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SCHR\"ODINGER EQUATION II. GENERAL POTENTIALS AND
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Abstract. In this work, we use monotonicity-based methods for the fractional Schr\"odinger
equation with general potentials q \in L\infty (\Omega ) in a Lipschitz bounded open set \Omega \subset \BbbR n in any dimen-
sion n \in \BbbN . We demonstrate that if-and-only-if monotonicity relations between potentials and the
Dirichlet-to-Neumann map hold up to a finite dimensional subspace. Based on these if-and-only-if
monotonicity relations, we derive a constructive global uniqueness result for the fractional Calder\'on
problem and its linearized version. We also derive a reconstruction method for unknown obstacles
in a given domain that only requires the background solution of the fractional Schr\"odinger equation,
and we prove uniqueness and Lipschitz stability from finitely many measurements for potentials lying
in an a priori known bounded set in a finite dimensional subset of L\infty (\Omega ).
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1. Introduction. Let \Omega be a Lipschitz bounded open set in \BbbR n, n \in \BbbN , and
q \in L\infty (\Omega ) be a potential. For 0 < s < 1, we consider the Dirichlet problem for the
nonlocal fractional Schr\"odinger equation

(1.1) ( - \Delta )su+ qu = 0 in \Omega , u| \Omega e
= F in \Omega e := \BbbR n \setminus \Omega ,

where the fractional Laplacian ( - \Delta )s is defined by the Fourier transform. We will
consider the Calder\'on problem of reconstructing an unknown potential q from the
Dirichlet-to-Neumann (DtN) operator

\Lambda (q) : H(\Omega e) \rightarrow H(\Omega e)
\ast , F \mapsto \rightarrow ( - \Delta )su| \Omega e

, where u \in Hs(\BbbR n) solves (1.1);

cf. section 2 for a precise definition of the DtN operator and the function spaces, and
[32, section 3] for further properties of the nonlocal DtN map \Lambda q.

In the first part of this work [39], we proved an if-and-only-if monotonicity relation
between potentials q \in L\infty 

+ (\Omega ) with positive essential infima and the associated DtN
operators \Lambda (q), where the DtN operators are ordered in the sense of definiteness of
quadratic forms (also known as Loewner order). From this relation, we obtained a
constructive uniqueness result for the Calder\'on problem and a shape reconstruction
method to determine unknown obstacles in a given domain.

The aim of this work is to drop the positivity assumption on the potential q
and extend the results from [39] to general potentials q \in L\infty (\Omega ). Note that this
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may include resonant cases where 0 is a Dirichlet eigenvalue of ( - \Delta )s + q in \Omega . In
such cases the Dirichlet problem (1.1) is only solvable in a subspace of the natural
Dirichlet trace space H(\Omega e) with finite codimension, and the DtN operator \Lambda (q) is
defined accordingly; cf. section 2. For general potentials q1, q2 \in L\infty (\Omega ), we will use
a combination of monotonicity arguments and localized potentials to show that

q1 \leq q2 if and only if \Lambda (q1) \leq fin \Lambda (q2)

(cf. Theorem 4.1), where q1 \leq q2 denotes that q1(x) \leq q2(x) for x \in \Omega almost
everywhere (a.e.), and \Lambda (q1) \leq fin \Lambda (q2) denotes that the quadratic form associated
with \Lambda (q2)  - \Lambda (q1) is nonnegative on a subspace of H(\Omega e) with finite codimension
(resp., on a subspace with finite codimension of the intersection of their domains of
definition in the case of resonances).

This if-and-only-if monotonicity relation yields a constructive uniqueness proof
for the fractional Calder\'on problem; cf. Theorem 4.3. For nonresonant potentials,
we show a similar if-and-only-if monotonicity relation also for the linearized DtN
operators, and deduce uniqueness for the linearized Calder\'on problem; cf. Theorem
4.8 and Corollary 4.9.

We then turn to the shape reconstruction (or inclusion detection) problem of lo-
cating regions where an unknown (nonresonant) coefficient function q \in L\infty (\Omega ) differs
from a known (nonresonant) reference function q0 \in L\infty (\Omega ). We will show that this
can be done without solving the fractional Schr\"odinger equation for potentials other
than the reference potentials q0. In the indefinite case, with no further assumption
on q0 and q, we characterize the support of q  - q0 as the intersection of all closed
sets fulfilling a linearized monotonicity condition; cf. Theorem 4.10. In the definite
case, that either q \geq q0 or q0 \geq q in all of \Omega , we also obtain an easier characterization
of the (inner) support of q  - q0 as the union of all open balls fulfilling a linearized
monotonicity condition; cf. Theorem 4.11.

Our final result uses monotonicity and localized potential arguments to show
uniqueness and Lipschitz stability for the fractional Calder\'on problem with finitely
many measurements for the case that the potential belongs to an a priori known
bounded set in a finite dimensional subset of L\infty (\Omega ).

Let us give some references of the fast growing body of literature on inverse
problems involving the nonlocal fractional Laplacian operator, and relate our work
to previous results. Fractional inverse problems appear when an imaging domain is
investigated by an anomalous diffusion process and this process is more complicated
than in the standard Brownian motion modeled by the Laplacian  - \Delta . Global unique-
ness for the Calder\'on problem for the fractional Schr\"odinger equation was first proven
by Ghosh, Salo, and Uhlmann [32], and the recent work of Ghosh et al. [31] shows
uniqueness with a single measurement. Note that both results rely on a very strong
unique continuation property, and we will utilize this property from [32] as a key
ingredient for our results. Furthermore, for uniqueness results, [30] and [61] solved
the Calder\'on problem for general nonlocal variable elliptic operators and the semilin-
ear case, resp. In addition, [18] studied the fractional Calder\'on problem with drift,
which shows the global uniqueness result holds for drift and potential simultaneously,
which is the first example to demonstrate different results between local and nonlocal
inverse problems. Recently, [62] investigated the Calder\'on problem for a space-time
fractional parabolic equation. We also refer readers to [16, 17] for further studies on
the simultaneous determination of parameters in fractional inverse problems.

