measurement instrument. As in, e.g.,

[20, 21], we assume that the electric field E is generated by transient surface currents on

a two-dimensional sheet S. In this way we assume that we can apply every divergence-

free tangential function I supported in S as excitation on the right hand side of (2).

Our idealized measurement instrument also measures the tangential component of the

electric field on S.

Mathematically, the setting is as follows. We assume that

S ⊂ R3
0 := {(x1, x2, 0)T ∈ R3}

is (as a subset of R2) a bounded Lipschitz domain. Let n be the outer unit normal on

S, i.e., n = (0, 0, 1)T . We assume that Ω is placed below S and that Ω ∩ S = ∅, i.e.,

Ω ⊂ {(x1, x2, x3)T ∈ R3 |x3 < 0}.

We consider the excitation I as an element of the space L2(0, T, TL2
♦(S)). Here,

the space TL2
♦(S) denotes the subspace of the space TL2(S) of elements with vanishing

divergence, where

TL2(S) := {u ∈ L2(S)3 |n · u = 0}

is the space of tangential functions. Using the continuous extension of the identification

of an element I ∈ TL2(S) with the distribution

Φ 7→
∫
S

I · Φ dS =

∫
S

I · ((n× Φ|S)× n) dS for all Φ ∈ D(R3)3

to W (curl,R3), we consider the spaces TL2(S) and TL2
♦(S) as subspaces of W (curl,R3)′.

Both, TL2(S) and TL2
♦(S) are Hilbert spaces equipped with the usual L2(S)3-

inner product. Hence, every I ∈ L2(0, T, TL2
♦(S)) defines an element of the space
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L2(0, T,W (curl,R3)′) that satisfies div I = 0. In this sense we can consider the surface

current I ∈ L2(0, T, TL2
♦(S)) as a source term for the eddy current equation (2),

respectively, the reference problem (8). In the following we don’t distinguish between

I ∈ L2(0, T, TL2
♦(S)) and the corresponding element of L2(0, T,W (curl,R3)′) and still

write the dual pairing as a L2(S)3-product.

To define the measurement operator we first remark, that the mapping

W 1(R3)3 → TL2(S), E 7→ γSE := (n× E|S)× n

is linear and continuous. Moreover, let

NS := R (γS∇D(R3)) ⊂ TL2(S).

It can easily be verified, that NS ⊕⊥ TL2
♦(S) = TL2(S) and

TL2(S)/NS
∼= TL2

♦(S)′. (10)

Together with the identification of TL2
♦(S) with its dual we consider the measurements

as elements of L2(0, T, TL2
♦(S)). This can be interpreted as measuring the electric field,

so that it is adequately gauged to be divergence-free on S. Now, theorems 3.3 and 3.4

yield the following linear continuous operators.

Definition 4.1. (Measurement operator)

We define the measurement operator

Λ := Λ0 − Λσ : L2(0, T, TL2
♦(S))→ L2(0, T, TL2

♦(S)).

Here, Λ0 and Λσ are the mappings

Λ0,Λσ : L2(0, T, TL2
♦(S))→ L2(0, T, TL2

♦(S))

I 7→ γSE0, respectively, γSEσ, (11)

where E0, Eσ ∈ L2(0, T,W 1
♦) are the unique solutions of

a0(E0, F ) =

∫ T

0

(γSF, I)L2(S)3 dt for all F ∈ L2(0, T,W 1
♦), (12)

aσ(Eσ, F ) =

∫ T

0

(γSF, I)L2(S)3 dt for all F ∈ H1
T0(0, T,W 1

♦). (13)

Note, that if E0 and Eσ solve (12) and (13), then they are the unique solutions of

(9) and (7) with right hand side I. This means that Eσ +∇uEσ ∈ L2(0, T,W (curl,R3))

solves (2) with right hand side I and zero initial condition, cf. theorem 3.3 b). Especially,

the just defined operators do not match the tangential value of the ”real” electric field

but just the tangential value of its divergence-free part.

Let us stress, that even if (2)–(3) does not determine the solution uniquely, in the

measurement space, measurements of different solutions coincide. This is up to (10) and

the fact, that in a neighborhood of S all solutions E ∈ L2(0, T,W (curl,R3)) of (2)–(3)

equal up to gradient fields. Hence, the evaluation of γSE in L2(0, T, TL2
♦(S)) is also

well-defined, linear and continuous and defines the same element as γSEσ. Therefore, we

understand Λ as a gauged measurement operator, where γSE0, γSEσ actually represent

equivalence classes, cf. (10).
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Before we start with the inverse problem, we introduce the time-integral operator

Ξ : L2(0, T, TL2
♦(S))→ TL2

♦(S), h 7→
∫ T

0

h(t) dt.

