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Abstract

We focus on a geometrical inverse problem that involves recovering disconti-
nuities in electrical conductivity based on boundary measurements. This problem
serves as a model to introduce a shape recovery technique that merges the mono-
tonicity method with the level-set method. The level-set method, commonly used
in shape optimization, often relies heavily on the accuracy of the initial guess. To
overcome this challenge, we utilize the monotonicity method to generate a more
precise initial guess, which is then used to initialize the level-set method. We pro-
vide numerical results to illustrate the effectiveness of this combined approach.
Keywords: Global convergence, Level-set method, Monotonicity method, Inverse
problems, Linearization, shape derivative.

1 Introduction

The reconstruction of anomalies in materials through non-destructive testing is becoming
increasingly crucial and has generated significant interest in the field of inverse problems.
This field encompasses a wide range of applications covering engineering, geosciences and
medical diagnostics.

In engineering, particularly in the aerospace and automotive industries, it is essential
to accurately detect and characterize defects or inclusions in materials to ensure the
integrity and reliability of structures. Non-destructive testing techniques play an essential
role in this respect, as they enable inspections to be carried out without compromising
the integrity of the materials tested.

Numerous researchers have addressed the task of reconstructing anomalies using di-
verse methodologies, including iterative algorithms based on topological and shape gra-
dient methods; see for instance [4] [7, [5, 29] 3], 27] and the references therin.

*harrach@math.uni-frankfurt.de
Thoucine.meftahi@enit.utm.tn
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The level-set method is a powerful tool for shape optimization that represents shapes
implicitly as the zero level-set of a higher-dimensional function, typically a signed distance
function. The shape is evolved over time by solving partial differential equations (PDESs)
that govern the movement of the level-set. These methods allow for complex topological
changes like merging and splitting, making them particularly useful for problems where
the optimal shape may have unknown or complicated boundaries. The level-set method
provides a flexible framework to handle large deformations and can naturally incorporate
constraints such as volume preservation. For an overview of the level-set method the
reader is referred to [4, 27] and the refernces therin.

In the context of geometrical inverse problems, numerical methods based on the level-
set method and on the shape differentiation are highly dependent on the initial guess. This
is because these problems are often ill-posed, meaning they can have multiple solutions or
no solution at all under certain conditions. The presence of numerous local minima, each
with potentially different topologies, further complicates the problem. As a result, the
choice of the initial guess plays a critical role in determining the success of the algorithm,
as it can significantly affect whether the method converges to a desirable solution or gets
trapped in suboptimal ones. Therefore, selecting an appropriate initial guess, can be
crucial in overcoming these challenges.

In [7], the authors demonstrate that, for certain shapes, the issue of selecting an
initial guess can be circumvented by employing the topological gradient method. In this
work, we propose an alternative approach that overcomes this problem by utilizing the
monotonicity property of the Neumann-to-Dirichlet operator.

Our main contribution is numerical. We develop a numerical reconstruction method
that combines the monotonicity method to obtain an initial approximation of the desired
solution, followed by refinement using the level set method. We have also shown that our
numerical method can successfully recover both the shape and the parameter solutions of
the inverse problem.

Let us stress that the problem of local convergence, generally applies to inverse co-
efficient problems in PDEs. Known reconstruction methods often rely on iterative, e.g.,
Newton-type approaches or on globally minimizing a non-convex regularized data-fitting
functional. Such approaches only locally converge and they can be observed to heavily
depend on the initial guess. In this work we benefit from having the monotonicity method
as a globally convergent method for the selection of the initial guess. More generally, the
construction of globally convergent algorithms has been studied using quasi-reversibility
and convexification ideas in the seminal work of Klibanov et al., cf.; e.g., [1I, 2, 25| 26],
and we also mention the recent works of one of the authors on global Newton convergence
and convex semidefinite reformulations for EIT and a related Robin problem [18, 17, [19)].