Arguments combining PDE-based estimates with blowup techniques have a long
history in the study of inverse coefficients problems; see, e.g., [1, 51, 54, 59, 60]. The
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technique of combining monotonicity estimates with localized potentials [29] as used
herein is a flexible recent approach that has already led to a number of results; cf. [6, 8,
15, 33, 34, 35, 39, 40, 44, 45, 46, 47, 49, 72]. Also, several recent works build practical
reconstruction methods on monotonicity properties [24, 25, 26, 27, 28, 38, 42, 43,
48, 64, 74, 75, 76, 77, 80]. Notably, the present work shows that monotonicity-based
reconstruction methods that have been developed for standard diffusion processes
can also be applied to the fractional diffusion case and that the methods become even
simpler and more powerful due to the very strong unique continuation property of
Ghosh, Salo, and Uhlmann [32]. Moreover, we derive in this work a new result on
the existence of simultaneously localized potentials for two coefficient functions, that
may also be of importance in the study of other inverse problems.

Logarithmic stability results for the fractional Schr\"odinger equation and their
optimality were proven by R\"uland and Salo in [69, 70]. Lipschitz stability for the
finite dimensional fractional Calder\'on problem with a specific set of finitely many
measurements (that depend on the unknown potentials) was shown by R\"uland and
Sincich in [71]. Note that our Lipschitz stability result in section 5 complements the
result in [71] as we show that any sufficiently high number of measurements (depending
only on the a priori data but not on the unknown potentials) uniquely determines the
potential and that Lipschitz stability holds. Moreover, let us stress that the idea of
using monotonicity and localized potential arguments for proving Lipschitz stability
(that was already utilized in [21, 37, 41, 72]), differs from traditional approaches
that are mostly based on quantitative unique continuation or quantitative Runge
approximation; cf. [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 19, 52, 53, 56, 57, 58, 65,
71, 73, 78, 79]. Our new approach of showing Lipschitz stability seems conceptually
simpler as it does not require quantitative analytic estimates. On the downside, our
new approach does not give any analytic bounds on the Lipschitz stability constants
that may characterize the asymptotic instability when the dimension of the ansatz
space tends to infinity. It may however, lead to a numerical algorithm to calculate
the Lipschitz constant for a given setting (cf. ([36, 41]), which might be important to
quantify the achievable resolution and noise robustness in practical applications.

The main technical difficulty in extending the results from the positive potentials
case [39] to general coefficients q \in L\infty (\Omega ) is to prove two new extensions of the lo-
calized potentials approach [29]. For general potentials, the variational formulation of
the fractional Schr\"odinger equation is no longer coercive but a compact perturbation
of a coercive formulation and resonances may arise. To overcome this difficulty, we
use an approach that originated in [45] and work in spaces of finite codimension where
the formulation is still coercive and resonances are excluded. This makes it necessary
to prove that any subspace of finite codimension contains localized potentials. The
second major difficulty comes from the fact that only the simpler monotonicity in-
equality in [39, Lemma 3.1] can be extended to general potentials; cf. Theorem 3.3
in this work. This makes it necessary to prove that localized potentials exist for two
different coefficients simultaneously (and in any subspace of finite codimension). It
can be expected that the idea of simultaneously localized potentials introduced in this
work will also be helpful to extend monotonicity-based methods to other applications.

The paper is structured as follows. In section 2, we summarize the variational
theory for the fractional Schr\"odinger equation, introduce the DtN operator and the
unique continuation property from [32]. In section 3, we define a generalized Loewner
order for linear operators, which holds up to a finite dimensional subspace of a Hilbert
space. We also show that increasing potentials q monotonically increases the corre-
sponding DtN map \Lambda q in the sense of this generalized Loewner order, and prove the
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existence of localized potentials to control the energy terms appearing in the mono-
tonicity relations. The last two sections contain our main results. In section 4, we
investigate a converse result for the monotonicity relations using localized potentials,
to deduce if-and-only-if monotonicity relations between the DtN map and the poten-
tials. Based on these results, we prove uniqueness for the fractional Calder\'on problem
in a constructive way. We also prove uniqueness for the linearized fractional Calder\'on
problem and develop an inclusion detection algorithm based on monotonicity tests.
Finally, in section 5, we use the monotonicity relations and the localized potentials,
to prove uniqueness and Lipschitz stability in finite dimensional subspaces by finitely
many measurements.

2. The fractional Schr\"odinger equation for general potentials. Through-
out this work let s \in (0, 1), n \in \BbbN , \Omega \subseteq \BbbR n be a Lipschitz bounded open set, and
q \in L\infty (\Omega ). All function spaces in this work are real valued unless indicated other-
wise. In this section, we briefly summarize some notations and results on the fractional
Schr\"odinger equation and the associated Dirichlet problem.

2.1. Variational formulation of the fractional Schr\"odinger equation. As
in [39] we consider the fractional Laplacian (defined by Fourier transform) as an
operator

( - \Delta )s : L2(\BbbR n) \rightarrow \scrS \prime (\BbbR n).

The fractional Sobolev space is defined by

Hs(\BbbR n) := \{ u \in L2(\BbbR n) : ( - \Delta )s/2u \in L2(\BbbR n)\} 

and equipped with the scalar product

(u, v)Hs(\BbbR n) := \BbbR n

\Bigl( 
( - \Delta )s/2u \cdot ( - \Delta )s/2v + uv

\Bigr) 
dx for all u, v \in Hs(\BbbR n).