Its adjoint operator maps a time-independent function I ∈ TL2
♦(S) on its counterpart

in L2(0, T, TL2
♦(S)) that is constant in time, i.e.

(Ξ∗I)(t) = I, t ∈ (0, T ).

To maintain lucidity, we will usually omit Ξ∗.

5. Linear sampling method

In this section we show, that a subset of Ω is determined by the measurements.

Therefore, we factorize the measurement operator into

Λ = LN,

where N maps an excitation on S to its effect on the conductor, and L measures then

the induced electric field on S. In linear sampling or factorization method context, L is

often called the virtual measurement operator. Its range contains information to detect

Ω.

We start with this operator. Let H(curl,Ω)′♦ denote the subspace of H(curl,Ω)′ of

elements with vanishing divergence,

H(curl,Ω)′♦ := {g ∈ H(curl,Ω)′ | 〈g,∇φ〉H(curl,Ω) = 0 for all φ ∈ D(Ω)}.
Then H(curl,Ω)′♦ is a Hilbert space and the following operator is linear and continuous:

L : L2(0, T,H(curl,Ω)′♦)→ L2(0, T, TL2
♦(S)), B 7→ γSH,

where H ∈ L2(0, T,W 1
♦) solves

a0(H,F ) =

∫ T

0

〈B,F |Ω〉H(curl,Ω) dt for all F ∈ L2(0, T,W 1
♦). (14)

We show the following relation between L and Λ:

Lemma 5.1. It holds that R (Λ) ⊂ R (L).

Proof. We show that Λ = LN with an appropriate operator N .

The assumption Ω ∩ S = ∅ ensures, that for solutions E ∈ L2(0, T,W (curl,R3)) of

(2) the evaluation ν × curlE|+Γ ∈ L2(0, T, TH−
1
2 (divΓ)) is linear and continuous, where

we denote by the +-sign the value from the outside of Ω. Moreover, for t ∈ (0, T ) a.e.

we have, that

F 7→ 〈ν × curlE(t)|+Γ , γΓF 〉TH− 1
2 (curlT )

for all F ∈ H(curl,Ω)

defines an element of H(curl,Ω)′♦. Hence, the following operator is linear and

continuous:

N : L2(0, T, TL2
♦(S))→ L2(0, T,H(curl,Ω)′♦), I 7→ h,

with h : F 7→ −
∫ T

0

〈ν × curlEσ|+Γ , γΓF 〉TH− 1
2 (curlΓ)

dt+

∫ T

0

∫
Ω

curlEσ · curlF dx dt
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Shape detection in transient eddy current problems 10

for all F ∈ L2(0, T,H(curl,Ω)), and where Eσ solves (13) with source I,

To show that Λ = LN , let I ∈ L2(0, T, TL2
♦(S)) and E0 and Eσ denote the solutions

of (12) and (13) with source I. For t ∈ (0, T ) a.e. a short computation using (6) shows,

that for every Φ ∈ D(R3)3

〈(σ(Eσ +∇uEσ))·(t),Φ〉W (curl,R3)

= −
∫

Ω

1

µ
curlEσ(t) · curl Φ dx− 〈ν × curlEσ(t)|+Γ , γΓΦ〉

TH−
1
2 (curlΓ)

.

The right hand side depends continuously on Φ|Ω ∈ D(Ω)3 ⊂ H(curl,Ω), thus denseness

implies that it defines an element of H(curl,Ω)′. Using this, (6) and integration by parts

(5), we obtain for every Φ ∈ D(R3×]0, T [)3, that

a0(E0 − Eσ,Φ) = aσ(Eσ,Φ)− a0(Eσ,Φ)

=

∫ T

0

〈(σ(Eσ +∇uEσ))·,Φ〉W (curl,R3) dt+

∫ T

0

∫
R3

1

µ
curlEσ · curl Φ dx dt− a0(Eσ,Φ)

= −
∫ T

0

〈ν × curlEσ|+Γ , γΓφ〉TH− 1
2 (curlΓ)

dt−
∫ T

0

∫
Ω

curlEσ · curl Φ dx dt

=

∫ T

0

〈NI,Φ|Ω〉H(curl,Ω) dt.

On the other hand, let H ∈ L2(0, T,W 1
♦) be the solution of (14) with B = NI.

Then, again denseness implies

a0(E0 − Eσ,Φ) = a0(H,Φ) for all Φ ∈ L2(0, T,W 1
♦),

and then uniqueness implies H = E0 − Eσ, cf. theorem 3.4 c). It follows

ΛI = γS(E0 − Eσ) = γSH = LNI.