Let us give a brief overview about the the monotonicity method:

The monotonicity method was first introduced in [34] for addressing the electrical resis-
tance tomography problem. The authors proposed a non-iterative approach based on the
monotonicity properties of the resistance matrix. Since then, this method has been fur-
ther developed for applications in static Electrical Capacitance Tomography, Inductance
Tomography, and Electrical Resistance Tomography [0, 1T, 12]. It has also been extended
to parabolic problems, including Magnetic Induction Tomography (MIT) [33]. Addition-
ally, the monotonicity method has been applied to linear elasticity [10, 0], where both the
standard and linearized versions were analyzed. Monotonicity properties have also been
leveraged for shape reconstruction in electrical impedance tomography [22].
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The paper is organized as follows: Section 2 introduces the direct and inverse problems.
Section 3 discusses the monotonicity property of the Neumann-to-Dirichlet operator and
its application to shape reconstruction, including numerical results. Section 4 reformu-
lates the inverse problem as a minimization problem using the Kohn-Vogelius functional,
provides the shape derivative, and presents numerical results using the level-set method.
Section 5 combines the monotonicity method with the level-set method for reconstruction
and includes additional numerical results.

2 A model problem formulation

We consider a bounded domain £ C R? with smooth boundary 092 and outer unit normal
vector v. Assume that the conductivity in €2 is 0 = 0¢ + (01 — 0¢)xp, Where D € Oy,
with

Ouq = {D open of class C*!, and D C § has connected complement},

and g, oy are positive constants and x denotes the indicator function.

Denote L3(99Q) (resp. H}() ) the space of L? (resp. H')-functions with vanishing
integral mean on 0. For a given current density g € L3(99) the potential u € H(Q)
satisfies the following Neumann problem

V- (oVu)=0inQ, ocdulsq =g, / uds = 0. (1)
o0
The weak formulation for problem reads

/ oVu-Vwdr = / gwds, for all w € Hj(S). (2)
Q G
It is well known that (2)) has a unique solution u € H(2). Then the Neumann-to-Dirichlet
operator A(o) : LF(0Q) — L3(0S), g — ulaq is well defined. It is easily shown that
A(o) € L(L3(09)) is self-adjoint and compact.

The quadratic form associated with A(o) is defined by

(80)9.9) = [ olVuf do.
Q
It is also know that A is Fréchét differentiable and its Fréchét derivative A'(0) € L(L3(09))
fulfills
(N (o)k)g,g) = —/ k|Vul*dr, for all Kk € L®(Q). (3)
Q
We assume that the values oy and o7 are known a priori but the information about
the geometry D is missing. Then, the geometrical inverse problem we consider here is the
following;:

Find the shape D knowing the Neuman-to-Dirichlet map A(o). (4)

This is equivalent to find the support supp(o; — 0¢) from the Neumann-to-Dirichlet op-
erator A(o). We will also consider the problem, where oy and the sign of the contrast
o1 > ¢ is known, but the value of o is also to be reconstructed from A(o).

3



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

3 Shape recovery via the monotonicity method

This section briefly summarizes the monotonocity method for reconstructing embedded
shapes in conducting bodies. We start with the concept of Loewner monotonicity and
then derive the standard (non-linearized) monotonicity method, and the faster linearized
monotonicity method as in [22]. We then present the noise-robust monotonicity-based
regularization method from [20].

3.1 Loewner monotonicity

To motivate the monotonicity-based method let us recall the following lemma.

Lemma 1. Let 0,7 € L(Q) be two conductivities and let g € L3(0R) be an applied
boundary current. Let u; = ul,uy = u? € H(Q). Then

[@=nVuP s = (a0 = M) 9.9) = [ Zo =DV ()
and
eIV de < (A0 =A@ g.9) < [ Lo =DIVuiP e (6)

Proof. This lemma goes back to the works [24, 23]. A short proof of using the
variational formulation ([2) can be found in [22] Lemma 3.1]. The other inequalities @
then follow from interchanging 7 and o. O]

Lemma (1| implies monotonicity of the mapping ¢ — A(c) with respect to the fol-
lowing partial orderings. For symmetric operators A, B € L(L3(99)) we introduce the
semidefinite (aka Loewner) ordering:

A < B denotes that / g(B—A)gds >0 forall g € L3(01).
onN

Also, for functions o, 7 € L>(£2)
o X7 denotes that 7(z) > o(x) forall z € (ae.).

