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Abstract. Novel reconstruction methods for electrical impedance tomography (EIT)

often require voltage measurements on current-driven electrodes. Such measurements

are notoriously difficult to obtain in practice as they tend to be affected by unknown

contact impedances and require problematic simultaneous measurements of voltage

and current.

In this work, we develop an interpolation method that predicts the voltages

on current-driven electrodes from the more reliable measurements on current-free

electrodes for difference EIT settings, where a conductivity change is to be recovered

from difference measurements. Our new method requires the a-priori knowledge of an

upper bound of the conductivity change, and utilizes this bound to interpolate in a

way that is consistent with the special geometry-specific smoothness of difference EIT

data.

Our new interpolation method is computationally cheap enough to allow for real-

time applications, and simple to implement as it can be formulated with the standard

sensitivity matrix. We numerically evaluate the accuracy of the interpolated data and

demonstrate the feasibility of using interpolated measurements for a monotonicity-

based reconstruction method.

AMS classification scheme numbers: 35R30, 35R05 35J25

1. Introduction

Electrical impedance tomography (EIT) is a novel technique that images the conductiv-

ity distribution inside a subject from electric voltage and current measurements on the

subject’s boundary. EIT has promising applications in several fields including medical

imaging, geophysics, nondestructive material testing and monitoring of industrial

processes. For a broad overview on the developments in EIT in the last decades let

us refer to [35, 5, 75, 64, 61, 12, 8, 9, 59, 36, 7, 73, 1, 60, 69], and the references therein.

The inverse problem of reconstructing the conductivity from voltage-current-

measurements is known to be highly ill-posed and non-linear, and the reconstructions

suffer from an enormous sensitivity to modeling and measurement errors. To alleviate
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this problem, most applications concentrate on reconstructing a conductivity change

from the difference of two measurements, which is less affected by modeling errors, cf.

the above cited works for time-difference EIT and [68, 29, 31] for weighted frequency-

difference EIT. In some applications one may further restrict the problem to recovering

only the outer support of the conductivity change (the so-called anomaly or inclusion

detection problem), which is unaffected by linearization errors, cf. [30].

In practice, the inverse problem of difference EIT is usually linearized, and the

conductivity change is then recovered from minimizing a regularized version of the

linearized residuum functional, see subsection 2.2. This approach is well-established

and very flexible as it can incorporate all available measurements in the residuum

functional. However, there is almost no theoretical justification for this approach.

Standard convergence results for linearization-based iterative solvers for non-linear

inverse problems are based on certain assumptions, the so-called source conditions and

the tangential cone condition. It is not clear, whether realistic conductivity distributions

fulfill the required abstract source conditions, and the validity of the tangential cone

condition is a long-standing open problem in EIT, cf. [58] for a recent contribution.

On the other hand, rigorously justified reconstruction methods for EIT have been

developed in the more mathematically-oriented community. An explicit reconstruction

formula that is based on the global uniqueness proof of Nachman [62] is known

as the d-bar method, cf., e.g., [70, 51, 52, 55, 46, 56, 47, 53, 54]. Rigorously

justified inclusion detection methods for EIT include the enclosure method (see

[41, 10, 42, 44, 43, 45, 39, 74, 38]), the Factorization Method (see [21, 14, 49, 4, 24,

37, 57, 63, 16, 15, 18, 29, 66, 31, 67, 17, 11, 13, 6] and the recent overviews [50, 23, 27]),

and the recently emerging Monotonicity Method [72, 71, 32, 76].

Rigorously justified reconstruction methods rely on interpreting the measurements

as (an approximation to) the continuous Neumann-to-Dirichlet (NtD) operator of the

underlying partial differential equation, and the operator structure plays a major role

in the methods’ theoretical foundation. In practical EIT applications, the continuous

NtD-operator has to be replaced by the discrete matrix of voltage-current measurements

on a finite number of electrodes. Still, in that case certain rigorous properties can be

guaranteed, cf. [33], and rigorously justified methods have successfully been applied to

real data situations, cf., e.g. [4, 31, 76].

Practical applications of rigorously justified methods require, however, a full

matrix of measurements that includes voltages on current-driven electrodes. Such

measurements are notoriously difficult to obtain in practice as they tend to be affected

by unknown contact impedances and require problematic simultaneous measurements

of voltage and current. Accordingly, there is a long-standing disagreement in the

engineering community whether practical EIT systems should take voltage measurents

on current-driven electrodes. Some groups have successfully developed systems that

utilize these measurements, cf. Rensselaer’s ACT 4 system [65] or the system of the

Dartmouth group [19, 20]. However, in several other systems, including the recently

commercially launched PulmoVista R© 500 from Dräger Medical, voltage measurements



Interpolation of missing electrode data in EIT 3

on current-driven electrodes are not taken.

In this work, we develop an interpolation method that predicts the voltages on

current-driven electrodes from the more reliable measurements on current-free electrodes

for difference EIT settings, where a conductivity change is to be recovered from difference

measurements. Our new method is based on utilizing the special geometry-specific

smoothness of difference EIT data in the following way. The difference of two electric

potentials for different conductivities solves an elliptic PDE with homogeneous boundary

data and a source term generated by the conductivity change. The smoothness of the

measured boundary voltage differences will depend on how far the conductivity change

is supported away from the boundary. We assume the a-priori knowledge of an upper

bound B of the conductivity change. With this bound we calculate minimal source

terms on B that are consistent with the measurements on the current-free electrodes.

The minimal measurement-consistent source terms are then used to calculate the missing

voltages on the current-driven electrodes.