To characterize the conductor, we introduce for an arbitrary direction d ∈ R3,

|d| = 1 the functions

Gz,d : R3 \ {z} → R3, x 7→ curl
d

|x− z|
,

that have a dipole in z ∈ R3. In R3 \ {z}, every component of Gz,d solves the

homogeneous Laplace equation. Therefore, Gz,d is analytic in R3 \ {z}.
The following theorem shows, that a subset of Ω is determined by Λ.

Theorem 5.2. (Linear sampling method)

For every direction d ∈ R3, |d| = 1, and every point z ∈ R3, z below S, z /∈ Γ,

γSGz,d ∈ R (ΞΛ) implies z ∈ Ω.

Proof. Let γSGz,d ∈ R (ΞΛ) . Lemma 5.1 yieldsR (Λ) ⊂ R (L), hence there is a preimage

B ∈ L2(0, T,H(curl,Ω)′♦) and some H ∈ L2(0, T,W 1
♦) that solves (14) and that fulfills

ΞγSH = γSGz,d.
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We consider E :=
∫ T

0
H(t) dt ∈ W 1

♦ and obtain γSE = γSGz,d, i.e., γS(E −Gz,d) ∈ NS,

and

curl curlE = 0 in R3 \ Ω, divE = 0 in R3 \ Ω.

Thus E is analytic in R3 \ Ω. Moreover, Gz,d is analytic in R3 \ {z}, and it follows that

curl(E − Gz,d) is analytic in R3 \
(
Ω ∪ {z}

)
. Now, following [21], we obtain by unique

continuation of analytic functions, that

curlE = curlGz,d in R3 \ {z}.

The fact, that curlE ∈ L2(R3 \ Ω) but curlGz,d ∈ L2(R3 \ Ω) only if z ∈ Ω yields the

assertion.

Further results on unique characterization can be obtained if we assume some

additional feature on the permeability µ. This is done in the following sections.

6. Unique shape identification

For the rest of this paper we assume in addition, that the permeability is smaller on the

conductor than on the background:

1− µ|Ω ∈ L∞+ (Ω).

This is the case, for instance, for diamagnetic materials.

We moreover assume, that the connected components of Ω are simply connected.

This is only due to technical reasons, we expect our theory also to hold for multiply

connected domains, that fulfill [15, IX, Part A, §3, (1.45)], for instance, if Ω has the

form of a torus.

Now we formulate our main result. The proof is postponed to section 7.

Theorem 6.1. (Unique shape identification)

It holds for every direction d ∈ R3, |d| = 1, and every point z ∈ R3, z below S, z /∈ Γ,

that

z ∈ Ω if and only if

∃C > 0 : (Gz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛI, I)L2(S)3 dt for all I ∈ TL2
♦(S), (15)

where

Gz,d(x) = curl
d

|x− z|
.

In particular, Λ uniquely determines Ω. Let us stress, that therefore only time-

independent I are needed. This means, that the applied source currents J on S (recall,

that I denotes the time-derivative of J) only depend linearly on time.

To formulate an equivalent formulation of theorem 6.1, we make the following

observation. Let I ∈ L2(0, T, TL2
♦(S)) and E0 and Eσ be the solutions of (12) and
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(13) with source I. Then, integrating Eσ by parts in time (5), and using the fact, that

E0 minimizes the functional

L2(0, T,W 1
♦)→ R, E 7→ 1

2
a0(E,E)−

∫ T

0

(γSE, I)L2(S)3 dt,

leads to∫ T

0

(ΛI, I)L2(S)3 dt ≥
∫ T

0

(γSEσ, I)L2(S)3 dt− a0(Eσ, Eσ)

≥ 1

2
‖
√
σ(Eσ +∇uEσ)(T )‖2

L2(Ω)3 + inf
Ω

[
1

µ
− 1

]
‖ curlEσ‖2

L2(0,T,L2(Ω)3) ≥ 0. (16)

An immediate consequence is the following. The linear continuous and (by construction)

self adjoint operator

Λ̃ := Ξ(Λ + Λ∗)Ξ∗ : TL2
♦(S)→ TL2

♦(S)

is positive, as for every I ∈ TL2
♦(S) it holds

(Λ̃I, I)L2(S)3 = (Ξ(Λ + Λ∗)Ξ∗I, I)L2(S)3 =

∫ T

0

((Λ + Λ∗)Ξ∗I,Ξ∗I)L2(S)3 dt

= 2

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt ≥ 0.

Hence, the square root Λ̃
1
2 exists.