With this notation, we obtain the following result as an immediate consequence of
Lemma [I1

Corollary 1. Let 01,09 € L°(Q2). Then

op <oy implies  A(oy) = A(og).

3.2 Standard and linearized monotonicity method

We return to the problem of reconstructing the shape D € O,y from knowing A(o) where
o =09+ (01 — 09)xp. Clearly, for any open set B C D, and every constant a > 0 with
a < o1 — 0y, we have that

oo +axg <o andthus A(og+ axg) = Ao),

by Corollary [I} Consequently, by marking all open sets B fulfilling A(og + axp) = A(o)
for some o > 0, one would obtain a superset of the unknown shape D. The work [22]
proved that D can indeed be reconstructed by such monotonicity tests:

4
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Theorem 1. Let 0 < a < 01 — 0¢, and B be an open set. Then
BCD ifand only if A(oo+ axs) = Ao).

Proof. Since 9D is a null set, B C D implies that og+ axp < o, and thus A(og+axpg) =
A(o) follows from Corollary [1| as explained above. The converse implication is more

involved and utilizes the idea of localized potentials from [I4]. The details can be found
in 22 Thm 4.1]. O

Note that implementing the monotonicity tests in Theorem (1| would be computation-
ally expensive since for each open set B we would have to solve the EIT equation with
a new inhomogeneous conductivity in order to calculate A(oy + axp). However, using
the variational formulation of the Fréchet derivative of A in , one can formulate the
following linearized variant of the monotonicity test, that is still capable of reconstructing
the exact shape D.

Theorem 2. Let 0 < a < g—‘;(al —09) =0¢ — % and B be an open set. Then

BCD ifand only if A(oo) + alN(0o)xs = A0).

Proof. By Lemma [ we obtain

(M) = A(0))g, g) < /

@(00 — 0)| Vg, |?dr < —a/ XB| Vg, |*dx.
Q0 Q

Using , it follows that
A(o) — A(og) < alN(og)xp, and thus A(og) + alN (o¢)xp = Alo).

Again, the converse implication can be proven using the idea of localized potentials, and
we refer the reader for the details in [22, Thm 4.3]. O

The linearized monotonicity tests can very efficiently implemented as they only require
the calculation of A’(0¢)xp, which only requires the solution wu,, of the conductivity
equation with the background conductivity op. Note that it allows for a convergent
implementation for noisy data. Let A’ € L(L3(9Q)) be a symmetric noisy version of
A(o) — A(og) with

IA° = (A(a) = A(00)) | (2009 < 0

and 0 < a < Z—g(al —0p). Then, for every open set B C €2, there exists a noise level 5> 0,
such that for all 0 < § < 0:

BCD ifandonlyif aA(oy)xs>= A’ -4, (7)

cf. 22, Remark 3.5], and [13].
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3.3 The monotonicity-based regularization method

In numerical experiments (see the next subsection), the monotonicity method can be
observed to be rather noise-sensitive. To improve its robustness, a combination with a
data fitting functional has been developed in the works [20, 21I]. The main idea is to
minimize a discretized version of the linearized data fitting residual

r: L2(Q) = L(L3(09)), r(k):=A(0) — Alog) — N (0g)k

with a constraint that is based on the monotonicity method.
In order to explain this in detail, let {By}7_, form a partition of Q, i.e.,

n
Q= U B, with nonempty, pairwise disjoint Lipschitz domains By, ..., B,.

The set of admissible parameters for minimizing the data fitting functional is defined as

P = {/@ € L>®(Q): k= ZakXBk7 0 < a; < min{g, ck}} ,
k=1
where (as in Theorem [2)) 0 < ¢ < gp — Z—‘j, and
¢ :=max{a > 0: A(og) + aN (o0)xn, = A(o)}.
It can be shown (cf. [20, Sect. 4.2]) that

1
Amin (L7 A (00)xB, L)

Cr, — —

where Apin(-) denotes the smallest (most negative) eigenvalue, and A(oy) — A(o) = LL*
is the Cholesky factorization.

