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Abstract7

We focus on a geometrical inverse problem that involves recovering disconti-8

nuities in electrical conductivity based on boundary measurements. This problem9

serves as a model to introduce a shape recovery technique that merges the mono-10

tonicity method with the level-set method. The level-set method, commonly used11

in shape optimization, often relies heavily on the accuracy of the initial guess. To12

overcome this challenge, we utilize the monotonicity method to generate a more13

precise initial guess, which is then used to initialize the level-set method. We pro-14

vide numerical results to illustrate the effectiveness of this combined approach.15

Keywords: Global convergence, Level-set method, Monotonicity method, Inverse16

problems, Linearization, shape derivative.17

1 Introduction18

The reconstruction of anomalies in materials through non-destructive testing is becoming19

increasingly crucial and has generated significant interest in the field of inverse problems.20

This field encompasses a wide range of applications covering engineering, geosciences and21

medical diagnostics.22

In engineering, particularly in the aerospace and automotive industries, it is essential23

to accurately detect and characterize defects or inclusions in materials to ensure the24

integrity and reliability of structures. Non-destructive testing techniques play an essential25

role in this respect, as they enable inspections to be carried out without compromising26

the integrity of the materials tested.27

Numerous researchers have addressed the task of reconstructing anomalies using di-28

verse methodologies, including iterative algorithms based on topological and shape gra-29

dient methods; see for instance [4, 7, 5, 29, 3, 27] and the references therin.30
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The level-set method is a powerful tool for shape optimization that represents shapes1

implicitly as the zero level-set of a higher-dimensional function, typically a signed distance2

function. The shape is evolved over time by solving partial differential equations (PDEs)3

that govern the movement of the level-set. These methods allow for complex topological4

changes like merging and splitting, making them particularly useful for problems where5

the optimal shape may have unknown or complicated boundaries. The level-set method6

provides a flexible framework to handle large deformations and can naturally incorporate7

constraints such as volume preservation. For an overview of the level-set method the8

reader is referred to [4, 27] and the refernces therin.9

In the context of geometrical inverse problems, numerical methods based on the level-10

set method and on the shape differentiation are highly dependent on the initial guess. This11

is because these problems are often ill-posed, meaning they can have multiple solutions or12

no solution at all under certain conditions. The presence of numerous local minima, each13

with potentially different topologies, further complicates the problem. As a result, the14

choice of the initial guess plays a critical role in determining the success of the algorithm,15

as it can significantly affect whether the method converges to a desirable solution or gets16

trapped in suboptimal ones. Therefore, selecting an appropriate initial guess, can be17

crucial in overcoming these challenges.18

In [7], the authors demonstrate that, for certain shapes, the issue of selecting an19

initial guess can be circumvented by employing the topological gradient method. In this20

work, we propose an alternative approach that overcomes this problem by utilizing the21

monotonicity property of the Neumann-to-Dirichlet operator.22

Our main contribution is numerical. We develop a numerical reconstruction method23

that combines the monotonicity method to obtain an initial approximation of the desired24

solution, followed by refinement using the level set method. We have also shown that our25

numerical method can successfully recover both the shape and the parameter solutions of26

the inverse problem.27

Let us stress that the problem of local convergence, generally applies to inverse co-28

efficient problems in PDEs. Known reconstruction methods often rely on iterative, e.g.,29

Newton-type approaches or on globally minimizing a non-convex regularized data-fitting30

functional. Such approaches only locally converge and they can be observed to heavily31

depend on the initial guess. In this work we benefit from having the monotonicity method32

as a globally convergent method for the selection of the initial guess. More generally, the33

construction of globally convergent algorithms has been studied using quasi-reversibility34

and convexification ideas in the seminal work of Klibanov et al., cf., e.g., [1, 2, 25, 26],35

and we also mention the recent works of one of the authors on global Newton convergence36

and convex semidefinite reformulations for EIT and a related Robin problem [18, 17, 19].37