Corollary 6.2. (Factorization method)

It holds for every direction d ∈ R3, |d| = 1, and every point z ∈ R3, z below S, z /∈ Γ,

that

z ∈ Ω if and only if γSGz,d ∈ R
(

Λ̃1/2
)
.

Proof. Theorem 6.1 yields that z ∈ Ω if and only if

∃C > 0 : (γSGz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt for all I ∈ TL2
♦(S). (17)

For every I ∈ TL2
♦(S), (17) equals

(γSGz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt =
C

2
(Λ̃I, I)L2(S)3 =

C

2
‖Λ̃1/2I‖2

L2(S)3 .

A standard result on the relation between the norm of an operator and the range of its

dual, cf., e.g., the “14th important property of Banach spaces“ in Bourbaki [11] or [18,

Lemma 3.4] in case of Hilbert spaces, yields, that this is equivalent to

γSGz,d ∈ R
(

Λ̃1/2
)
.
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7. Constraining operators for Λ

The key of the proof of theorem 6.1 is to find adequate operators that control the

measurement operator from below and from above, cf. [23]. To be more precise, we are

looking for operators R1 and R2 mapping into particular Hilbert spaces, that fulfill

c‖R1I‖2 ≤
∫ T

0

(ΛI, I)L2(S)3 dt ≤ c′‖R2I‖2

for all I ∈ L2(0, T, TL2
♦(S)) with some positive constants c, c′. These Hilbert spaces will

depend on Ω, so that the operators can be used to determine Ω uniquely.

In this section we introduce the operators R1 and R2 and show, how they can be

used to characterize Ω. At the end of this section we give a proof of theorem 6.1.

7.1. Lower bound

For the lower bound, an appropriate candidate for R1 can be found easily. Therefore,

let I ∈ L2(0, T, TL2
♦(S)) and E0 and Eσ be the solutions of (12) and (13) with source

I. Then, (16) yields∫ T

0

(ΛI, I)L2(S)3 dt ≥ 1

2
‖
√
σ(Eσ +∇uEσ)(T )‖2

L2(Ω)3 + inf
Ω

[
1

µ
− 1

]
‖ curlEσ‖2

L2(0,T,L2(Ω)3)

≥ c
[
‖σ(Eσ +∇uEσ)(T )‖2

L2(Ω)3 + ‖ curlEσ‖2
L2(0,T,L2(Ω)3)

]
=: c ‖R1I‖2 (18)

with the constant

c = min

{
1

2‖σ‖∞
, inf

Ω

(
1

µ
− 1

)}
.

To define R1 rigorously, let us first introduce the following factor space.

X := H(curl,Ω)/N , where N := ker curl = ∇H1(Ω),

cf. [15, IX, Part A, §1, Prop. 2 & Rem. 6], is a Hilbert space with respect to the

induced norm

‖u+N‖X := inf
m∈N
‖u−m‖H(curl,Ω).

Lemma 7.1. An equivalent norm on X is given by

u+N 7→ ‖ curlu‖L2(Ω).

Proof. We consider u+N ∈ X. Then we have

‖u+N‖2
X = inf

m∈N
‖u−m‖2

H(curl,Ω) ≥ ‖ curlu‖2
L2(Ω).

Moreover, [15, IX, Part A, §1, Cor. 5 & Rem. 6] yields that every u has a unique

orthogonal decomposition

u = ∇p+ curlw,
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where p ∈ H1(Ω) and w ∈ H1(Ω)3 with ν · curlw|Γ = 0 (w must not be unique, but

curlw is). A short computation shows

‖u+N‖2
X = ‖ curlw‖2

L2(Ω) + ‖ curlu‖2
L2(Ω).

Now, [15, IX, Part A, §1, Rems. 4 & 6] yields that

curl : {a ∈ H1(Ω)3 | div a = 0, ν · a|Γ = 0} → curlH1(Ω)3

is an isomorphism and therefore has a continuous linear inverse. As curlw is an element

of that space, it follows

‖u+N‖2
X = ‖ curlw‖2

L2(Ω) + ‖ curlu‖2
L2(Ω)

≤ c′′‖ curl curlw‖2
L2(Ω) + ‖ curlu‖2

L2(Ω) = (c′′ + 1)‖ curlu‖2
L2(Ω)

with a constant c′′ independent of u (or its decomposition).

Let L2(Ω)3
♦ be the space of L2(Ω)3-functions with vanishing divergence. Obviously,

L2(Ω)3
♦ is a Hilbert space.