Let g1,...,9m € L3(09Q) denote n orthonormal boundary currents, and R(k) be the
Galerkin projection of the linearized data fitting residual to the span of these currents,
ie.,

R: L>(Q) = R™™, R(k) = ((r(K)gi 9;)); 5= -

Then we have the following result for noiseless data.

Theorem 3. The quadratic minimization problem under box constraints
|R(K)||5 — min! st kK€ETP

possesses a unique solution k € P. The support of k agrees with the shape D up to the
utilized partition of €1, i.e.

By, Csuppk  if and only if By C D.

Proof. |20, Thm. 3.2]) O
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For symmetric noisy data A° € £(L3(02)) with

IA° = (A(o) — A(00)) | ccrzony) < 9,

we define R’(k) := ((r’(x)gi, g5)), ._, with r°(k) := A° — A'(09), and

i,J
P . {H EL™(Q): k= ZakXBm 0 < a; < min{g, ci}} :
k=1
with
1
Amin(L(s_lA/(OO)XBkL(S_*) ’

and the Cholesky factorization |A°| + 61 = LsL%. Then we have the following result.

) :=max{a > 0: —al (og)xp, = |A°|+6I} = —

Theorem 4. The quadratic minimization problem under box constraints
|R(K)||% — min! s.t. k&P

possesses a minimizer kK6 € PO. For each sequence of minimizers k% with 6 — 0 it holds
that K% — k.

Proof. 20, Thm. 3.8]) O

3.4 Numerical results with the monotonicity method

For the following numerical examples, we use a FEM mesh of the geometry 2 = [0, 1] x
[0, 1] with 5248 elements, 0 = 2, and 0y = 1. We consider the Neumann boundary data
given by:

gr(x,y) = sin(k7y) X {z=0y — SIN(ETY) X {z=1} + cOS(KTT) X (y=0y — cOS(ATZ)X(y=1}, (8)

where & =1,...,m, m = 23, and X{,—q) is the indicator function on the boundary = = a.
We denote by A € R™ ™ the discrete version of an operator A € L(L3(09)), i.e., its
Galerkin projection to the span of g1, ..., gm-

We used 100 test balls. Following Theorem [2] for each test ball B, we computed the
eigenvalues of

A(og) — Alo) + alN(oo)xs

with @ = 1/2. A test ball is marked as being inside the inclusion if all of these eigenvalues
are positive.
We also considered the noisy data case

[
Fi—=n
1El-

X :=A(0) — Aoo) + 3| K(0) — K(ay)

where the entries of £ € R™*™ are normally distributed random variables with a mean
of zero and a standard deviation of one. In the noisy data case, we mark those test balls
for which all eigenvalues of

alN (og)xB — K 401

7
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Figure 1: Reconstruction with the linearized monotonicity method in the case of noise-free
data

Figure 2: Reconstruction with the linearized monotonicity method in the case of noisy
data, 6 = 0.1%

Figures [I] and [2] show numerical results using the linearized monotonicity method for
both noise-free and noisy data (with 6 = 0.001). The numerical reconstructions comply
with the theoretical results, but they also show high noise sensitivity.

We now turn to the monotonicity-based regularization method. We use the same
geometry setting as before, but now use n = 100 square pixels By as a partition of €.
Denote Sy, := N (o¢)xs, € R™™, k = 1,...,n. Following Section 3.3 for the noiseless
case, we set