Let us give a brief overview about the the monotonicity method:38

The monotonicity method was first introduced in [34] for addressing the electrical resis-39

tance tomography problem. The authors proposed a non-iterative approach based on the40

monotonicity properties of the resistance matrix. Since then, this method has been fur-41

ther developed for applications in static Electrical Capacitance Tomography, Inductance42

Tomography, and Electrical Resistance Tomography [6, 11, 12]. It has also been extended43

to parabolic problems, including Magnetic Induction Tomography (MIT) [33]. Addition-44

ally, the monotonicity method has been applied to linear elasticity [10, 9], where both the45

standard and linearized versions were analyzed. Monotonicity properties have also been46

leveraged for shape reconstruction in electrical impedance tomography [22].47
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The paper is organized as follows: Section 2 introduces the direct and inverse problems.1

Section 3 discusses the monotonicity property of the Neumann-to-Dirichlet operator and2

its application to shape reconstruction, including numerical results. Section 4 reformu-3

lates the inverse problem as a minimization problem using the Kohn-Vogelius functional,4

provides the shape derivative, and presents numerical results using the level-set method.5

Section 5 combines the monotonicity method with the level-set method for reconstruction6

and includes additional numerical results.7

2 A model problem formulation8

We consider a bounded domain Ω ⊂ R2 with smooth boundary ∂Ω and outer unit normal9

vector ν. Assume that the conductivity in Ω is σ = σ0 + (σ1 − σ0)χD, where D ∈ Oad,10

with11

Oad := {D open of class C1,1, and D ⊂ Ω has connected complement},

and σ0, σ1 are positive constants and χ denotes the indicator function.12

Denote L2
♢(∂Ω) (resp. H1

♢(Ω) ) the space of L2 (resp. H1)-functions with vanishing13

integral mean on ∂Ω. For a given current density g ∈ L2
♢(∂Ω) the potential u ∈ H1

♢(Ω)14

satisfies the following Neumann problem15

∇ · (σ∇u) = 0 in Ω, σ∂νu|∂Ω = g,

∫
∂Ω

u ds = 0. (1)

The weak formulation for problem (1) reads16 ∫
Ω

σ∇u · ∇w dx =

∫
∂Ω

gw ds, for all w ∈ H1
♢(Ω). (2)

It is well known that (2) has a unique solution u ∈ H1
♢(Ω). Then the Neumann-to-Dirichlet17

operator Λ(σ) : L2
♢(∂Ω) → L2

♢(∂Ω), g 7→ u|∂Ω is well defined. It is easily shown that18

Λ(σ) ∈ L(L2
♢(∂Ω)) is self-adjoint and compact.19

The quadratic form associated with Λ(σ) is defined by20

⟨Λ(σ)g, g⟩ =

∫
Ω

σ|∇u|2 dx.

It is also know that Λ is Fréchét differentiable and its Fréchét derivative Λ′(σ) ∈ L(L2
♢(∂Ω))21

fulfills22

⟨(Λ′(σ)κ)g, g⟩ = −
∫
Ω

κ|∇u|2 dx, for all κ ∈ L∞(Ω). (3)

We assume that the values σ0 and σ1 are known a priori but the information about23

the geometry D is missing. Then, the geometrical inverse problem we consider here is the24

following:25

Find the shape D knowing the Neuman-to-Dirichlet map Λ(σ). (4)

This is equivalent to find the support supp(σ1 − σ0) from the Neumann-to-Dirichlet op-26

erator Λ(σ). We will also consider the problem, where σ0 and the sign of the contrast27

σ1 > σ0 is known, but the value of σ1 is also to be reconstructed from Λ(σ).28
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3 Shape recovery via the monotonicity method1