Corollary 7.2. The following mapping is linear and continuous:

R1 : L2(0, T, TL2
♦(S))→ L2(Ω)3

♦ × L2(0, T,X),

I 7→ (σ(Eσ +∇uEσ)(T )|Ω, Eσ|Ω +N ),

where Eσ solves (13) with source I. Its dual mapping is given by

R′1 : (L2(Ω)3
♦)′ × L2(0, T,X ′)→ L2(0, T, TL2

♦(S)), (v, w) 7→ h,

where h obeys for every I ∈ L2(0, T, TL2
♦(S))∫ T

0

(h, I)L2(S)3 dt =

∫ T

0

(R′1(v, w), I)L2(S)3 dt

= 〈v, σ(Eσ +∇uEσ)(T )|Ω〉L2(Ω)3
♦

+

∫ T

0

〈w,Eσ|Ω +N〉X dt,

where Eσ denotes the solution of (13) with source I, again.

Now, the inequality (18) reads: There is a positive constant c such that

c ‖R1I‖2
L2(Ω)3

♦×L2(0,T,X) ≤
∫ T

0

(ΛI, I)L2(S)3 dt for all I ∈ L2(0, T, TL2
♦(S)). (19)

The following lemma shows, that the range of R′1 determines a superset of Ω:

Whenever a point z is inside Ω, then γSGz,d is contained in the range of the dual

operator of R1.

Lemma 7.3. Let z ∈ Ω. For every direction d ∈ R3, |d| = 1, there is a preimage

(v, w) ∈ (L2(Ω)3
♦)′ × L2(0, T,X ′) of ΞR′1 with

γSGz,d = ΞR′1(v, w).
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Proof. For every z ∈ Ω there is an ε > 0 such that for the open ball Bε(z) it holds

Bε(z) ⊂ Ω. Now we choose a smooth cutoff function ϕ ∈ C∞(R3) with ϕ ≡ 1 outside of

Bε(z) and ϕ ≡ 0 in B ε
2
(z). We obtain

G̃z,d(x) := curl

(
ϕ(x)d

|x− z|

)
∈ H(curl,R3) and we have G̃z,d = Gz,d in R3 \ Ω.

Let G̃z,d(t) := G̃z,d. Then, we have G̃z,d ∈ L2(0, T,W 1
♦), curl G̃z,d ∈ L2(0, T,H(curl,R3))

and curl curl G̃z,d = 0 in R3 \ Ω.

We define v ∈ (L2(Ω)3
♦)′ and w ∈ L2(0, T,X ′) by

v : H 7→
∫

Ω

H · G̃z,d dx,

w : F +N 7→
∫ T

0

∫
Ω

[
curl curl G̃z,d · F +

(
1

µ
− 1

)
curl G̃z,d · curlF

]
dx dt.

We use the fact, that for all F ∈ L2(0, T,W 1
♦) it holds∫ T

0

∫
R3\Ω

curl G̃z,d · curlF dx dt =

∫ T

0

∫
Ω

[
curl curl G̃z,d · F − curl G̃z,d · curlF

]
dx dt,

the identity (6) and the integration by parts formula (5) and obtain, that for every

I ∈ TL2
♦(S) it holds

(ΞR′1(v, w), I)L2(S)3 =

∫ T

0

(R′1(v, w),Ξ∗I)L2(S)3 dt

=

∫
Ω

σ(Eσ +∇uEσ)(T ) · G̃z,d dx

+

∫ T

0

∫
Ω

[
curl curl G̃z,d · Eσ +

(
1

µ
− 1

)
curl G̃z,d · curlEσ

]
dx dt

=

∫ T

0

∫
R3

〈(σ(Eσ +∇uEσ))·, G̃z,d〉W (curl,R3) dx dt+

∫ T

0

∫
R3

1

µ
curl G̃z,d · curlEσ dx dt

=

∫ T

0

(γSG̃z,d,Ξ
∗I)L2(S)3 dt = (γSGz,d, I)L2(S)3 ,

where Eσ denotes the solution of (13) with source Ξ∗I.

7.2. Upper bound

To define R2, we consider the subspace of elements with vanishing divergence of

TH−1/2(divΓ),

TH
−1/2
♦ (Γ) := {g ∈ TH−1/2(divΓ) | div g = 0},

where we understand TH−1/2(divΓ) as a subspace of W (curl,R3)′ by

E 7→ 〈g, γΓE〉TH−1/2(curlΓ) for all E ∈ W (curl,R3).

This is an author-created, un-copyedited version of an article accepted for publication in Inverse Problems 29, 095004 (19pp), 2013. 
The publisher is not responsible for any errors or omissions in this version of the manuscript  or any version derived from it. 