It can be shown that Hs(\BbbR n) is a Hilbert space; cf., e.g., [20]. Let

Hs
0(\Omega ) := closure of C\infty 

c (\Omega ) in Hs(\BbbR n),

and note that this space is sometimes denoted as \widetilde Hs(\Omega ) in the literature; e.g., [32, 30].
We also define the bilinear form

Bq(u,w) := \BbbR n( - \Delta )s/2u \cdot ( - \Delta )s/2w dx+ \Omega quw dx for u,w \in Hs(\BbbR n).

Then, for any f \in L2(\Omega ), u \in Hs(\BbbR n) solves (in the sense of distributions)

( - \Delta )su+ qu = f in \Omega 

if and only if u \in Hs(\BbbR n) fulfills the variational formulation

(2.1) Bq(u,w) = \Omega fw dx for all w \in Hs
0(\Omega );

cf., e.g., [39, Lemma 2.1].

2.2. The Dirichlet boundary value problem. The Dirichlet trace operator
on \Omega e := \BbbR n \setminus \Omega can be defined using abstract quotient spaces by setting

\gamma 
(D)
\Omega e

: Hs(\BbbR n) \rightarrow H(\Omega e) := Hs(\BbbR n)/Hs
0(\Omega ), u \mapsto \rightarrow u+Hs

0(\Omega ).
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Then, by definition, \gamma 
(D)
\Omega e

is surjective, Hs
0(\Omega ) = \{ u \in Hs(\BbbR n) : \gamma 

(D)
\Omega e

u = 0\} . More-
over, for all u, v \in Hs(\BbbR n),

(2.2) \gamma 
(D)
\Omega e

u = \gamma 
(D)
\Omega e

v implies that u(x) = v(x) for x \in \Omega e a.e.;

cf., e.g., [39, Lemma 2.2]. This implies that \gamma 
(D)
\Omega e

is an injective mapping from C\infty 
c (\Omega e)

into H(\Omega e). For the sake of readability we will write u| \Omega e
instead of \gamma 

(D)
\Omega e

u throughout
this work, and identify C\infty 

c (\Omega e) with its image in H(\Omega e).
Throughout this work, we will use that for all u,w \in Hs

0(\Omega )

Bq(u,w) = ((I  - \iota \ast \iota + \iota \ast Mq\iota )u,w)Hs
0 (\Omega )

with the bounded linear operators

I : Hs
0(\Omega ) \rightarrow Hs

0(\Omega ),

\iota : Hs
0(\Omega ) \rightarrow L2(\Omega ),

Mq : L
2(\Omega ) \rightarrow L2(\Omega ),

denoting the identity operator, the compact restriction and embedding (cf. [66, Lemma
10]), and the multiplication operator by q.

We then have the following result on the solvability of the Dirichlet boundary
value problem.

Lemma 2.1. Let F \in H(\Omega e), f \in L2(\Omega ), and

Nq := \{ u \in Hs
0(\Omega ) : ( - \Delta )su+ qu = 0 in \Omega \} .

(a) u \in Hs(\BbbR n) solves the Dirichlet problem

( - \Delta )su+ qu = f in \Omega , u| \Omega e = F,(2.3)

if and only if u = u(0) + u(F ), where u(F ) \in Hs(\BbbR n) fulfills u(F )| \Omega e = F , and
u(0) \in Hs

0(\Omega ) solves

Bq(u
(0), w) =  - Bq(u

(F ), w) + \Omega fw dx for all w \in Hs
0(\Omega ).

Note that for F \in C\infty 
c (\Omega e) one can simply choose u(F ) := F .

(b) Nq is finite dimensional. The Dirichlet problem (2.3) is solvable if and only
if

(2.4) Bq(u
(F ), w) = \Omega fw dx for all w \in Nq.

The solution u \in Hs(\BbbR n) of (2.3) is unique up to addition of a function in Nq,
and u + Nq \in Hs(\BbbR n)/Nq depends linearly and continuously on F \in H(\Omega e)
and f \in L2(\Omega ).

Proof. (a) immediately follows from the variational formulation (2.1).
To prove (b), we use the Riesz representation theorem to obtain vFf \in Hs

0(\Omega )
fulfilling \bigl( 

vFf , w
\bigr) 
Hs

0 (\Omega )
=  - Bq(u

(F ), w) + \Omega fw dx for all w \in Hs
0(\Omega ).
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Using (a), and that w \in Hs
0(\Omega ) implies w(x) = 0 for x \in \Omega e a.e., we obtain that

u \in Hs(\BbbR n) solves (2.3) if and only if u = u(0) + u(F ) with u(0) \in Hs
0(\Omega ) solving\Bigl( 

(I  - \iota \ast \iota + \iota \ast Mq\iota )u
(0), w

\Bigr) 
Hs

0 (\Omega )

= Bq(u
(0), w) =  - Bq(u

(F ), w) + \Omega fw dx =
\bigl( 
vFf , w

\bigr) 
Hs

0 (\Omega )
for all w \in Hs

0(\Omega ),

i.e.,
(I  - \iota \ast \iota + \iota \ast Mq\iota )u

(0) = vFf ,

and that

Nq = \scrN (I  - \iota \ast \iota + \iota \ast Mq\iota ).(2.5)

Here \scrN (A) stands for the kernel of the linear operator A. Since \iota \ast \iota  - \iota \ast Mq\iota is compact
and self-adjoint, Fredholm theory (cf., e.g., [22, Appendix D, Theorem 5]) yields that
Nq is finite dimensional, and that (2.3) is solvable if and only if\bigl( 

vFf , w
\bigr) 
Hs

0 (\Omega )
= 0 for all w \in \scrN (I  - \iota \ast \iota + \iota \ast Mq\iota ) = Nq,

which gives the condition (2.4).
Clearly u(0) is unique up to addition of a function in Nq, and u

(0) +Nq depends
linearly and continuously on vFf \in Hs

0(\Omega ). It easily follows that u = u(0) + u(F ) is
unique up to addition of a function in Nq, and that u + Nq \in Hs(\BbbR n)/Nq depends
linearly and continuously on F \in H(\Omega e) and f \in L2(\Omega ).