This section briefly summarizes the monotonocity method for reconstructing embedded2

shapes in conducting bodies. We start with the concept of Loewner monotonicity and3

then derive the standard (non-linearized) monotonicity method, and the faster linearized4

monotonicity method as in [22]. We then present the noise-robust monotonicity-based5

regularization method from [20].6

3.1 Loewner monotonicity7

To motivate the monotonicity-based method let us recall the following lemma.8

Lemma 1. Let σ, τ ∈ L∞
+ (Ω) be two conductivities and let g ∈ L2

⋄(∂Ω) be an applied9

boundary current. Let u1 = ug
σ, u2 = ug

τ ∈ H1
⋄ (Ω). Then10 ∫

Ω

(σ − τ)|∇uτ |2 dx ≥ ⟨(Λ(τ) − Λ(σ)) g, g⟩ ≥
∫
Ω

τ

σ
(σ − τ)|∇uτ |2 dx, (5)

and11 ∫
Ω

(σ − τ)|∇uσ|2 dx ≤ ⟨(Λ(τ) − Λ(σ)) g, g⟩ ≤
∫
Ω

σ

τ
(σ − τ)|∇uσ|2 dx. (6)

Proof. This lemma goes back to the works [24, 23]. A short proof of (5) using the12

variational formulation (2) can be found in [22, Lemma 3.1]. The other inequalities (6)13

then follow from interchanging τ and σ.14

Lemma 1 implies monotonicity of the mapping σ 7→ Λ(σ) with respect to the fol-15

lowing partial orderings. For symmetric operators A,B ∈ L(L2
♢(∂Ω)) we introduce the16

semidefinite (aka Loewner) ordering:17

A ⪯ B denotes that

∫
∂Ω

g(B − A)gds ≥ 0 for all g ∈ L2
♢(∂Ω).

Also, for functions σ, τ ∈ L∞(Ω)18

σ ⪯ τ denotes that τ(x) ≥ σ(x) for all x ∈ Ω (a.e.).

With this notation, we obtain the following result as an immediate consequence of19

Lemma 1.20

Corollary 1. Let σ1, σ2 ∈ L∞
+ (Ω). Then21

σ1 ≤ σ2 implies Λ(σ1) ⪰ Λ(σ2).

3.2 Standard and linearized monotonicity method22

We return to the problem of reconstructing the shape D ∈ Oad from knowing Λ(σ) where23

σ = σ0 + (σ1 − σ0)χD. Clearly, for any open set B ⊆ D, and every constant α > 0 with24

α ≤ σ1 − σ0, we have that25

σ0 + αχB ≤ σ and thus Λ(σ0 + αχB) ⪰ Λ(σ),

by Corollary 1. Consequently, by marking all open sets B fulfilling Λ(σ0 + αχB) ⪰ Λ(σ)26

for some α > 0, one would obtain a superset of the unknown shape D. The work [22]27

proved that D can indeed be reconstructed by such monotonicity tests:28
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Theorem 1. Let 0 < α ≤ σ1 − σ0, and B be an open set. Then1

B ⊆ D if and only if Λ(σ0 + αχB) ⪰ Λ(σ).

Proof. Since ∂D is a null set, B ⊆ D implies that σ0 +αχB ≤ σ, and thus Λ(σ0 +αχB) ⪰2

Λ(σ) follows from Corollary 1 as explained above. The converse implication is more3

involved and utilizes the idea of localized potentials from [14]. The details can be found4

in [22, Thm 4.1].5

Note that implementing the monotonicity tests in Theorem 1 would be computation-6

ally expensive since for each open set B we would have to solve the EIT equation with7

a new inhomogeneous conductivity in order to calculate Λ(σ0 + αχB). However, using8

the variational formulation of the Fréchet derivative of Λ in (3), one can formulate the9

following linearized variant of the monotonicity test, that is still capable of reconstructing10

the exact shape D.11

Theorem 2. Let 0 < α ≤ σ0

σ1
(σ1 − σ0) = σ0 − σ2

0

σ1
, and B be an open set. Then12

B ⊆ D if and only if Λ(σ0) + αΛ′(σ0)χB ⪰ Λ(σ).

Proof. By Lemma 1, we obtain13

⟨(Λ(σ) − Λ(σ0))g, g⟩ ≤
∫
Ω

σ0

σ
(σ0 − σ)|∇uσ0 |2dx ≤ −α

∫
Ω

χB|∇uσ0|2dx.

Using (3), it follows that14

Λ(σ) − Λ(σ0) ⪯ αΛ′(σ0)χD, and thus Λ(σ0) + αΛ′(σ0)χD ⪰ Λ(σ).