We will show that this new interpolation procedure uniquely determines the missing

voltages on current-driven electrodes, and derive an analytic formula to calculate the

interpolated voltages. Notably, our new interpolation method is computationally cheap

enough to allow for real-time applications, and simple to implement as it can be

formulated with the standard sensitivity matrix. For a setting with m electrodes, the

interpolated voltages can be obtained by solving a linear system with a m×m-matrix

that is constructed from the columns of the sensitivity matrix, see theorem 3.4 and

remark 3.5 for the details.

The paper is organized as follows. In section 2, we describe a typical difference EIT

setting with adjacent-adjacent current driving patterns, and summarize the standard

linearized reconstruction method and the novel matrix-based monotonicity method.

Section 3 contains our main result on how to interpolate the voltages on current-driven

electrodes using geometry-specific smoothness of difference EIT data. In section 4,

we illustrate our new interpolation method and numerically evaluate the interpolation

error. We also demonstrate the feasibility of using interpolated measurements for a

monotonicity-based reconstruction method for two- and three-dimensional numerical

examples.

2. Missing electrode data in electrical impedance tomography

2.1. The setting

Let Ω ⊂ R
n, n ≥ 2 be a bounded domain describing the imaging domain and let

σ ∈ L∞+ (Ω) be its conductivity distribution. Ω is assumed to have piecewise smooth

boundary ∂Ω with outer normal vector ν. L∞+ denotes the subspace of L∞-functions

with positive essential infima.

For electrical impedance tomography (EIT), several electrodes El ⊂ ∂Ω, l =

1, . . . ,m, are attached to the imaging domain’s surface. We assume that the electrodes
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El are relatively open and connected subsets of ∂Ω, that they are perfectly conducting

and that contact impedances are negligible (the so-called shunt model, cf., e.g., [12]).

When a current Il ∈ R is driven through the l-th electrode, with
∑m

l=1 Il = 0, the

electric potential inside the imaging domain is given by the solution uσ ∈ H1(Ω) of

∇ · (σ∇uσ) = 0 in Ω, (1)∫
El
σ∂νuσ ds = Il for l = 1, . . . ,m, (2)

σ∂νuσ = 0 on ∂Ω \
m⋃
l=1

El, (3)

uσ|El = const. for all l = 1, . . . ,m. (4)

uσ is uniquely determined up to the addition of constant functions.

In a standard adjacent-adjacent driving configuration the voltage-current-measure-

ments are carried out in the following way. For each k = 1, . . . ,m, we drive a current

of Ik = 1 and Ik+1 = −1 through the k-th pair of electrodes (Ek, Ek+1) while all other

electrodes are kept insulated. Here, and throughout the paper, the electrode index is

always considered modulo m, i.e. the index m + 1 refers to the first electrode, and the

index 0 refers to the m-th electrode.

The resulting electric potential u(k) solves (1)–(4) with

Il := δk,l − δk+1,l for l = 1, . . . ,m.

While keeping up the electric current between the k-th electrode pair, we measure the

voltage between the j-th pair of electrodes, i.e.,

Ujk(σ) := u(k)
σ |Ej − u(k)

σ |Ej+1
. (5)

Repeating this process for all j, k = 1, . . . ,m we obtain the measurement matrix

U(σ) =



U11(σ) U12(σ) U13(σ) . . . U1,m−1(σ) U1,m(σ)

U21(σ) U22(σ) U23(σ) . . . U2,m−1(σ) U2,m(σ)

U31(σ) U32(σ) U33(σ)
. . . U3,m(σ)

...
...

. . . . . . . . .
...

Um−2,1(σ) Um−2,2(σ)
. . . Um−2,m−1(σ) Um−2,m(σ)

Um−1,1(σ) Um−1,2(σ) Um−1,3(σ) . . . Um−1,m−1(σ) Um−1,m(σ)

Um,1(σ) Um,2(σ) Um,3(σ) . . . Um,m−1(σ) Um,m(σ)


The gray marked entries Ujk with |j − k| ≤ 1 (modulo m) correspond to voltage

measurements on current-driven electrodes. In practice, these measurements are usually

considered erroneous since they tend to be affected by contact impedances that are not

considered in the model and require problematic simulateneous measurement of voltage

and current.

Note that the measurement matrix contains some redundancy. Using (1)–(4) one

can show that

Ujk(σ) =

∫
Ω

σ∇u(j)
σ · ∇u(k)

σ dx = Ukj(σ),
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so that U(σ) ∈ Rm×m is symmetric. Moreover, it immediately follows from (5) that the

entries of each column in U(σ) sum to zero. Hence, without voltage measurements on

current-driven electrodes, essentially m entries are missing in U(σ).

2.2. Linearized reconstruction methods for difference EIT

In difference EIT, one compares two voltage measurements U(σ), U(σ0) to reconstruct

the conductivity change σ−σ0 with respect to some reference conductivity distribution

σ0. In a standard linearized approach, one obtains an approximation κ to the

conductivity change by solving (a regularized version of) the linearized equation

U ′(σ0)κ = V (6)

where V := U(σ)−U(σ0) is the difference of the measured data, and U ′(σ0) : L∞(Ω)→
R
m×m is the Fréchet derivative of the voltage measurements,

U ′(σ0) : κ 7→
(
−
∫

Ω

κ∇u(j)
σ0
· ∇u(k)

σ0
dx

)
j,k=1,...,m

∈ Rm×m,

where u
(j)
σ0 solves (1)–(4) with reference conductivity σ0 and electric current driven

through the j-th and (j + 1)-th electrode.

We discretize the imaging domain Ω =
⋃r
i=1 Pi into r disjoint pixels Pi and assume

that κ is piecewise constant with respect to that partition, i.e.,

κ(x) =
r∑
i=1

κiχPi
(x).