cp = max{a > 0: A(og) +aS, = A(0)},

¢ :=1/2, and minimize

A(o) — A(og) — ZakSk — min! s.t. 0 <a; < min{c, e}
k=1 F

In the noisy data case, we use
& = max{a >0: —aS, < |K6| + 61},

and minimize
5o i
A — Z apS|| — min! st. 0 <a; <min{c c}}.
k=1 F
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Figure |3| and 4] show numerical results using the monotonicity-based regularization
method for both noise-free and noisy data (with § = 0.1). They clearly demonstrate
the highly improved noise robustness for the monotonicity-based regularization method.
The minimization was carried out using CVX, a package for specifying and solving convex
programs [16], [15]. Note that, as it was already observed in [20, 21], the CVX package pro-
vides superior reconstructions compared to using Matlab’s standard quadprog function.
Moreover, in our numerical experiments, we have again observed that almost equally good
results can be obtained with the simplified constrained 0 < a; < ¢, though a theoretical
explanation for this is still missing.

4 Shape recovery via the Kohn-Vogelius functional

In this section, we turn to an iterative strategy to recover the unknown shape D. To
transforming the inverse problem @ into a minimization problem, we use a Kohn-Vogelius
type functional to achieve shape recovery. This approach allows us to frame the problem
as follows:

minimize J (D, up,vp) := / o|V(up —vp)|* dx
Q
subject to D C Oyg, up and vp solutions of (1)) and (L0),

(9)
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where up is the solution of the Neumann problem and vp is the solution of the Dirichlet
problem

—div(ecVvp) =0 in Q,

{ (6Vup) (10)

vp=f on 0f,

where f € H'/2(0Q) is a measurement of the potential corresponding to the input flux g.

To solve numerically the minimzation problem @, we need to compute the shape
derivative of the Khon-Vogelius functional 7.

First, we recall some basic facts about the velocity method from shape optimization
used to calculate the shape derivatives of the functionals 7, see [8,[32]. In the velocity (or
speed) method a domain (2 is deformed by the action of a velocity field V. The evolution
of the domain is described by the following dynamical system:

d
ax(t) = V(z(t)),t €[0,¢)

z(0) =X

(11)

for some real number € > 0. Assume V € D(Q; R?) where D*(2; R?) denotes the space
of continuously differentiable functions with compact support in €2, then the ordinary dif-
ferential equation has a unique solution. This allows us to define the diffeomorphism

T,:R* = R?: X = Ty(X) = (1),

For t € [0,¢), T; is invertible satisfies T;(Q2) = Q but T;(D) # D. The Jacobian £(t)
defined by
Vte[0,e), &(t)=|detDTy(X)| >0,

where DT;(X) is the Jacobian matrix of the transformation T} associated with the velocity
field V, is derivable with respect to ¢ and

¢(0)=1,— DV — DV, (12)

Let J be a real valued function J : 0 — R. We say that J has a Eulerian semideriva-
tive at ) in the direction V' if the following limit exists and is finite:

dJ(Q; V) = lim J(L(Q) - J(©)
' N0 t '

If the map V' — dJ(2;V)) is linear and continuous, we say that .J is shape differentiable
at Q.

Now, we state the shape derivative of the functional J with respect to the shape D.
We introduce the reduced functional J(D) := J (D, up,vp).

Theorem 5. The functional J is shape differentiable with respect to D and its derivative
in the direction V' is given by

4J(D: V) = / (€ (0)Vup - Vop — €(0)Vup - Vup) da. (13)
Q
Proof. The proof of Theorem [5 can be found in [4], 27]. O

10
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4.1 Algorithm and numerical results

In this subsection, we use the same conductivity values as in Section 3 and apply specific
boundary fluxes, which are derived from the data in (8) and presented as follows:

o= 91(0,y) —ge(L,y)  gi(2,0) + gr(x,1)

sin(kmy) cos(kmx) ’

o= 96(0,9) — gx(1,y) — gilx,1) — ge(x,0)

0 su)l(lmy)( e co)s(knrxg )’

g1,y — gp(z, 1

9= sin(kmy) +5 cos(kmz) ’
g = gk(l’,O) . gk(17 )

cos(kmx)  sin(kmy)’

g5 = gk<17y> L I,l)
* " sin(kry)  cos(kmz)’

To simulate noisy data, the measurements fy (fr = ux|aq where uy is solution of the direct
problem with g = gx, k =1, ..., 3) are corrupted by adding a normal Gaussian noise with
mean zero and standard deviation 7 * || fx||s, Where 7 is a parameter.