Again, the converse implication can be proven using the idea of localized potentials, and15

we refer the reader for the details in [22, Thm 4.3].16

The linearized monotonicity tests can very efficiently implemented as they only require17

the calculation of Λ′(σ0)χD, which only requires the solution uσ0 of the conductivity18

equation with the background conductivity σ0. Note that it allows for a convergent19

implementation for noisy data. Let Λδ ∈ L(L2
♢(∂Ω)) be a symmetric noisy version of20

Λ(σ) − Λ(σ0) with21

∥Λδ − (Λ(σ) − Λ(σ0)) ∥L(L2
⋄(∂Ω)) < δ,

and 0 < α ≤ σ0

σ1
(σ1−σ0). Then, for every open set B ⊆ Ω, there exists a noise level δ̂ > 0,22

such that for all 0 < δ < δ̂:23

B ⊆ D if and only if αΛ′(σ0)χB ⪰ Λδ − δI, (7)

cf. [22, Remark 3.5], and [13].24
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3.3 The monotonicity-based regularization method1

In numerical experiments (see the next subsection), the monotonicity method can be2

observed to be rather noise-sensitive. To improve its robustness, a combination with a3

data fitting functional has been developed in the works [20, 21]. The main idea is to4

minimize a discretized version of the linearized data fitting residual5

r : L∞(Ω) → L(L2
♢(∂Ω)), r(κ) := Λ(σ) − Λ(σ0) − Λ′(σ0)κ

with a constraint that is based on the monotonicity method.6

In order to explain this in detail, let {Bk}nk=1 form a partition of Ω, i.e.,7

Ω =
n⋃

k=1

Bk, with nonempty, pairwise disjoint Lipschitz domains B1, . . . , Bn.

The set of admissible parameters for minimizing the data fitting functional is defined as8

P :=

{
κ ∈ L∞(Ω) : κ =

n∑
k=1

akχBk
, 0 ≤ ak ≤ min{c, ck}

}
,

where (as in Theorem 2) 0 < c ≤ σ0 − σ2
0

σ1
, and9

ck := max{α > 0 : Λ(σ0) + αΛ′(σ0)χBk
⪰ Λ(σ)}.

It can be shown (cf. [20, Sect. 4.2]) that10

ck = − 1

λmin(L−1Λ′(σ0)χBk
L−∗)

where λmin(·) denotes the smallest (most negative) eigenvalue, and Λ(σ0) − Λ(σ) = LL∗
11

is the Cholesky factorization.12

Let g1, . . . , gm ∈ L2
♢(∂Ω) denote n orthonormal boundary currents, and R(κ) be the13

Galerkin projection of the linearized data fitting residual to the span of these currents,14

i.e.,15

R : L∞(Ω) → Rm×m, R(κ) := (⟨r(κ)gi, gj⟩)mi,j=1 .

Then we have the following result for noiseless data.16

Theorem 3. The quadratic minimization problem under box constraints17

∥R(κ)∥2F → min! s.t. κ ∈ P

possesses a unique solution κ̂ ∈ P. The support of κ̂ agrees with the shape D up to the18

utilized partition of Ω, i.e.19

Bk ⊆ suppκ̂ if and only if Bk ⊆ D.

Proof. [20, Thm. 3.2])20
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For symmetric noisy data Λδ ∈ L(L2
♢(∂Ω)) with1

∥Λδ − (Λ(σ) − Λ(σ0)) ∥L(L2
⋄(∂Ω)) < δ,

we define Rδ(κ) :=
(
⟨rδ(κ)gi, gj⟩

)m
i,j=1

with rδ(κ) := Λδ − Λ′(σ0)κ, and2

Pδ :=

{
κ ∈ L∞(Ω) : κ =

n∑
k=1

akχBk
, 0 ≤ ak ≤ min{c, cδk}

}
,

with3

cδk := max{α > 0 : −αΛ′(σ0)χBk
⪯ |Λδ| + δI} = − 1

λmin(L−1
δ Λ′(σ0)χBk

L−∗
δ )

,

and the Cholesky factorization |Λδ| + δI = LδL
∗
δ . Then we have the following result.4