The Version of Record is available online at http://dx.doi.org/10.1088/0266-5611/29/9/095004 



Shape detection in transient eddy current problems 16

Clearly, TH
−1/2
♦ (Γ) is a Hilbert space with respect to ‖ · ‖TH−1/2(divΓ). As the tangential

components of elements of W (curl,R3) are in TH−1/2(curlΓ), every E ∈ W (curl,R3)

defines an element of TH
−1/2
♦ (Γ)

′
by

g 7→ 〈g, γΓE〉TH−1/2(curlΓ) for all g ∈ TH−1/2
♦ (Γ).

Now, theorems 3.3 and 3.4 yield the following corollary.

Corollary 7.4. For i = 0, σ, linear continuous mappings are given by

Ki : L2(0, T, TL2
♦(S))→ L2(0, T, TH

−1/2
♦ (Γ)

′
), I 7→ di,

with di : g 7→
∫ T

0

〈g, γΓEi〉TH−1/2(curlΓ) dt,

and where E0, Eσ ∈ L2(0, T,W 1
♦) are the solutions of (12) and (13) with source I.

Their dual operators are given by

K ′i : L2(0, T, TH
−1/2
♦ (Γ))→ L2(0, T, TL2

♦(S)), g 7→ γSHi,

where H0 ∈ L2(0, T,W 1
♦) solves the variational problem

a0(H0,Φ) =

∫ T

0

〈g, γΓΦ〉TH−1/2(curlΓ) dt

for all Φ ∈ L2(0, T,W 1
♦), and Hσ ∈ L2(0, T,W 1

♦) solves

aσ(Hσ,Φ) =

∫ T

0

〈g, γΓΦ〉TH−1/2(curlΓ) dt

for all Φ ∈ H1(0, T,W 1
♦) with Φ(0) = 0.

We need two more operators and their duals:

Lemma 7.5. For i = 0, σ, linear continuous mappings are given by

Mi : L2(0, T, TL2
♦(S))→ L2(0, T, TH−1/2(divΓ)), I 7→ ν × curlEi|+Γ ,

where E0, Eσ ∈ L2(0, T,W 1
♦) are the solutions of (12) and (13) with source I.

Their dual operators obey

M ′
i : L2(0, T, TH−1/2(curlΓ))→ L2(0, T, TL2

♦(S)), f 7→ −γSGi

for some Gi ∈ L2(0, T,W (curl,R3 \ Γ)) that fulfill

γΓG
+
i − γΓG

−
i = f in Γ× (0, T ),

curl curlGi = 0 in R3 \ Ω× (0, T ).

Proof. Again, the first assertion follows from theorem 3.3, theorem 3.4, and the fact,

that the evaluation of ν× curlE|+Γ for solutions of (12) or (13) in TH−1/2(divΓ) is linear

and continuous.

For the second assertion, let γ−1
Γ be a linear, continuous right inverse of

γΓ : W (curl,R3 \ Ω)→ TH−1/2(curlΓ).
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For f ∈ L2(0, T, TH−1/2(curlΓ)) we denote U f := γ−1
Γ f ∈ L2(0, T,W (curl,R3 \ Ω)). Let

U0 ∈ L2(0, T,W 1
♦) be the solution of∫ T

0

∫
R3

curlU0 · curlF dx dt = −
∫ T

0

∫
R3\Ω

curlU f · curlF dx dt

for all F ∈ L2(0, T,W 1
♦). Then, for every I ∈ L2(0, T, TL2

♦(S)) we obtain∫ T

0

〈M ′
0f, I〉L2(S)3 dt =

∫ T

0

〈M0I, f〉TH−1/2(curlΓ) dt

=

∫ T

0

〈ν × curlE0|+Γ , γΓU
f〉TH−1/2(curlΓ) dt

=

∫ T

0

∫
R3\Ω

curlE0 · curlU f dx dt−
∫ T

0

〈γSU f +NS, I〉L2(S)3 dt

= −
∫ T

0

∫
R3

curlE0 · curlU0 dx dt−
∫ T

0

〈γSU f +NS, I〉L2(S)3 dt

= −
∫ T

0

(γS(U0 + U f ), I)L2(S)3 dt,

where E0 ∈ L2(0, T,W 1
♦) is the solution of (12) with source I. The assertion for M ′

0

follows now by the choice

G0 :=

{
U0 + U f R3 \ Ω× (0, T )

U0 Ω× (0, T ).

The assertion for M ′
σ follows similarly by replacing U0 with the solution U ∈

L2(0, T,W 1
♦) of∫ T

0

∫
R3

[
σ(U +∇uU) · Ḟ +

1

µ
curlU · curlF

]
dx dt = −

∫ T

0

∫
R3\Ω

curlF · curlU f dx dt

for all F ∈ H1(0, T,W 1
♦) with F (0) = 0.