For the numerical implementation, we use the software package FEniCS; see [28]. The
avoid the so-called inverse crime problem, the domain 2 is meshed using crossed grid of
128 x 128 elements to compute the measurements f. Then we use a crossed grid of 64 x 64
to solve the minimization problem.

The evolution of the shape D is modeled using the level set method originally intro-
duced in [30], which gives a general framework for the computation of evolving interfaces
using an implicit representation of these interfaces. The core idea of this method is to
represent I'; as the level set of a continuous ¢ : Q x Rt — R, the so-called level set
function:

D, ={z €Q, ¢(z,t) < 0}. (14)

Let z(t) be the position of a particle on D; moving with velocity &(t) = V(x(t)) according
to . Differentiating the relation ¢(x(t),t) = 0 with respect to ¢ yields the Hamilton-
Jacobi equation:

hp+V -Vo=0 in D, xR, (15)

which can be extended to 2 x RT. For the discretization of we use the Local Lax-
Friedrichs flux from [31] and a forward Euler time discretization. The shape gradients of
J is computed in the H'-norm, i.e. we solve for instance the equation

Find V € Hy(9) : / DV : DW = —dJ(D;W) for all W € H() (16)
Q

where d.J(D; W) is given by (13).
The algorithm proceeds through the following steps

1. Initialize the level-set function ¢ based on the initial guess D.

2. Repat until convergence, for k > 0:

11



a. Compute the solutions wu; of , associated with the shape

b. Deform the shape Dy by transporting o the level set function ¢pii(z) =
o(x, Aty), where ¢(z,t) is solution of with velocity V' given by and
initial condition ¢(x,0) = ¢x(z). The time step is selected so that J(Dyy1) <
J(Dy).
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Figure 5: Reconstruction with the levelset method. First row: initialization (solid con-
tours) and true inclusion (dashed contour). Second row: reconstruction with free noise
(solid contours) and true inclusion (dashed contours). Convergence occurs in 70, 79, 87
and 60 iterations (from left to right). Third row: reconstruction with noise level n = 0.01
(solid contours) and true inclusion (dashed contours). Convergence occurs in 78, 82,
125 and 110 iterations (from left to right). Fourth row: reconstruction with noise level

= 0.03 (solid contours) and true inclusion (dashed contours). Convergence occurs in
105, 90, 175 and 120 iterations (from left to right).
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Figure [0] presents a numerical example demonstrating the failure of the level set method
to converge with an alternative initialization, in contrast to the initialization given by the
monotonicity method (see, second column of Figure . This motivates us to employ the
monotonicity method to achieve a robust initialization and address the challenges posed
by improper initialization in the level set method.

1.0 1.0

0.81 - 0.81 -y
P b

0.61 — 0.61 -

il O e

0.2 0.21

0'(S).OO 0.25 0.50 0.75 1.00 0'((J).OO 0.25 0.50 0.75 1.00

Figure 6: Reconstruction with the levelset method: initialization (solid contours) and
true inclusion (dashed contour). Right figure: reconstruction with noise level n = 0.01.
The algorithm stop afer 72 iterations.

Remark 1. We emphasized that, for shape recovery using the Kohn-Vogelius process,
the measurements (A(o) — A(00)gi, 9;), required in the regularized monotonicity method,
are not essential. Instead, partial measurements of the form (A(o)g;) are sufficient. To
improve the computational efficiency of the level set method, a carefully selected subset of
boundary data was extracted from the dataset specified in .

5 Combined monotonicty and level-set method for
shape reconstruction

In this section, we present numerical results using a combination of monotonicity and level
set methods. More precisely, we begin by applying the monotonicity method to obtain an
initial approximation of the solution. We then refine this approximation using the level
set method for improved resolution.