Theorem 4. The quadratic minimization problem under box constraints5

∥Rδ(κ)∥2F → min! s.t. κ ∈ Pδ

possesses a minimizer κδ ∈ Pδ. For each sequence of minimizers κδ with δ → 0 it holds6

that κδ → κ̂.7

Proof. [20, Thm. 3.8])8

3.4 Numerical results with the monotonicity method9

For the following numerical examples, we use a FEM mesh of the geometry Ω = [0, 1] ×10

[0, 1] with 5248 elements, σ1 = 2, and σ0 = 1. We consider the Neumann boundary data11

given by:12

gk(x, y) = sin(kπy)χ{x=0} − sin(kπy)χ{x=1} + cos(kπx)χ{y=0} − cos(kπx)χ{y=1}, (8)

where k = 1, . . . ,m, m = 23, and χ{x=a} is the indicator function on the boundary x = a.13

We denote by Ā ∈ Rm×m the discrete version of an operator A ∈ L(L2
♢(∂Ω)), i.e., its14

Galerkin projection to the span of g1, . . . , gm.15

We used 100 test balls. Following Theorem 2, for each test ball B, we computed the16

eigenvalues of17

Λ(σ0) − Λ(σ) + αΛ′(σ0)χB

with α = 1/2. A test ball is marked as being inside the inclusion if all of these eigenvalues18

are positive.19

We also considered the noisy data case20

Λ
δ

:= Λ(σ) − Λ(σ0) + δ∥Λ(σ) − Λ(σ0)∥F
E

∥E∥F
,

where the entries of E ∈ Rm×m are normally distributed random variables with a mean21

of zero and a standard deviation of one. In the noisy data case, we mark those test balls22

for which all eigenvalues of23

αΛ′(σ0)χB − Λ
δ

+ δI
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are positive.1

Figure 1: Reconstruction with the linearized monotonicity method in the case of noise-free
data

Figure 2: Reconstruction with the linearized monotonicity method in the case of noisy
data, δ = 0.1%

Figures 1 and 2 show numerical results using the linearized monotonicity method for2

both noise-free and noisy data (with δ = 0.001). The numerical reconstructions comply3

with the theoretical results, but they also show high noise sensitivity.4

We now turn to the monotonicity-based regularization method. We use the same5

geometry setting as before, but now use n = 100 square pixels Bk as a partition of Ω.6

Denote Sk := Λ′(σ0)χBk
∈ Rm×m, k = 1, . . . , n. Following Section 3.3, for the noiseless7

case, we set8

ck := max{α > 0 : Λ(σ0) + αSk ⪰ Λ(σ)},
c := 1/2, and minimize9 ∥∥∥∥∥Λ(σ) − Λ(σ0) −

n∑
k=1

akSk

∥∥∥∥∥
2

F

→ min! s.t. 0 ≤ ak ≤ min{c̄, ck}.

In the noisy data case, we use10

cδk := max{α > 0 : −αSk ⪯ |Λδ| + δI},

and minimize11 ∥∥∥∥∥Λ
δ −

n∑
k=1

akSk

∥∥∥∥∥
2

F

→ min! s.t. 0 ≤ ak ≤ min{c̄, cδk}.
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Figure 3: Reconstruction with the monotonicity-based regularization method in the case
of noise-free data.

Figure 4: Reconstruction with the monotonicity-based regularization method in the case
of noisy data, δ = 10%.

Figure 3 and 4 show numerical results using the monotonicity-based regularization1

method for both noise-free and noisy data (with δ = 0.1). They clearly demonstrate2

the highly improved noise robustness for the monotonicity-based regularization method.3

The minimization was carried out using CVX, a package for specifying and solving convex4

programs [16, 15]. Note that, as it was already observed in [20, 21], the CVX package pro-5

vides superior reconstructions compared to using Matlab’s standard quadprog function.6