Then equation (6) becomes

Sκ = V , (7)

where κ ∈ Rr is a column vector containing the entries κi, i = 1, . . . , r, and V ∈ Rm2

is obtained by writing the matrix V ∈ Rm×m as a long column vector, i.e.,

V(j−1)m+k = Vjk, j, k = 1, . . . ,m.

S ∈ Rm2×r is the so-called sensitivity matrix, its entries are given by

S(j−1)m+k,i := −
∫
Pi

∇u(j)
σ0
· ∇u(k)

σ0
dx, j, k = 1, . . . ,m.

In this simple, yet well-established approach, the matrix structure of the measure-

ments is completely ignored. As a consequence, erroneous voltage measurements on

current-driven electrodes can simply be deleted from the linear system (7) by removing

both, the corresponding lines in the sensitivity matrix, and the problematic entries in

the right hand side of (7). Thus, one replaces (7) by the reduced system

Sκ = V, (8)

whereV ∈ Rm(m−3) denotes the difference data vector without the voltage measurements

on current-driven electrodes, and S ∈ Rm(m−3)×r denotes the reduced sensitivity matrix,

in which the lines corresponding to the problematic measurements are removed.
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2.3. Matrix-based methods in EIT

Several new rigorously justified reconstruction approaches in EIT are based on utilizing

the matrix structure of EIT measurements, cf. the overview in the introduction. In this

subsection we summarize a recent linearized monotonicity-based method [32], that we

will also use to numerically test our interpolation methods developed in the next section.

For the monotonicity method (but not for the interpolation method developed in the

next section), we will restrict ourself to the so-called definite case that the conductivity

change is either everywhere positive or everywhere negative. Without this assumption

a more complicated variant of the method would be required, cf. [32].

Let Si be the i-th column of the sensitivity matrix written as a m×m-matrix, i.e.,

Si := −


∫
Pi
∇u(1)

σ0 · ∇u
(1)
σ0 dx . . .

∫
Pi
∇u(1)

σ0 · ∇u
(m)
σ0 dx

...
...∫

Pi
∇u(m)

σ0 · ∇u
(1)
σ0 dx . . .

∫
Pi
∇u(m)

σ0 · ∇u
(m)
σ0 dx

 . (9)

When regarded as matrices and partially ordered with respect to matrix definite-

ness, the EIT measurements depend on the conductivity in a monotonous way. For all

vectors g = (gk)
m
k=1 ∈ Rm,∫

Ω

σ0

σ
(σ0 − σ)

∣∣∣∣∣
m∑
j=1

gj∇u(j)
σ0

∣∣∣∣∣
2

dx ≥ gT (U(σ)− U(σ0)) g = gTV g

≥
∫

Ω

(σ0 − σ)

∣∣∣∣∣
m∑
j=1

gj∇u(j)
σ0

∣∣∣∣∣
2

dx. (10)

For the shunt model considered herein, the monotonicity relation (10) is proven in [28,

lemma 3.1], see also [48, 40] for the origin of this inequality. Monotonicity relations

similar to (10) have also been used to simplify the theoretical basis of the Factorization

Method [27, 3], to prove theoretical uniqueness results, cf. [15, 25, 26, 34], and even to

derive new hybrid tomography methods [28].

It follows from (10) that, for all β ≥ 0,

βχPi
≤ σ0 − σ implies V ≥ −βSi, and (11)

βχPi
≤ σ0

σ
(σ − σ0) implies V ≤ βSi, (12)

where the inequalities on the left hand sides of (11)–(12) are to be understood point-wise

almost everywhere, and the inequalities on the right hand sides have to be interpreted

in terms of matrix definiteness, i.e. V ≥ −βSi means that the matrix V + βSi ∈ Rm×m

possesses only non-negative eigenvalues.

The monotonicity inequality (10) also yields that

|V | = V ≥ 0 for σ ≤ σ0, and − |V | = V ≤ 0 for σ0 ≤ σ,

where |V | denotes the matrix absolute value. For each pixel Pi, we define

βi := max{β ≥ 0 : βSi ≥ −|V |}. (13)
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If the conductivity σ is either everywhere lower than the reference conductivity σ0 (i.e.,

σ ≤ σ0), or everywhere larger (i.e., σ ≥ σ0), then (11)–(12) yield that for each pixel,

inf
x∈Pi

|σ(x)− σ0(x)| > 0 implies βi > 0.

Hence, the support of the function

x 7→
r∑
i=1

βiχPi
(x) (14)

will contain the support of the conductivity change |σ − σ0| up to the pixel partition.

Moreover, one can show that, in the limit of infinitely many electrodes, when the

measurements are given by the Neumann-Dirichlet-operators, βi = 0 for each pixel that

lies outside the outer support of |σ0 − σ|, see [32]. Hence, in the limit of noiseless data

on infinitely many electrodes, a plot of (14) will show where the conductivity σ differs

from its reference state σ0. Let us stress that (even though linearized monotonicity tests

are used), the non-linear shape reconstruction problem is being solved, cf. [32]. This

is in accordance with the fact that shape information is in some sense unaffected by

linearization errors, cf. [30].

Montonicity-based methods require the full matrix of measurements. The definite-

ness tests in (13) do not seem possible without knowledge of the main diagonals of

the measurement matrices, which contain the voltages on current-driven electrodes. In

the next section we will develop a method that uses the geometry-specific smoothness

of difference measurements in order to interpolate the missing voltages from the

measurements on current-free electrodes.