Corollary 2.2. Let Hs
q (\BbbR n) \subseteq Hs(\BbbR n) be the Hs(\BbbR n)-orthogonal complement

of Nq, and

Hq(\Omega e) := \{ F \in H(\Omega e) : Bq(u
(F ), w) = 0 for all w \in Nq\} .

Then the codimension of Hq(\Omega e) in H(\Omega e) is at most dimNq, and for all F \in Hq(\Omega e)
there exists a unique solution u \in Hs

q (\BbbR n) of the Dirichlet problem

( - \Delta )su+ qu = 0 in \Omega , u| \Omega e
= F,(2.6)

and that the solution operator

Sq : Hq(\Omega e) \rightarrow Hs
q (\BbbR n), F \mapsto \rightarrow u, where u solves (2.6),

is linear and bounded.

Proof. We first show that Hq(\Omega e) is well-defined. If u(F ), \widetilde u(F ) \in Hs(\BbbR n) both
fulfill u(F )| \Omega e

= F = \widetilde u(F )| \Omega e
, then u(F )  - \widetilde u(F )| \Omega e

\in Hs
0(\Omega ) and thus it follows from

the definition of Nq (2.5) and (2.1) that

Bq(u
(F )  - \widetilde u(F ), w) = 0 for all w \in Nq.

Next, we show that the codimension of Hq(\Omega e) in H(\Omega e) is at most d := dimNq.
Let (w1, . . . , wd) \subset Nq be an orthonormal basis of Nq, and let \gamma  - : H(\Omega e) \rightarrow Hs(\BbbR n)
be a linear right inverse of the Dirichlet trace operator \gamma 

(D)
\Omega e

. Then, by linearity,

Hq(\Omega e) = \{ F \in H(\Omega e) : Bq(\gamma 
 - F,wj) = 0 for all j = 1, . . . , d\} = \scrN (\scrA )
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with a linear operator

\scrA : H(\Omega e) \rightarrow \BbbR d, F \mapsto \rightarrow 
\bigl( 
Bq(\gamma 

 - F,wj)
\bigr) 
j=1,...,d

.

Hence, the codimension of Hq(\Omega e) = \scrN (\scrA ) is dim(\scrR (\scrA )) \leq d.
Finally, it follows from Lemma 2.1(b) that (2.6) possesses a solution \widetilde u \in Hs(\BbbR n)

which is unique up to addition of a function in Nq. Hence,

u := \widetilde u - 
d\sum 
j=1

wj(\widetilde u,wj)Hs(\BbbR n) \in Hs
q (\BbbR n)

solves (2.6), and Hs
q (\BbbR n) contains no other solutions of (2.6). Since Hs

q (\BbbR n) is iso-
morphic to Hs(\BbbR n)/Nq, the continuity and linearity of the solution operator Sq also
follow from Lemma 2.1(b).

2.3. Neumann traces and the Dirichlet-to-Neumann operator. We de-
fine the Neumann trace operator

\gamma 
(N)
\Omega e

: Hs
\Delta (\BbbR n) :=

\bigl\{ 
u \in Hs(\BbbR n) : \exists f \in L2(\Omega ) with ( - \Delta )su = f in \Omega 

\bigr\} 
\rightarrow H(\Omega e)

\ast 

by setting

(2.7)
\Bigl\langle 
\gamma 
(N)
\Omega e

u, F
\Bigr\rangle 
:= \BbbR n( - \Delta )s/2u \cdot ( - \Delta )s/2v(F ) dx - \Omega ( - \Delta )su \cdot v(F ) dx,

where v(F ) \in Hs(\BbbR n) fulfills v(F )| \Omega e
= F , H(\Omega e)

\ast is the dual space of H(\Omega e), and
throughout this paper \langle \cdot , \cdot \rangle denotes the dual pairing on H(\Omega e)

\ast \times H(\Omega e). Note that

\gamma 
(N)
\Omega e

u is well-defined since the right-hand side of (2.7) does not depend on the choice

of v(F ), and that \gamma 
(N)
\Omega e

is a bounded linear operator.

For the sake of readability, we also use the formal notation ( - \Delta )su| \Omega e := \gamma 
(N)
\Omega e

u
for the Neumann trace, which can be motivated by the following lemma; see also
[39, Remark 2.4] and [32] for further justifications of this notation under additional
smoothness conditions on u or \Omega .

Lemma 2.3. Let u \in Hs
\Delta (\BbbR n). If \gamma 

(N)
\Omega e

u \in L2(\Omega ) in the sense that there exists

g \in L2(\Omega e) with\Bigl\langle 
\gamma 
(N)
\Omega e

u, F
\Bigr\rangle 
= \Omega e gv

(F ) dx for all v(F ) \in Hs(\BbbR n) with v(F )| \Omega e = F,

then g = ( - \Delta )su in \Omega e (in the sense of distributions).