Moreover, in our numerical experiments, we have again observed that almost equally good7

results can be obtained with the simplified constrained 0 ≤ ak ≤ c̄, though a theoretical8

explanation for this is still missing.9

4 Shape recovery via the Kohn-Vogelius functional10

In this section, we turn to an iterative strategy to recover the unknown shape D. To11

transforming the inverse problem (4) into a minimization problem, we use a Kohn-Vogelius12

type functional to achieve shape recovery. This approach allows us to frame the problem13

as follows:14 minimize J (D, uD, vD) :=

∫
Ω

σ|∇(uD − vD)|2 dx

subject to D ⊂ Oad, uD and vD solutions of (1) and (10),

(9)
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where uD is the solution of the Neumann problem (1) and vD is the solution of the Dirichlet1

problem2 {
−div(σ∇vD) = 0 in Ω,

vD = f on ∂Ω,
(10)

where f ∈ H1/2(∂Ω) is a measurement of the potential corresponding to the input flux g.3

To solve numerically the minimzation problem (9), we need to compute the shape4

derivative of the Khon-Vogelius functional J .5

First, we recall some basic facts about the velocity method from shape optimization6

used to calculate the shape derivatives of the functionals J , see [8, 32]. In the velocity (or7

speed) method a domain Ω is deformed by the action of a velocity field V . The evolution8

of the domain is described by the following dynamical system:9 
d

dt
x(t) = V (x(t)), t ∈ [0, ε)

x(0) = X
(11)

for some real number ε > 0. Assume V ∈ D1(Ω;R2) where D1(Ω;R2) denotes the space10

of continuously differentiable functions with compact support in Ω, then the ordinary dif-11

ferential equation (11) has a unique solution. This allows us to define the diffeomorphism12

Tt : R2 → R2 : X 7→ Tt(X) := x(t),

For t ∈ [0, ε), Tt is invertible satisfies Tt(Ω) = Ω but Tt(D) ̸= D. The Jacobian ξ(t)13

defined by14

∀ t ∈ [0, ε), ξ(t) = |detDTt(X)| > 0,

where DTt(X) is the Jacobian matrix of the transformation Tt associated with the velocity15

field V , is derivable with respect to t and16

ξ′(0) = I2 −DV −DV T . (12)

Let J be a real valued function J : Ω −→ R. We say that J has a Eulerian semideriva-17

tive at Ω in the direction V if the following limit exists and is finite:18

dJ(Ω;V ) = lim
t↘0

J(Tt(Ω)) − J(Ω)

t
.

If the map V −→ dJ(Ω;V )) is linear and continuous, we say that J is shape differentiable19

at Ω.20

Now, we state the shape derivative of the functional J with respect to the shape D.21

We introduce the reduced functional J(D) := J (D, uD, vD).22

Theorem 5. The functional J is shape differentiable with respect to D and its derivative23

in the direction V is given by24

dJ(D;V ) =

∫
Ω

(ξ′(0)∇vD · ∇vD − ξ′(0)∇uD · ∇uD) dx. (13)

Proof. The proof of Theorem 5 can be found in [4, 27].25
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4.1 Algorithm and numerical results1

In this subsection, we use the same conductivity values as in Section 3 and apply specific2

boundary fluxes, which are derived from the data in (8) and presented as follows:3

g1 =
gk(0, y) − gk(1, y)

sin(kπy)
− gk(x, 0) + gk(x, 1)

cos(kπx)
,

g2 =
gk(0, y) − gk(1, y)

sin(kπy)
− gk(x, 1) − gk(x, 0)

cos(kπx)
,

g3 =
gk(0, y) − gk(1, y)

sin(kπy)
+

gk(x, 0) − gk(x, 1)

cos(kπx)
,

g4 =
gk(x, 0)

cos(kπx)
− gk(1, y)

sin(kπy)
,

g5 =
gk(1, y)

sin(kπy)
− gk(x, 1)

cos(kπx)
.