Now we are prepared to define the operator R2:

R2 : L2(0, T, TL2
♦(S))→ L2(0, T, TH−

1
2 (divΓ))2 × L2(0, T, TH

−1/2
♦ (Γ)

′
)2,

I 7→ (M0I,MσI,K0I,KσI).

Obviously, its dual is given by

R′2 : L2(0, T, TH−
1
2 (curlΓ))2 × L2(0, T, TH

−1/2
♦ (Γ))2 → L2(0, T, TL2

♦(S))

(e, f, g, h) 7→M ′
0e+M ′

σf +K ′0g +K ′σh.

A reformulation of the measurement operator in terms of M0,Mσ, K0, Kσ yields the

estimation∫ T

0

(ΛI, I)L2(S)3 dt =

∣∣∣∣∫ T

0

[
〈M0I,KσI〉TH− 1

2 (curlΓ)
− 〈MσI,K0I〉TH− 1

2 (curlΓ)

]
dt

∣∣∣∣
≤ 1

2
‖R2I‖2

L2(0,T,TH−
1
2 (divΓ))2×L2(0,T,TH

−1/2
♦ (Γ)

′
)2
. (20)
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In the following lemma we show likewise to theorem 5, that the dual of R2

determines a subset of Ω.

Lemma 7.6. For every direction d ∈ R3, |d| = 1, and every point z ∈ R3, z below S,

z /∈ Γ,

γSGz,d ∈ R (ΞR′2) implies z ∈ Ω.

Proof. Assume γSGz,d ∈ R (ΞR′2). Then, there are g0, gσ ∈ L2(0, T, TH−
1
2 (curlΓ)) and

f0, fσ ∈ L2(0, T, TH
−1/2
♦ (Γ)) such that

γSGz,d = Ξ(M ′
0g0 +M ′

σgσ +K ′0f0 +K ′σfσ) = Ξ (γSH0 + γSHσ + γSG0 + γSGσ)

with H0, Hσ ∈ L2(0, T,W 1
♦) such as in corollary 7.4 and G0, Gσ ∈ L2(0, T,W (curl,R3\Γ)

such as in lemma 7.5. Let Vi =
∫ T

0
Hi(t) dt ∈ W 1

♦ and Pi =
∫ T

0
Gi(t) dt ∈ W (curl,R3\Γ)

for i = 0, σ and consider

E := (V0 + Vσ + P0 + Pσ)|R3\Ω.

Then, we have E ∈ W (curl,R3 \ Ω) and curl curlE = 0 in R3 \ Ω, moreover it holds

γSE = γSGz,d and especially γS(E −Gz,d) ∈ NS.

Now we study the function

Z := curl(E −Gz,d).

As a start, Z is analytic in R3 \
(
Ω ∪ {z}

)
, as curlGz,d is analytic in R3 \ {z} and curlE

is analytic in R3 \ Ω. Further, the third component of Z (denoted by Z3) vanishes on R3
0.

To see this we add a gradient field ∇a that fulfills div(E +∇a) = 0 in a neighborhood

of S and we obtain that E +∇a−Gz,d is analytic in this neighborhood. Beyond that,

γS(E +∇a−Gz,d) ∈ NS

implies that there is a sequence (ϕn) ∈ D(R3) with

γS∇ϕn → γS(E +∇a−Gz,d) in TL2(S)

and hence, as γSF = n × (F |S × n) = (F1|S, F2|S, 0)T for every F ∈ W (curl,R3), we

have

(∇ϕn)1|S → (E +∇a−Gz,d)1|S, (∇ϕn)2|S → (E +∇a−Gz,d)2|S in L2(S).

Because of ∂2(∇ϕn)1 = ∂1(∇ϕn)2 it follows in a distributional sense, that

∂2(E +∇a−Gz,d)1 − ∂1(E +∇a−Gz,d)2 = 0 on S.

Moreover, as E +∇a and Gz,d are analytic on S, the classical derivatives exist and are

equal to the distributional ones. It follows that

curl(E +∇a−Gz,d)3 = ∂1(E +∇a−Gz,d)2 − ∂2(E +∇a−Gz,d)1 = 0 on S

and hence, that Z3 = curl(E−Gz,d)3 = curl(E+∇a−Gz,d)3 = 0 on S. As Z3 is analytic

in R3
0 and vanishes on S, unique continuation implies that

Z3 = 0 in R3
0.
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The next step is to conclude, that Z vanishes in R3
x3>0 := {(x1, x2, x3)T ∈ R3 |x3 > 0}.