Proof. For all \varphi \in C\infty 
c (\Omega e) \subseteq H(\Omega e) (cf. subsection 2.2), we have that

\Omega g\varphi dx =
\Bigl\langle 
\gamma 
(N)
\Omega e

u,G
\Bigr\rangle 
= \BbbR n( - \Delta )s/2u \cdot ( - \Delta )s/2\varphi dx - \Omega ( - \Delta )su \cdot \varphi dx

= \BbbR n( - \Delta )s/2u \cdot ( - \Delta )s/2\varphi dx = \langle ( - \Delta )su, \varphi \rangle \scrD \prime (\Omega e)\times \scrD (\Omega e).

Note also that if u \in Hs(\BbbR n) solves ( - \Delta )su+ qu = 0 in \Omega , then

\langle ( - \Delta )su| \Omega e
, G\rangle = Bq(u, v

(G))

holds for all G \in H(\Omega e) and all v(G) \in Hs(\BbbR n) with v(G)| \Omega e
= G. Using Corollary 2.2,

we can thus define the linear bounded DtN operator

\Lambda (q) : Hq(\Omega e) \rightarrow H(\Omega e)
\ast , F \mapsto \rightarrow ( - \Delta )su| \Omega e

,
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where u \in Hs
q (\BbbR n) solves

( - \Delta )su+ qu = 0 in \Omega , u| \Omega e = F.

In view of the following sections, note that for q1, q2 \in L\infty (\Omega ),

Hq1,q2(\Omega e) := Hq1(\Omega e) \cap Hq2(\Omega e)

is a subspace of H(\Omega e) with codimension less than or equal to dimNq1 + dimNq2 on
which both \Lambda (q1) and \Lambda (q2) are defined. Hence, throughout this work, \Lambda (q1) - \Lambda (q2)
will always denote the linear bounded operator

\Lambda (q1) - \Lambda (q2) : Hq1,q2(\Omega e) \rightarrow H(\Omega e)
\ast .

The following relation between the DtN operator and the bilinear form will be
useful.

Lemma 2.4. Let q1, q2 \in L\infty (\Omega ), F \in Hq1(\Omega e), G \in Hq2(\Omega e), and let u \in 
Hs
q1(\BbbR 

n), v \in Hs
q2(\BbbR 

n) solve

( - \Delta )su+ q1u = 0 in \Omega , u| \Omega e = F,

( - \Delta )sv + q2v = 0 in \Omega , v| \Omega e = G.

Then
\langle \Lambda (q1)F, F \rangle = Bq1(u, u) and \langle \Lambda (q1)F,G\rangle = Bq1(u, v),

and under the additional restriction that F,G \in Hq1,q2(\Omega e) this also implies that

\langle (\Lambda (q1) - \Lambda (q2))F,G\rangle = Bq1(u, v) - Bq2(u, v) = \Omega (q1  - q2)uv dx.

Proof. This immediately follows from the variational formulation in Lemma 2.1
and the definition of the Neumann trace.

2.4. Unique continuation from open sets and Cauchy data. We recall the
unique continuation result from Ghosh, Salo, and Uhlmann [32].

Theorem 2.5 ([32, Theorem 1.2]). Let n \in \BbbN , and 0 < s < 1. If u \in Hr(\BbbR n)
for some r \in \BbbR , and both u and ( - \Delta )su vanish in the same arbitrary nonempty open
set in \BbbR n, then u \equiv 0 in \BbbR n.

We will make use of the following simple corollary.

Corollary 2.6. Let u \in Hs(\BbbR n) solve ( - \Delta )su+ qu = f in \Omega with f \in L2(\Omega ).
(a) If u and f vanish in the same nonempty open set \scrO \subset \Omega , then u \equiv 0 in \BbbR n.
(b) If u| \Omega e

= 0 and ( - \Delta )su| \Omega e
= 0, then u \equiv 0 in \BbbR n.

Proof. (a) follows since u = 0 in \scrO , and ( - \Delta )su+qu = 0 in \scrO implies ( - \Delta )su = 0
in \scrO . For (b) note that u| \Omega e

and ( - \Delta )su| \Omega e
are only formal notations for the Dirichlet

and Neumann traces of u, but u| \Omega e
= 0 and ( - \Delta )su| \Omega e

= 0 do imply that

u = 0 in \Omega e and ( - \Delta )su = 0 in \Omega e

in the sense of distributions by (2.2) and Lemma 2.3. Hence, both cases follow from
Theorem 2.5.

Remark 2.7. When 1
4 \leq s < 1, then the unique continuation property in Corol-

lary 2.6(a) already holds under the weaker condition that u vanishes in a subset of
\Omega with positive measure; cf. [31, Proposition 5.1]. Moreover, based on such a prop-
erty, [31] shows global uniqueness for the fractional Schr\"odinger equation by a single
measurement.
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3. Monotonicity relations and localized potentials. In this section we de-
rive monotonicity relations between L\infty (\Omega ) potentials and their associated DtN op-
erators, and show how to control the energy terms in the monotonicity relations with
the technique of localized potentials.

3.1. Monotonicity relations. We characterize the monotonicity relations be-
tween DtN operators with an extended Loewner order that holds up to finite dimen-
sional subspaces.

Definition 3.1. Let H be a Hilbert space and H1, H2 \subseteq H be two subspaces of
finite codimension, and let L1 : H1 \rightarrow H, L2 : H2 \rightarrow H be two linear bounded
operators. For a number d \in \BbbN 0 := \BbbN \cup \{ 0\} we write

L1 \leq d L2

if there exists a subspace W \subseteq H12 := H1 \cap H2 with dim(W ) \leq d, and

\langle (L2  - L1)v, v\rangle \geq 0 for all v \in W\bot \subseteq H12.

Here and in the following, we use the notation W\bot \subseteq H12 to indicate that the orthog-
onal complement is taken in H12.