3. Interpolation of missing electrode data in EIT

Though voltage measurements on current driven electrodes are usually considered

erroneous, standard EIT systems such as the 32-channel Swisstom pioneer EIT system

nevertheless allow the user to access these measurements. Hence, the simplest way

to implement a method that relies on the measurements matrix structure is to simply

ignore the problem and use the full measurement matrix as given by the EIT system.

This approach has been taken for phantom experiment data in [76], and showed that

the use of monotonicity-based constraints improves the reconstructions compared to a

standard linearized approach (8). In the following, we will study how to interpolate the

voltages on current-driven electrodes from the measurements on current-free electrodes.

3.1. Motivation for interpolating missing data

In many applications, small electrodes are used, the conductivity is assumed to be

homogeneous in a neighbourhood of the boundary, and the conductivity change σ − σ0

is assumed to occur with some distance to the boundary. In that case, the difference of

the resulting potentials v := uσ − uσ0 solves

∇ · (σ0∇v) = −∇ · (σ − σ0)∇uσ in Ω, (15)
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El
σ∂νv ds = 0 for l = 1, . . . ,m, (16)

σ∂νv = 0 on ∂Ω \
m⋃
l=1

El, (17)

v|El = const. ∀l = 1, . . . ,m, (18)

If σ0 is constant in a neighborhood of the boundary, then, in the limit of point electrodes

(cf. [22]), v solves

∆v = 0 in a neighborhood of ∂Ω

with homogeneous Neumann boundary data ∂νv|∂Ω = 0. Hence, by standard elliptic

regularity results, we can expect the voltage difference to be a very smooth function

on ∂Ω. This justifies to interpolate the missing or erroneous values on current-driven

electrodes by the neighboring values on current-free electrodes.

3.2. Linear interpolation

We will first describe a simple linear interpolation approach that we will use as a

benchmark for the more sophisticated approach described below. In a situation where

the j-th electrode is positioned between and spatially close to the (j − 1)-th and the

(j+1)-th electrode, we may expect that the voltage difference Vj,j should be close to the

arithmetic mean of the values for the two neighboring electrode pairs, Vj,j−1 and Vj,j+1.

Together with the fact that the measurement matrix should be symmetric and columns

should sum up to zero, we thus obtain the following linear interpolation strategy.

Definition 3.1. Given a symmetric EIT difference measurement matrix V ∈ Rm×m

(with possibly erroneous entries Vjk for |j − k| ≤ 1), we define the linearly interpolated

measurement matrix V lin ∈ Rm×m by solving the following equation system

V lin
jk = Vjk for |j − k| ≥ 1 (modulo m),
m∑
j=1

V lin
jk = 0 for k = 1, . . . ,m,

V lin
j,j−1 = V lin

j−1,j for j = 1, . . . ,m,

V lin
j,j =

1

2
(V lin

j−1,j + V lin
j,j+1) for j = 1, . . . ,m.

The linear equations are uniquely solvable for odd m ∈ N. In the case of even m ∈ N,

the equations can be solved using the pseudo inverse.

3.3. Interpolation using geometry-specific smoothness

Our numerical examples in the next section show that the linearly interpolated

measurements converge against the true measurements. However, this convergence

is rather slow. Also, if the electrodes are not positioned in a single circle around an
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imaging subject, the above linear interpolation method seems questionable and a more

geometry-specific method should be used.

Our new interpolation approach is based on a more careful study of the arguments

in subsection 3.1. The voltage difference v = uσ − uσ0 solves the elliptic equation (15)

with a source term on the support of the conductivity change σ − σ0. The smoothness

of v|∂Ω (and hence of the voltage measurements) will depend on how far the support of

σ−σ0 is located away from the boundary ∂Ω. We will make use of this geometry-specific

smoothness by assuming that we know an upper bound of the support, and demand that

the interpolated measurements are consistent with a source term on this upper bound.

To make this idea precise, assume that we know a closed set B (with non-empty

interior) so that

supp(σ − σ0) ⊆ B ⊆ Ω.

The j-th column in the matrix V ∈ Rm×m contains the difference measurements

Vjk = v(k)|Ej − v(k)|Ej+1
,

where v(k) solves

∇ · (σ0∇v(k)) = ∇ · F (k), (19)

with F (k) := −(σ − σ0)∇u(k)
σ ∈ L2(B)n, and the boundary conditions (16)–(18).

Our new interpolation technique aims to fill in the missing data in such a way that

(19) is fulfilled with the smallest possible source term F (j) ∈ L2(B). Together with

the symmetry and zero column sum condition, we thus obtain the following geometry-

specific interpolation strategy.

Definition 3.2. Let V ∈ Rm×m be a symmetric EIT difference measurement matrix

(with possibly erroneous entries Vjk for |j−k| ≤ 1). We say that F (1), . . . , F (m) ∈ L2(B)n

are minimal measurement-consistent source terms if they minimize
m∑
j=1

‖F (j)‖2
L2(B)n → min!

under the constraint that the measurements constructed from these sources fulfill the

interpolation, symmetry and zero column sum condition, i.e. with respective solutions

v(k) of ∇ · (σ0∇v(k)) = ∇ · F (k), (16)–(18),

V geom
jk := v(k)|Ej − v(k)|Ej+1

,

must fulfill

V geom
jk = Vjk for |j − k| ≥ 1 (modulo m), (20)
m∑
j=1

V geom
jk = 0 for k = 1, . . . ,m, (21)

V geom
j,j−1 = V geom

j−1,j for j = 1, . . . ,m. (22)

The matrix V geom constructed from measurement-consistent source terms is called

the geometrically interpolated measurement matrix.
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Remark 3.3. Definition 3.2 can be interpreted as a minimum norm interpolation in

problem-specific abstract smoothness classes. Let us introduce

K̃B : L2(B)n → L2(∂Ω), F 7→ f := v|∂Ω,

where v ∈ H1(Ω) solves the source problem

∇ · (σ0∇v) = ∇ · F, (23)

with boundary conditions (16)–(18). Applying K̃B entrywise to a m-tuple of functions

in L2(B)n we obtain the operator

KB : (L2(B)n)m → L2(∂Ω)m,
(
F (k)

)m
k=1
7→
(
K̃B(F (k))

)m
k=1

,

and define the space

HB := R(KB) ⊆ L2(∂Ω)m.

with the range space norm

‖
(
f (k)
)m
k=1
‖HB

:= inf{‖
(
F (k)

)m
k=1
‖ (L2(B)n)m : f (k) = K̃B(F (k)) ∀k}.