To simulate noisy data, the measurements fk (fk = uk|∂Ω where uk is solution of the direct4

problem with g = gk, k = 1, . . . , 3) are corrupted by adding a normal Gaussian noise with5

mean zero and standard deviation η ∗ ∥fk∥∞, where η is a parameter.6

For the numerical implementation, we use the software package FEniCS; see [28]. The7

avoid the so-called inverse crime problem, the domain Ω is meshed using crossed grid of8

128×128 elements to compute the measurements f . Then we use a crossed grid of 64×649

to solve the minimization problem.10

The evolution of the shape D is modeled using the level set method originally intro-11

duced in [30], which gives a general framework for the computation of evolving interfaces12

using an implicit representation of these interfaces. The core idea of this method is to13

represent Γt as the level set of a continuous ϕ : Ω × R+ → R, the so-called level set14

function:15

Dt = {x ∈ Ω, ϕ(x, t) < 0}. (14)

Let x(t) be the position of a particle on Dt moving with velocity ẋ(t) = V (x(t)) according16

to (11). Differentiating the relation ϕ(x(t), t) = 0 with respect to t yields the Hamilton-17

Jacobi equation:18

∂tϕ + V · ∇ϕ = 0 in Dt ×R+, (15)

which can be extended to Ω × R+. For the discretization of (15) we use the Local Lax-19

Friedrichs flux from [31] and a forward Euler time discretization. The shape gradients of20

J is computed in the H1-norm, i.e. we solve for instance the equation21

Find V ∈ H1
0 (Ω) :

∫
Ω

DV : DW = −dJ(D;W ) for all W ∈ H1
0 (Ω) (16)

where dJ(D;W ) is given by (13).22

The algorithm proceeds through the following steps23

1. Initialize the level-set function ϕ0 based on the initial guess D0.24

2. Repat until convergence, for k ≥ 0:25

11



a. Compute the solutions uk of (1), associated with the shape1

Dk = {x ∈ Ω : ϕk(x) < 0}

.2

b. Deform the shape Dk by transporting o the level set function ϕk+1(x) =3

ϕ(x,∆tk), where ϕ(x, t) is solution of (15) with velocity V given by (16) and4

initial condition ϕ(x, 0) = ϕk(x). The time step is selected so that J(Dk+1) <5

J(Dk).6
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Figure 5: Reconstruction with the levelset method. First row: initialization (solid con-
tours) and true inclusion (dashed contour). Second row: reconstruction with free noise
(solid contours) and true inclusion (dashed contours). Convergence occurs in 70, 79, 87
and 60 iterations (from left to right). Third row: reconstruction with noise level η = 0.01
(solid contours) and true inclusion (dashed contours). Convergence occurs in 78, 82,
125 and 110 iterations (from left to right). Fourth row: reconstruction with noise level
η = 0.03 (solid contours) and true inclusion (dashed contours). Convergence occurs in
105, 90, 175 and 120 iterations (from left to right).
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Figure 6 presents a numerical example demonstrating the failure of the level set method1

to converge with an alternative initialization, in contrast to the initialization given by the2

monotonicity method (see, second column of Figure 7). This motivates us to employ the3

monotonicity method to achieve a robust initialization and address the challenges posed4

by improper initialization in the level set method.5
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Figure 6: Reconstruction with the levelset method: initialization (solid contours) and
true inclusion (dashed contour). Right figure: reconstruction with noise level η = 0.01.
The algorithm stop afer 72 iterations.

Remark 1. We emphasized that, for shape recovery using the Kohn-Vogelius process,6

the measurements ⟨Λ(σ) − Λ(σ0)gi, gj⟩, required in the regularized monotonicity method,7

are not essential. Instead, partial measurements of the form (Λ(σ)gi) are sufficient. To8

improve the computational efficiency of the level set method, a carefully selected subset of9

boundary data was extracted from the dataset specified in (8).10

5 Combined monotonicty and level-set method for11

shape reconstruction12

In this section, we present numerical results using a combination of monotonicity and level13

set methods. More precisely, we begin by applying the monotonicity method to obtain an14

initial approximation of the solution. We then refine this approximation using the level15

set method for improved resolution.16

Since the regularized monotonicity method provides a better approximation compared17

to the linearized monotonicity method, especially in the presence of noisy data, we use the18

results shown in Figure 4 as the initialization for the numerical results in Figure 7. For19

simplicity, we approximate the results in Figure 4 using basic geometries, such as circles20