We write L1 \leq L2 if L1 \leq 0 L2 and L1 \leq fin L2 if L1 \leq d L2 for some d \in \BbbN 0. We
also write

L1
fin
= L2 if L1 \leq fin L2 and L2 \leq fin L1,

i.e., if there exists a finite dimensional subspace W \subseteq H12 so that

\langle (L2  - L1)v, v\rangle = 0 for all v \in W\bot \subseteq H12.

Note that if H1 = H2 = H and L1, L2 are self-adjoint and compact, this is the
same extended Loewner order as in [45].

Let us stress that the binary relation \leq d is reflexive, but generally neither tran-
sitive nor antisymmetric. Obviously, L1 \leq d1 L2 and L2 \leq d2 L3 imply that L1 \leq d L3

with d = d1 + d2 + codim(H2), so that \leq fin is a reflexive and transitive relation, i.e.,
a preorder. Moreover, Corollaries 4.2 and 4.9 will show that \leq fin is antisymmetric on
the set of Neumann-to-Dirichlet operators and on their linearizations around a fixed
nonresonant potential, so that on these sets, \leq fin is a partial order.

For two potentials q1, q2 \in L\infty (\Omega ) we write q1 \leq q2 if q1(x) \leq q2(x) for almost
everywhere (a.e.) x \in \Omega . We will show that increasing the potential q in this sense
increases the DtN map \Lambda (q) in the sense of the generalized Loewner order in Defi-
nition 3.1. Note that monotonicity relations in inverse coefficient problems go back
to the works of Ikehata [50] and Kang, Seo, and Sheen [55], and they have been at
the core of many reconstruction algorithms including the factorization method and
the monotonicity method; cf. the list of references in the introduction. Extensions
of monotonicity relations to subspaces of finite codimensions have first been studied
in [45, 33], and we follow the general approach from there. A sharper bound on
the dimension of the excluded subspaces has recently been obtained for the standard
Helmholtz equation in [44].

Definition 3.2. For q \in L\infty (\Omega ) let d(q) \in \BbbN 0 denote the number of eigenvalues
(counted with multiplicity) of the compact self-adjoint operator \iota \ast \iota  - \iota \ast Mq\iota that are
greater than 1.
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Theorem 3.3 (monotonicity relations). Let q1, q2 \in L\infty (\Omega ). There exists a
subspace V \subseteq Hq1,q2(\Omega e) with dim(V ) \leq d(q2) so that

\langle (\Lambda (q1) - \Lambda (q2))F, F \rangle \geq \Omega (q1  - q2)| u1| 2 dx for all F \in V \bot \subseteq Hq1,q2(\Omega e),(3.1)

where u1 \in Hs
q1(\BbbR 

n) solves ( - \Delta )su1 + q1u1 = 0 in \Omega with u1| \Omega e
= F .

Hence
q1 \geq q2 a.e. in \Omega implies that \Lambda (q1) \geq d(q2) \Lambda (q2).

Before we prove Theorem 3.3, let us also formulate a variant that will be useful for
applying the idea of localized potentials in the next sections, remark on interchanging
q1 and q2, and discuss the dependence of dim(Nq) and d(q) on q.

Theorem 3.4. Let q1, q2 \in L\infty (\Omega ). There exists a subspace

V+ \subseteq Hq1,q2(\Omega e) with dim(V+) \leq d(q2) + dim(Nq2),

and a constant \lambda > 0, so that for all F \in V \bot 
+ \subseteq Hq1,q2(\Omega e)

\langle (\Lambda (q1) - \Lambda (q2))F, F \rangle \geq \Omega (q1  - q2)| u1| 2 dx+ \lambda \| u1  - u2\| 2
Hs(\BbbR n)(3.2)

and, for all D \subseteq \Omega containing supp(q1  - q2),

\| u2\| L2(D) \leq c\| u1\| L2(D),(3.3)

where c := 1 + 1
\lambda \| q1  - q2\| L\infty (D), and, for j = 1, 2, uj \in Hs

qj (\BbbR 
n) solve

( - \Delta )suj + qjuj = 0 in \Omega , uj | \Omega e
= F.

Remark 3.5. By interchanging q1 and q2 in Theorems 3.3 and 3.4, we also obtain
that there exist subspaces

V, V+ \subseteq Hq1,q2(\Omega e) with dim(V ) \leq d(q1), and dim(V+) \leq d(q1) + dim(Nq1),

and a constant \lambda > 0, so that

\langle (\Lambda (q1) - \Lambda (q2))F, F \rangle \leq \Omega (q1  - q2)| u2| 2 dx for all F \in V \bot \subseteq Hq1,q2(\Omega e),

and

\langle (\Lambda (q1) - \Lambda (q2))F, F \rangle \leq \Omega (q1  - q2)| u2| 2 dx - \lambda \| u1  - u2\| 2
Hs(\BbbR n),

\| u1\| L2(D) \leq c\| u2\| L2(D)

for all D \supseteq supp(q1  - q2), and all F \in V \bot 
+ \subseteq Hq1,q2(\Omega e), where c := 1 +

1
\lambda \| q1  - q2\| L\infty (D), u1 = Sq1(F ), and u2 = Sq2(F ).