For two open sets B1, B2, with B1 ⊆ B2, a standard mollification argument shows

that every solution of (23) with source term F ∈ L2(B1)n also solves (23) with a

source term in H1(B2)n. Since H1(B2)n is compactly embedded in L2(B2)n, it follows

that the range space HB1 is compactly embedded in HB2. Hence, analogously to the

use of source conditions in regularization theory, the spaces HB can be interpreted

as abstract smoothness classes which formalize the intuitive fact that smaller sources

generate smoother boundary potentials.

In that formalism, the geometrically interpolated measurement matrix in definition

3.2 is obtained from evaluating the minimum norm interpolant in HB under the

additional constraint of a symmetry and zero column sum condition.

We will now show that the geometrically interpolated matrix is unique and that it

can be obtained in an easy and computationally cheap way. To that end, we assume

that σ0 fulfills a unique continuation property (UCP), which means that every solution

of ∇ · (σ0∇u0) = 0 that is constant on an open subset of Ω must be constant on all of

Ω. Also, we assume that B is chosen consistent with the pixel partition, i.e.,

B =
⋃
Pi⊆B

Pi.

As in subsection 2.3, Si ∈ Rm×m denotes the sensitivity matrix for the i-th pixel, i.e.

the i-th column of the sensitivity matrix written as a m×m-matrix, cf. (9). Summing

up all elements in B we define

SB =
∑

i: Pi⊆B

Si ∈ Rm×m.

S+
B ∈ Rm×m denotes the (Moore-Penrose-)pseudoinverse of SB. ej ∈ Rm is the j-th unit

vector.
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Theorem 3.4. There exists a unique geometrically interpolated measurement matrix

V geom ∈ Rm×m. It is the unique minimizer of

−
m∑
j=1

eTj (V geom)TS+
BV

geomej → min!

under the constraints (20)–(22).

Theorem 3.4 is proven in the next subsection.

Remark 3.5. The minimization problem in theorem 3.4 can be solved analytically. Let

V ∈ Rm×m be a symmetric EIT difference measurement matrix (with possibly erroneous

entries Vjk for |j − k| ≤ 1).

V geom ∈ Rm×m fulfills the constraints (20)–(22) if and only if V geom
jk = Vjk for

|j − k| > 1, and there exists a vector w ∈ Rm with

V geom
j−1,j = wj, V geom

j+1,j = wj+1, V geom
j,j = −

∑
l: |l−j|>1

Vjl − wj − wj+1. (24)

Hence, we can write

V geomej = A(j)w + b(j)

where A(j) ∈ Rm×m and b(j) ∈ Rm are given by

A
(j)
kl = δk,j−1δl,j + δk,j+1δl,j+1 − δk,jδl,j − δk,jδl,j+1

b
(j)
k =


Vjk for |k − j| > 1,

0 for |k − j| = 1,

−
∑

l: |l−j|>1 Vjl for k = j.

Thus, with A := −
∑m

j=1(A(j))TS+
BA

(j) and b := −
∑m

j=1(A(j))TS+
Bb

(j), the

minimization problem is equivalent to minimizing

1

2
wTAw + bTw → min!

for which the unique solution is given by w = −A−1b. The values of V geom are then

determined by (20) and (24).

Remark 3.6. Given r pixels and m electrodes, the computational effort to compute SB
is at most rm2, and all other computations in remark 3.5 are of the order O(m3). In a

setting where the upper bound B and the sensitivity matrix S stay constant over several

time-steps, a factorization of the matrix A can be precomputed. Thus the interpolation

can be carried out in O(m2) steps, which is neglectable to the computational cost of

reconstructing the conductivity. Hence, our new interpolation method is well suited for

real-time imaging.

Remark 3.7. Note that our interpolation method uses the sensitivity matrix which also

appears in linearized reconstruction methods. However, the interpolation method does

not rely on a linearized approximation and interpolates the values of the true voltage

difference (that depends non-linearly on the conductivity change).
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3.4. Proof of theorem 3.4

The rest of this section is devoted to proving theorem 3.4. We first introduce the so-

called virtual measurement operator (cf., e.g., [27, 32])

L : L2(B)n → R
m, F 7→

(
v|Ek − v|Ek+1

)m
k=1
∈ Rm,

where v|Ek − v|Ek+1
, k = 1, . . . ,m, is the measurement on the k-th electrode pair of the

solution of the source problem

∇ · (σ0∇v) = ∇ · F,
with boundary conditions (16)–(18). The next lemma summarizes some properties of L

and its connection to the sensitivity matrix.

Lemma 3.8. (a) The adjoint of L is given by

L∗ : Rm → L2(B)n, L∗w =
m∑
j=1

wj∇u(j)
σ0
|B for w = (wj)

m
j=1 ∈ Rm,

where u
(j)
σ0 solves (1)–(4) with reference conductivity σ0 and electric current driven

through the j-th and (j + 1)-th electrode.