Since the regularized monotonicity method provides a better approximation compared
to the linearized monotonicity method, especially in the presence of noisy data, we use the
results shown in Figure [4] as the initialization for the numerical results in Figure [/} For
simplicity, we approximate the results in Figure [4| using basic geometries, such as circles
or ellipses.
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Figure 7: Reconstruction with the combined monotonicity and levelset methods. First
row: reconstruction with the regularized monotonicity method with 0 < a;, < min(¢, ¢,)
and § = 0.1 (which is the initialization of the level set method). The true inclusion is
the dashed contour. Second row: finale iterate of the level set method in the case of free
noise. Convergence occurs in 40, 60, 48 and 49 iterations (from left to right). Third row:
finale iterate of the level set method in the case of noise level n = 0.01. Convergence
occurs in 65, 67, 72 and 62 iterations (from left to right). Fourth row: finale iterate of
the level set method in the case noise level n = 0.03. Convergence occurs in 70, 75, 89
and 69 iterations (from left to right)

Figure [7] illustrates the reconstruction achieved through the combined methods. It is
evident that this approach yields a superior approximation of the solution when compared
to using the monotonicity or level set methods individually. Moreover, the reconstruction
demonstrates rapid convergence and stability, even with varying levels of noise in the
data.

By employing monotonicity-based regularization as an initial guess, the convergence
rate is enhanced, allowing the combined method to outperform the classical approach in
terms of speed.
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5.1 Numerical results for shape and parameter reconstruction

In this subsection, we present numerical results for the simultaneous reconstruction of the
conductivity o; and the shape D with five measuremenst g,k = 1...5 and initial guess
genetated by the regularized monotonicity method.

The algorithm follows a binary search approach: first, the shape D is updated using
the level set method, and then, during each iteration, the conductivity o; is refined using
the Newton method by minimizing the convex functional

(o) == /(00 + (o1 — 1) xp)V|u?|? dx — / gf ds. (17)
Q 19)

Here, w9 is the solution of the direct problem corresponding to the flux g, and

frepresents the boundary trace of the solution to the direct problem , where o1 and D

are the true parameters.
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Figure 8: Simultaneous reconstruction of the conductivity o; and the shape D without
noise data (n = 0.0). First colum: initialization (solid contours) and true inclusion (dashed
contour). Second column: reconstruction (solid contours) and true inclusion (dashed
contours). Third column: history of convergence for the conductivity oy, the orange line
represents the true value of o;. Convergence occurs in 43 and 50 iterations(from up to
down).

Figure [8 show the simultenous reconstruction of the conductivity o; and the shape D
using 5 measurements. In the case of one ball the shape is well recontruced as well as the
conductivity o1appr0x = 2.002575. For the shape described in row 2, we also get a good
reconstruction results. The approximated conductivity is given by o,ppr0x = 1.992835.
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Figure 9: Simultaneous reconstruction of the conductivity oy and the shape D with noise
data (n = 0.001). First colum: initialization (solid contours) and true inclusion (dashed
contour). Second column: reconstruction (solid contours) and true inclusion (dashed
contours). Third column: history of convergence for the conductivity oy, the orange line
represents the true value of o;. Convergence occurs in 50 and 90 iterations(from up to
down).

Figure [9 show the simultenous reconstruction of the conductivity o; and the shape D
using 5 measurements. In the case of one ball the shape is well recontruced as well as
the conductivity oq,pp0x = 1.993903. For the shape described in row 2, the conductivity
is well reconstructed compared to the shape. The approximated conductivity is given by
Olapprox = 2.0294112.

6 Conclusion

In this paper, we developed a numerical method that combines monotonicity and the
level set method to solve a geometric inverse problem. We specifically addressed the
conductivity problem to apply our numerical scheme.

The effectiveness of the level set method is often influenced by the quality of the
initial guess. To improve this, we used both the linearized monotonicity method and a
regularized monotonicity method to select a suitable initialization. Our results show that
the regularized monotonicity method provides a more accurate and stable approximation
compared to the standard linearized monotonicity method. We then used the initial
guess from the regularized method to initialize the level set method, and we present the
corresponding numerical results.
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