Combining Theorem 3.3 with its interchanged version, we obtain a subspace

V \subseteq Hq1,q2(\Omega e) with dim(V ) \leq d(q1) + d(q2),

so that

\Omega (q1  - q2)| u1| 2 dx \leq \langle (\Lambda (q1) - \Lambda (q2))F, F \rangle \leq \Omega (q1  - q2)| u2| 2 dx

for all F \in V \bot \subseteq Hq1,q2(\Omega e), u1 = Sq1(F ), and u2 = Sq2(F ).
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Combining Theorem 3.4 with its interchanged version, we obtain a subspace

V+ \subseteq Hq1,q2(\Omega e) with dim(V+) \leq d(q1) + d(q2) + dim(Nq1) + dim(Nq2),

and constants \lambda , c1, c2 > 0, so that

\Omega (q1  - q2)| u1| 2 dx+ \lambda \| u1  - u2\| 2
Hs(\BbbR n) \leq \langle (\Lambda (q1) - \Lambda (q2))F, F \rangle 

\leq \Omega (q1  - q2)| u2| 2 dx - \lambda \| u1  - u2\| 2
Hs(\BbbR n)

and
c1\| u1\| L2(D) \leq \| u2\| L2(D) \leq c2\| u1\| L2(D)

for all D \supseteq supp(q1  - q2), and all F \in V \bot 
+ \subseteq Hq1,q2(\Omega e), u1 = Sq1(F ), and u2 =

Sq2(F ).

Theorem 3.6. Let d(q) be given by Definition 3.2 and Nq be defined by (2.5).
(a) For q1, q2 \in L\infty (\Omega )

q1 \leq q2 implies d(q1) \geq d(q2).

(b) For all q1 \in L\infty (\Omega ) there exists \epsilon > 0 so that

dim(Nq1) \geq dim(Nq2) for all q2 \in L\infty (\Omega ) with \| q2  - q1\| L\infty (\Omega ) \leq \epsilon .

To prove Theorems 3.3, 3.4, and 3.6, we first show the following lemmas.

Lemma 3.7. Let q1, q2 \in L\infty (\Omega ). Then, for all F \in Hq1,q2(\Omega e),

\langle (\Lambda (q1) - \Lambda (q2))F, F \rangle + \Omega (q2  - q1)| u1| 2 dx = Bq2(u2  - u1, u2  - u1),

where u1 = Sq1(F ), and u2 = Sq2(F ).

Proof. Using Lemma 2.4, the assertion follows from

Bq2(u2  - u1, u2  - u1) = Bq2(u2, u2) - 2Bq2(u2, u1) + Bq2(u1, u1)

=  - Bq2(u2, u1) + Bq2(u1, u1) =  - Bq2(u2, u1) + Bq1(u1, u1) + \Omega (q2  - q1)| u1| 2 dx
= \langle (\Lambda (q1) - \Lambda (q2))F, F \rangle + \Omega (q2  - q1)| u1| 2 dx.

Lemma 3.8. Let q \in L\infty (\Omega ). Then there exists a subspace W \subseteq Hs
0(\Omega ) with

dim(W ) = d(q), and a constant \lambda > 0, so that

Bq(w,w) \geq 0 for all w \in W\bot \subseteq Hs
0(\Omega ), and

Bq(w,w) \geq \lambda \| w\| 2
Hs(\BbbR n) for all w \in (W +Nq)

\bot \subseteq Hs
0(\Omega ).

Proof. Let W be the sum of eigenspaces of the compact self-adjoint operator
\iota \ast \iota  - \iota \ast Mq\iota corresponding to eigenvalues larger than 1. Then

Bq(w,w) = ((I  - \iota \ast \iota + \iota \ast Mq\iota )w,w)Hs(\BbbR n) \geq 0 for all w \in W\bot \subseteq Hs
0(\Omega ).

Since Nq = \scrN (I  - \iota \ast \iota + \iota \ast Mq\iota ) is the eigenspace of \iota \ast \iota  - \iota \ast Mq\iota corresponding to the
eigenvalue 1, it also follows that

Bq(w,w) \geq (1 - \mu )\| w\| 2
Hs(\BbbR n) for all w \in (W +Nq)

\bot \subseteq Hs
0(\Omega ),

where \mu is the largest eigenvalue of \iota \ast \iota  - \iota \ast Mq\iota smaller than 1. Hence, the assertion
follows with \lambda := 1 - \mu .
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Lemma 3.9. Let q1, q2 \in L\infty (\Omega ). There exists \lambda > 0 and subspaces

V \subseteq V+ \subseteq Hq1,q2(\Omega e) with dim(V ) \leq d(q2), dim(V+) \leq d(q2) + dim(Nq2),

so that

Bq2(u2  - u1, u2  - u1) \geq 0 for all F \in V \bot \subseteq Hq1,q2(\Omega e),(3.4)

Bq2(u2  - u1, u2  - u1) \geq \lambda \| u2  - u1\| 2
Hs(\BbbR n) for all F \in V \bot 

+ \subseteq Hq1,q2(\Omega e),(3.5)

where u1 = Sq1(F ), and u2 = Sq2(F ).

Proof. The difference of the solution operators

S : Hq1,q2(\Omega e) \rightarrow Hs
0(\Omega ), F \mapsto \rightarrow (Sq2  - Sq1)F = u2  - u1 \in Hs

0(\Omega ),

is linear and bounded by Corollary 2.2. Using Lemma 3.8 with q := q2 we obtain
a subspace W \subseteq Hs

0(\Omega ) with dim(W ) = d(q2), so that (3.4) holds for all F with
SF \in W\bot which is equivalent to F \in (S\ast W )\bot . Also, by Lemma 3.8, (3.5) holds for
all F with SF \in (W +Nq)

\bot which is equivalent to F \in (S\ast (W +Nq))
\bot . Hence, the

assertion follows with V := S\ast W , and V+ := S\ast (W +Nq).

Proof of Theorem 3.3. This immediately follows using Lemmas 3.7--3.9.