(b) If B is consistent with the pixel partition, i.e., B =
⋃
i: Pi⊆B Pi, then SB = −LL∗.

(c) If σ0 fulfills a UCP, then R(L) = {v :
∑m

j=1 vj = 0} ⊂ Rm.

Proof. (a) For the j-th unit vector ej ∈ Rm and F ∈ L2(B)n we have that∫
B

F · (L∗ej) dx = (LF ) · ej = v|Ej − v|Ej+1
=

∫
∂Ω

σ0∂νu
(j)
σ0
|∂Ω v|∂Ω ds

=

∫
B

F · ∇u(j)
σ0

dx.

(b) For the j-th and k-th unit vector ej, ek ∈ Rm, we have that∫
B

(L∗ej) · (L∗ek) dx =

∫
B

∇u(j)
σ0
· ∇u(k)

σ0
dx

=
∑

i: Pi⊆B

∫
Pi

∇u(j)
σ0
· ∇u(k)

σ0
dx = −

∑
i: Pi⊆B

eTj Sie
T
k = −eTj SBek.

(c) If σ0 fulfills a UCP, then

0 = L∗w =
m∑
j=1

wj∇u(j)
σ0
|B

is equivalent to
∑m

j=1wju
(j)
σ0 = const. on all of Ω.

Due to the definition of u
(j)
σ0 , we have that for each l = 1, . . . ,m,∫

El
σ0∂ν

m∑
j=1

wju
(j)
σ0

ds =
m∑
j=1

wj

∫
El
σ0∂νu

(j)
σ0

ds =
m∑
j=1

wj(δj,l − δj+1,l)

= wl − wl+1

Hence,
∑m

j=1 wju
(j)
σ0 = const. is equivalent to w1 = . . . = wm = const., so that the

assertion follows from N (L∗)⊥ = R(L).
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Proof of theorem 3.4. Let V ∈ Rn×n be symmetric difference EIT measurements

(with possibly erroneous entries Vjk for |j − k| ≤ 1). Due to lemma 3.8(c), the

minimization problem in definition 3.2 is equivalent to finding V geom ∈ Rm×m that

minimizes
m∑
j=1

‖L+V geomej‖2
L2(B)n → min!

under the constraints (20)–(22).

From lemma 3.8(b) it follows that (L+)∗L+ = (LL∗)+ = −S+
B , so that

‖L+V geomej‖2
L2(B)n = −eTj (V geom)TS+

BV
geomej.

Finally, for all v ∈ R(L) we have that

−vTS+
Bv = ‖L+v‖2

L2(B)n ≥
1

‖L‖2
‖LL+v‖2

2 =
1

‖L‖2
‖v‖2

2,

so that

−
m∑
j=1

eTj (V geom)TS+
BV

geomej ≥
1

‖L‖2

m∑
j=1

‖V geomej‖2 =
1

‖L‖2
‖V geom‖2

Fro.

This shows that −
∑m

j=1 e
T
j (V geom)TS+

BV
geomej is a strictly coercive quadratic functional

on the affine linear space of matrices fulfilling the constraints (20)–(22), which is a non-

empty subset of R(L). Hence, the minimization problem is uniquely solvable. �

4. Numerical results

In this section, we use the open source framework EIDORS developed by Adler

and Lionheart [2], available on eidors.org, to numerically evaluate how good the

interpolated measurements agree with the true ones and to test the performance of

the matrix-based monotonicity method on interpolated data.

In our first example, the imaging domain Ω is the two-dimensional unit circle, the

reference conductivity is σ0 = 1, and the true conductivity is σ = 1+χD1+χD2+χD3 with

a larger half-ellipsoidal inclusion D1 and two smaller circular inclusions D2 and D3, see

figure 1. We use EIDORS to simulate difference EIT measurements V := U(σ)−U(σ0) ∈
R
m×m for an adjacent-adjacent driving pattern with m electrodes (including voltages

on current-driven electrodes) as described in section 2.1. The sensitivity matrix is also

obtained from EIDORS but with another FEM grid to avoid an inverse crime. Figure

1 shows σ0 and σ for a setting with m = 32 electrodes, and the FEM grids used for

calculating the measurements U(σ0), U(σ) and the sensitivity matrix S. The FEM grid

for the latter is also used as the pixel partition for the reconstruction. Note that the

choice of the reconstruction grid is ad-hoc in our examples in this section. For a fixed

reconstruction grid, the monotonicity method will show the support of the conductivity

difference up to the grid resolution in the limit of noiseless data and infinitely many

electrodes. But it not yet clear how to choose an optimal reconstruction grid for a given
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Figure 1. True conductivity σ (left image) and reference conductivity σ0 (middle

image) and the FEM grid used to calculate U(σ) and U(σ0). The right image shows

the FEM grid used to calculate the sensitivity matrix S.

amount of noise and number of electrodes (see however [33] for a method to evaluate

whether certain reconstruction guarantees hold true on a given grid).

From the simulated EIT measurements V ∈ Rm×m, the entries corresponding to

voltages on current-driven electrodes, Vjk with |j − k| < 1 (modulo m), are removed,

and replaced using the simple linear interpolation method in subsection 3.2, and by our

new geometrical interpolation method in subsection 3.3. For the latter, we use as upper

bound B the union of all pixels which intersect an open ball (centered at the origin)

with radius r > 0.