By choosing a transformation α : R3 → R3, x 7→ x − 2x3(0, 0, 1)T and analyzing the

function

Z̃(x) :=

{
Z(x) x3 ≥ 0

α(Z(α(x))) x3 < 0
,

one ends up with

Z̃ ∈ L2(R3)3 and div Z̃ = curl Z̃ = 0 in R3.

Hence, there is some U ∈ W 1
♦ with curlU = Z̃. This U also solves

curl curlU = 0 in R3.

It follows U = 0 and thus Z|R3
x3>0

= 0. Again, unique continuation of analytic functions

yields Z = 0 in R3 \
(
Ω ∪ {z}

)
. It follows

curlGz,d = curlE in R3 \
(
Ω ∪ {z}

)
.

If z /∈ R3 \ Ω then curlGz,d /∈ L2(R3 \ Ω), which contradicts to the fact that

curlE ∈ L2(R3 \ Ω)3. It follows z ∈ Ω.

7.3. Proof of the main result

Proof of theorem 6.1. “=⇒“: Assume z ∈ Ω. Lemma 7.3 yields that there is a

preimage (v, w) of γSGz,d under ΞR′1, i.e.,

ΞR′1(v, w) = γSGz,d.

We use inequality (19) and conclude for all I ∈ TL2
♦(S) that

(γSGz,d, I)L2(S)3 = (ΞR′1(v, w), I)L2(S)3 =

∫ T

0

(R′1(v, w),Ξ∗I)L2(S)3 dt

= 〈(v, w), R1Ξ∗I〉L2(Ω)3
♦×L2(0,T,X) ≤ ‖(v, w)‖(L2(Ω)3

♦)′×L2(0,T,X′)‖R1Ξ∗I‖L2(Ω)3
♦×L2(0,T,X)

≤ C

[∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt

]1/2

with a constant C independent of I. Then inequality (15), i.e.,

∃C > 0 : (γSGz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt for all I ∈ TL2
♦(S),

follows immediately.

“⇐=“: Assume (15) holds. Then, equation (20) yields for all I ∈ TL2
♦(S), that

(γSGz,d, I)2
L2(S)3 ≤ C

∫ T

0

(ΛΞ∗I,Ξ∗I)L2(S)3 dt

≤ C

2
‖R2Ξ∗I‖2

L2(0,T,TH−
1
2 (divΓ))2×L2(0,T,TH

−1/2
♦ (Γ)

′
)2

with a constant C independent of I. We use [18, Lemma 3.4], again, and conclude

γSGz,d ∈ R (ΞR′2) .

Lemma 7.6 shows that z ∈ Ω. �

This is an author-created, un-copyedited version of an article accepted for publication in Inverse Problems 29, 095004 (19pp), 2013. 
The publisher is not responsible for any errors or omissions in this version of the manuscript  or any version derived from it. 

The Version of Record is available online at http://dx.doi.org/10.1088/0266-5611/29/9/095004 



REFERENCES 20

8. Concluding remarks

We have extended the ideas of the factorization method to the problem of localizing

conducting objects by electromagnetic measurements in the eddy-current regime. We

have shown that the position and shape of conducting (diamagnetic) objects are uniquely

determined by such measurements. We also showed how a subset of the object can be

characterized using a linear sampling approach.

The criteria derived in this work are constructive and may be implemented as

in the previous works on factorization and sampling methods, cf., e.g., [20, 21] for

numerical results for the time-harmonic Maxwell equations and [18] for results on the

scalar parabolic-elliptic analogue of the eddy current equation.

The linear sampling method in theorem 5.2 is closely related to the MUSIC-type

imaging (introduced in [17]). This is shown in [5] for Electric Impedance Tomography

in case of small conductors, where the measurement operator is expanded in terms of

the size of the conductor. In [7], MUSIC-type imaging is used for corrosion detection.

It might be interesting to apply the results of the paper to the problem of corrosion

detection using eddy currents.

Let us remark, that our theoretical results in section 6 require only excitations,

that are linear in time and only time integral measurements. Moreover, our results hold

for every final time T . In practice, this final time might play an important role. For

instance, in thermal imaging, the imaging functional is quite sensitive to the final time

T , as pointed out in [6].
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[1] R. Acevedo, S. Meddahi, and R. Rodŕıguez. An E-based mixed formulation for a

time-dependent eddy current problem. Math. Comp., 78(268):1929–1949, 2009.

[2] A. Alonso. A mathematical justification of the low-frequency heterogeneous time-

harmonic Maxwell equations. Math. Models Methods Appl. Sci., 9(3):475–489, 1999.
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