or ellipses.21
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Figure 7: Reconstruction with the combined monotonicity and levelset methods. First
row: reconstruction with the regularized monotonicity method with 0 ≤ ak ≤ min(c̄, ck)
and δ = 0.1 (which is the initialization of the level set method). The true inclusion is
the dashed contour. Second row: finale iterate of the level set method in the case of free
noise. Convergence occurs in 40, 60, 48 and 49 iterations (from left to right). Third row:
finale iterate of the level set method in the case of noise level η = 0.01. Convergence
occurs in 65, 67, 72 and 62 iterations (from left to right). Fourth row: finale iterate of
the level set method in the case noise level η = 0.03. Convergence occurs in 70, 75, 89
and 69 iterations (from left to right)

Figure 7 illustrates the reconstruction achieved through the combined methods. It is1

evident that this approach yields a superior approximation of the solution when compared2

to using the monotonicity or level set methods individually. Moreover, the reconstruction3

demonstrates rapid convergence and stability, even with varying levels of noise in the4

data.5

By employing monotonicity-based regularization as an initial guess, the convergence6

rate is enhanced, allowing the combined method to outperform the classical approach in7

terms of speed.8
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5.1 Numerical results for shape and parameter reconstruction1

In this subsection, we present numerical results for the simultaneous reconstruction of the2

conductivity σ1 and the shape D with five measuremenst gk, k = 1 . . . 5 and initial guess3

genetated by the regularized monotonicity method.4

The algorithm follows a binary search approach: first, the shape D is updated using5

the level set method, and then, during each iteration, the conductivity σ1 is refined using6

the Newton method by minimizing the convex functional7

φ(σ1) :=

∫
Ω

(σ0 + (σ1 − σ1)χD)∇|ug|2 dx−
∫
∂Ω

gf ds. (17)

Here, ug is the solution of the direct problem (1) corresponding to the flux g, and8

frepresents the boundary trace of the solution to the direct problem (1), where σ1 and D9

are the true parameters.10
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Figure 8: Simultaneous reconstruction of the conductivity σ1 and the shape D without
noise data (η = 0.0). First colum: initialization (solid contours) and true inclusion (dashed
contour). Second column: reconstruction (solid contours) and true inclusion (dashed
contours). Third column: history of convergence for the conductivity σ1, the orange line
represents the true value of σ1. Convergence occurs in 43 and 50 iterations(from up to
down).

Figure 8 show the simultenous reconstruction of the conductivity σ1 and the shape D11

using 5 measurements. In the case of one ball the shape is well recontruced as well as the12

conductivity σ1approx = 2.002575. For the shape described in row 2, we also get a good13

reconstruction results. The approximated conductivity is given by σ1approx = 1.992835.14
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Figure 9: Simultaneous reconstruction of the conductivity σ1 and the shape D with noise
data (η = 0.001). First colum: initialization (solid contours) and true inclusion (dashed
contour). Second column: reconstruction (solid contours) and true inclusion (dashed
contours). Third column: history of convergence for the conductivity σ1, the orange line
represents the true value of σ1. Convergence occurs in 50 and 90 iterations(from up to
down).

Figure 9 show the simultenous reconstruction of the conductivity σ1 and the shape D1

using 5 measurements. In the case of one ball the shape is well recontruced as well as2

the conductivity σ1approx = 1.993903. For the shape described in row 2, the conductivity3

is well reconstructed compared to the shape. The approximated conductivity is given by4

σ1approx = 2.0294112.5

6 Conclusion6

In this paper, we developed a numerical method that combines monotonicity and the7

level set method to solve a geometric inverse problem. We specifically addressed the8

conductivity problem to apply our numerical scheme.9

The effectiveness of the level set method is often influenced by the quality of the10

initial guess. To improve this, we used both the linearized monotonicity method and a11

regularized monotonicity method to select a suitable initialization. Our results show that12

the regularized monotonicity method provides a more accurate and stable approximation13

compared to the standard linearized monotonicity method. We then used the initial14

guess from the regularized method to initialize the level set method, and we present the15

corresponding numerical results.16
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