For a first impression of the performance of our new interpolation method consider

figure 2. The black circles show the first 50 voltages taken columnwise from the difference

EIT measurements V for m = 24 electrodes. The 24th entry corresponds to the voltage

between the 24th and the 1st electrode with current applied between the 1st and 2nd

electrode, the 25th-27th entry are the voltages between the 1st and the 2nd, the 2nd and

the 3rd, and the 3rd and the 4th electrode, resp., while the current is driven between

the 2nd and the 3rd electrode. Accordingly, these four entries are voltages on current

driven electrodes. The red dashed line shows the values obtained by linear interpolation

and the black solid line shows the values obtained by our new geometric interpolation

method with r = 0.7. Our new method recovers the voltage on active electrodes much

more precisely than the linear interpolation method.

Table 1 lists the relative interpolation errors in the Frobenius norm

‖V − V lin‖F
‖V ‖F

, resp.,
‖V − V geom‖F
‖V ‖F

for different electrode numbers m and radii r of the upper bound B . The results for

our new interpolation using geometry-specific smoothness are clearly superior to linear

interpolation. The interpolation error falls below 1% already for 32 electrodes and an

upper bound B with r = 0.8.

We now study the feasibility of using interpolated measurements for the matrix-

based monotonicity method described in subsection 2.3. We simulate the measurement
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Figure 2. First 50 voltages measured in a setting with m = 24 electrodes including

voltages on current driven electrodes (black circles) and the interpolated values using

simple linear interpolation (red dashed line) and the new geometric interpolation

method with r = 0.7 (black line).

m = 8 m = 16 m = 24 m = 32 m = 40

linear interpolation 75.44% 32.29% 15.65% 8.23% 5.22%

geom. interpol. (r = 0.9) 79.07% 31.03% 11.00% 3.77% 1.48%

geom. interpol. (r = 0.8) 69.33% 18.09% 3.98% 0.67% 0.21%

geom. interpol. (r = 0.7) 61.88% 12.17% 2.48% 0.41% 0.16%

Table 1. Relative error (measured in the Frobenius norm) caused by replacing voltages

on current driven electrodes by interpolated values.

matrix V ∈ Rm×m for m = 32 electrodes (including the voltages on current-driven

electrodes). Using a matrix E ∈ Rm×m containing independently uniformly distributed

random values in the interval [−1, 1], we simulate noisy measurements by setting

Vδ := V + δ‖V ‖F
E

‖E‖F
for a given relative noise level δ > 0. As above, we then remove the voltages on current-

driven electrodes in Vδ and replace them by interpolated values using linear interpolation

and our new geometry-specific interpolating method (again with r = 0.7, r = 0.8, and

r = 0.9) to obtain the matrix V lin
δ , resp., V geom

δ . Our aim is to compare how much

the monotonicity-based methods described in subsection 2.3 are affected by using the

interpolated measurements V lin
δ , resp., V geom

δ instead of Vδ.

We implement the monotonicity method’s indicator function (14) in the following

form. As in (9), let Si ∈ Rm×m contain the entries of the i-th column of the sensitivity-

matrix S ∈ Rm2×r. Since we deal with noisy measurements, we calculate the following

regularized version of (13)

βδi := max{β ≥ 0 : βSi ≥ −|Vδ| − δ‖Vδ‖F I},

so that βδi > 0 is guaranteed to hold for every pixel inside the inclusions.
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To calculate βδi , note that |V |+ δ‖Vδ‖F I is positive definite and thus possesses an

invertible matrix square root A ∈ Rm×m with A∗A = |Vδ| + δ‖Vδ‖F I. For each β > 0,

we have that

βSi + |Vδ|+ δ‖Vδ‖F I = βSi + A∗A = A∗(A−∗βSiA
−1 + I)A,

so that the definiteness condition βSi ≥ −|V | − δ‖Vδ‖F I is equivalent to

βA−∗SiA
−1 + I ≥ 0. (25)

Since obviously Si ≤ 0, the condition (25) is fulfilled if and only if no eigenvalue of

A−∗SiA
−1 is smaller (more negative) than − 1

β
. Hence,

βδi = − 1

λ1

where λ1 is the smallest (most negative) eigenvalue of A−∗SiA
−1 ∈ Rm×m.

In the same way, we calculate the monotonicity indicator functions for the

interpolated measurements V lin
δ and V geom

δ . Figure 3 shows (for m = 32 electrodes) the

plot of x 7→
∑r

j=1 β
δ
i χi(x) for measurements including the correct values on current-

driven electrodes (first column), for geometrically interpolated measurements (with

r = 0.7, r = 0.8 and r = 0.9 in the second, third and fourth column, respectively),

and for linearly interpolated measurements (fifth column). The first line in figure 3

corresponds to the almost noiseless case (δ = 0.001%), for the second line we added

relative noise with δ = 0.1%. The reconstructions are plotted with the EIDORS

standard setting that all pixels with values less than 25% of the maximal value are

set to transparent color. Additionally we cropped the color scale so that all pixels

with values more than 50% of the maximal value are plotted with the same color. The

results indicate that measurements on current-driven electrodes can well be replaced by

interpolated measurements.

We also test our new interpolation method on a 3D example, where the imaging

domain Ω is a cylinder to which electrodes are attached in 3 planes of k electrodes each.

The reference conductivity is σ0 = 1, and the true conductivity is σ = 1 + χD1 + χD2

with a larger, vertically aligned, cylindrical inclusion D1 and a smaller circular inclusion

D2, see figure 4. We used EIDORS to simulate difference EIT measurements V :=

U(σ)−U(σ0) ∈ Rm×m for an adjacent-adjacent driving pattern with m = 3k electrodes,

including voltages on current-driven electrodes. Note that the driving patterns also

contain measurements between electrodes on different planes. Figure 4 shows σ0 and

σ for a setting with k = 24 electrodes on each plane, and the FEM grids used for

calculating the measurements U(σ0), U(σ) and for calculating the sensitivity matrix S.

As in the two-dimensional case, we calculate the relative interpolation error that

arises when measurements on current driven electrodes are removed and replaced using

our new geometrical interpolation method. For the latter, we use as upper bound B

the union of all pixels which intersect an open cylinder (centered at the origin) with

radius r = 0.7, r = 0.8, and r = 0.9. Table 2 lists the relative interpolation errors in the

Frobenius norm for a total number of 3 ·16, 3 ·20, 3 ·24, and 3 ·28 electrodes. The naive
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Figure 3. Monotonicity-based reconstructions using measurements on 32 electrodes

including voltages on current driven electrodes (1st column) and after replacing them

with geometrically interpolated values (with r = 0.7, r = 0.8 and r = 0.9 in the 2nd,

3rd and 4th column), and with linearly interpolated values (5th column). First line

contains almost noiseless data (δ = 0.001%), second line contains relative noise with

δ = 0.1%.

Figure 4. True conductivity σ (left image) and reference conductivity σ0 (middle

image) and the FEM grid used to calculate U(σ) and U(σ0). The right image shows

the FEM grid used to calculate the sensitivity matrix S.

m = 3 · 16 m = 3 · 20 m = 3 · 24 m = 3 · 28

geom. interpol. (r = 0.9) 37.90% 23.93% 16.74% 7.88%

geom. interpol. (r = 0.8) 23.17% 11.82% 7.52% 3.17%

geom. interpol. (r = 0.7) 17.51% 8.04% 6.81% 2.56%

Table 2. Relative error (measured in the Frobenius norm) caused by replacing voltages

on current driven electrodes by interpolated values.

application of our simple linear interpolation method fails on measurements between

electrodes on different planes, and produced interpolation errors roughly around 40%

for all our settings. Our new geometric interpolation method approximates the voltages

on current driven electrodes well, the accuracy when using 3 planes of 28 electrodes is

around 2.5%.
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Figure 5. Monotonicity-based reconstructions using measurements on 32 electrodes

including voltages on current driven electrodes (1st column) and after replacing them

with geometrically interpolated values (with r = 0.7, r = 0.8 and r = 0.9 in the 2nd,

3rd and 4th column), and with linearly interpolated values (5th column).

Figure 5 shows the results of using the monotonicity method for the setting with

k = 24 electrodes on each of 3 planes. We only calculated the indicator βi for pixels

between the upper and lower electrode plane. From left to right, the figure shows the

reconstruction from measurements including active electrode data, and after replacing

them with geometrically interpolated values using r = 0.7, r = 0.8 and r = 0.9, and

after replacing them with linearly interpolated values. A relative noise of δ = 0.1%

was added to the measurements. The reconstructions are plotted with the EIDORS

standard setting that all pixels with values less than 25% of the maximal value are set to

transparent color. The monotonicity method works well with geometrically interpolated

data. The reconstructions with interpolated data are almost indistinguishable from that

using active electrode data, which is even better than what one would expect from the

interpolation error in table 2. Moreover, even with naively linearly interpolated data, a

very rough estimate of the convex hull of the inclusions is obtained.

5. Conclusion and discussion

Rigorously justified reconstruction methods for EIT, such as monotonicity-based

methods, require voltage measurements on current-driven electrodes which are difficult

to obtain in practice. In this work, we have developed a method to interpolate the

voltages on current-driven electrodes from measurements on current-free electrodes for

difference EIT settings. The interpolation is based on the geometry-specific smoothness

of difference EIT data that arises from the fact that the difference potential solves an

elliptic source problem.

Our method requires the a-priori knowledge of an upper bound of the support

of the conductivity change. The implementation of our new interpolation method is

particularly simple and computationally cheap. It suffices to identify the partition

elements that belong to the upper bound of the support of the conductivity change, sum

up the corresponding columns of the standard sensitivity matrix, and to invert matrices

that are formed from this sum. The method is well suited for real-time imaging. In a

setting with m electrodes and r partition elements, the computational cost is merely of
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the order O(rm2) +O(m3) which lowers to O(m2) if geometry-specific quantities can be

precomputed. Our numerical experiments show that the method achieves a very high

interpolation accuracy, and that a monotonicity-based reconstruction method performs

well with interpolated data.

We have formulated the method for the interpolation of voltages on current-driven

electrodes in a real conductivity setting with adjacent-adjacent current driven patterns.

The method seems also applicable to interpolate other missing or erroneous data (e.g.,

bad electrode data in practical measurements), and it should be extendable to complex

conductivity (weighted frequency-difference) settings.

Our interpolation method is only applicable in difference EIT imaging and when

the conductivity change occurs away from the boundary (which is arguably the most

relevant case for recent commercial EIT applications). Voltage measurements in static

EIT settings and voltage differences generated by a conductivity change at the boundary

cannot be expected to possess the necessary smoothness properties to predict missing

measurements by interpolation. Also, of course, interpolation is only necessary for

EIT systems (such as the recent commercial ones) that do not provide reliable voltage

measurements on current-driven electrodes.

Finally, let us stress that voltages on current-driven electrodes are only required by

rigorously justified reconstruction methods such as the monotonicity method described

herein. In practical applications, it is more common to use generic reconstruction

algorithms that are based on minimizing a regularized data-fit functional, where

missing measurements can simply be deleted from the residuum term. There are no

rigorous convergence results for such generic optimization-based approaches, but they

practically perform very well, and, so far, the stronger theoretical basis of rigorously

justified methods has not lead to superior reconstructions in practice. Medical imaging

algorithms must meet the highest standards, both in their practical performance and

their theoretical justification. Hence, it seems highly desirable to develop practically

well-working algorithms for which at least certain properties can also be theoretically

guaranteed.
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