Proof of Theorem 3.4. The monotonicity relation (3.2) immediately follows using
Lemmas 3.7--3.9. To prove (3.3), we use that

0 = Bq1(u1, w) = Bq2(u2, w) for all w \in Hs
0(\Omega ),

to conclude that for all D \subseteq \Omega containing supp(q1  - q2)

\lambda \| u2  - u1\| 2
Hs(\BbbR n) \leq Bq2(u2  - u1, u2  - u1) =  - Bq2(u1, u2  - u1)

= Bq1(u1, u2  - u1) - Bq2(u1, u2  - u1) = \Omega (q1  - q2)u1(u2  - u1) dx

\leq \| q1  - q2\| L\infty (D)\| u1\| L2(D)\| u2  - u1\| Hs(\BbbR n).

Hence

\| u2\| L2(D)  - \| u1\| L2(D) \leq \| u2  - u1\| L2(D) \leq 
1

\lambda 
\| q1  - q2\| L\infty (D)\| u1\| L2(D),

which yields (3.3) with c := 1 + 1
\lambda \| q1  - q2\| L\infty (D).

Proof of Theorem 3.6. For qj \in L\infty (\Omega ), j = 1, 2, we denote the positive eigenval-
ues (counted with multiplicities) of the compact self-adjoint operator

\iota \ast \iota  - \iota \ast Mqj \iota : H
s
0(\Omega ) \rightarrow Hs

0(\Omega ) by \lambda 
(j)
1 \geq \lambda 

(j)
2 \geq \lambda 

(j)
3 \geq \cdot \cdot \cdot .

(a) Let q1 \leq q2. Then for all v \in Hs
0(\Omega )

((\iota \ast \iota  - \iota \ast Mq1\iota )v, v)Hs
0 (\Omega ) = \Omega (1 - q1)| v| 2 dx \geq \Omega (1 - q2)| v| 2 dx

= ((\iota \ast \iota  - \iota \ast Mq2\iota )v, v)Hs
0 (\Omega ) .

Hence, it follows from the Courant--Fischer--Weyl min-max principle (see, e.g.,
[63]) that

\lambda 
(1)
k = max

X\subset Hs
0(\Omega )

dim(X)=k

min
v\in X

\| v\| Hs
0(\Omega )=1

((\iota \ast \iota  - \iota \ast Mq1\iota )v, v)Hs
0 (\Omega )

\geq max
X\subset Hs

0(\Omega )

dim(X)=k

min
v\in X

\| v\| Hs
0(\Omega )=1

((\iota \ast \iota  - \iota \ast Mq2\iota )v, v)Hs
0 (\Omega ) = \lambda 

(2)
k

for all k \in \BbbN , which shows d(q1) \geq d(q2).
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(b) Let q1 \in L\infty (\Omega ). Since Nq1 = \scrN (I  - \iota \ast \iota + \iota \ast Mq1\iota ), exactly dim(Nq1) eigen-
values of \iota \ast \iota  - \iota \ast Mq1\iota are identically one, so that

\cdot \cdot \cdot \geq \lambda 
(1)
d(q1)

> 1 = \lambda 
(1)
d(q1)+1 = \cdot \cdot \cdot = \lambda 

(1)
d(q1)+dim(Nq1

) > \lambda 
(1)
d(q1)+dim(Nq1

)+1 \geq \cdot \cdot \cdot .

Since \lambda 
(1)
d(q1)

 - 1 > 0 and 1 - \lambda 
(1)
d(q1)+dim(Nq1 )+1 > 0, we can set

(3.6) \epsilon :=
1

2
min

\Bigl\{ 
\lambda 
(1)
d(q1)

 - 1, 1 - \lambda 
(1)
d(q1)+dim(Nq1 )+1

\Bigr\} 
> 0.

Then for all q2 \in L\infty (\Omega ) with \| q2  - q1\| L\infty (\Omega ) \leq \epsilon , and all v \in Hs
0(\Omega ) with

\| v\| Hs
0 (\Omega ) = 1, we have that\bigm| \bigm| \bigm| ((\iota \ast \iota  - \iota \ast Mq1\iota )v, v)Hs

0 (\Omega )  - ((\iota \ast \iota  - \iota \ast Mq2\iota )v, v)Hs
0 (\Omega )

\bigm| \bigm| \bigm| \leq \Omega | q1  - q2| | v| 2 dx\leq \epsilon .

Hence, using the Courant--Fischer--Weyl min-max principle as in (a) again, we

obtain that
\bigm| \bigm| \bigm| \lambda (1)k  - \lambda 

(2)
k

\bigm| \bigm| \bigm| \leq \epsilon for all k \in \BbbN . In particular, using the definition

of \epsilon in (3.6),
\bigm| \bigm| \bigm| \lambda (1)d(q1)  - \lambda 

(2)
d(q1)

\bigm| \bigm| \bigm| \leq \epsilon yields that

\lambda 
(2)
1 \geq \cdot \cdot \cdot \geq \lambda 

(2)
d(q1)

\geq \lambda 
(1)
d(q1)

 - \epsilon > 1,

and
\bigm| \bigm| \bigm| \lambda (1)d(q1)+dim(Nq1 )+1  - \lambda 

(2)
d(q1)+dim(Nq1 )+1

\bigm| \bigm| \bigm| \leq \epsilon yields that

1 > \lambda 
(1)
d(q1)+dim(Nq1

)+1 + \epsilon \geq \lambda 
(2)
d(q1)+dim(Nq1

)+1 \geq \lambda 
(2)
d(q1)+dim(Nq1

)+2 \geq \cdot \cdot \cdot .

It follows that only the eigenvalues \lambda 
(2)
d(q1)+1, . . . , \lambda 

(2)
d(q1)+dim(Nq1

) of \iota 
\ast \iota  - \iota \ast Mq2\iota 

could possibly be identically one, so that dim(Nq2) \leq dim(Nq1) is proven.

3.2. Localized potentials for the fractional Schr\"odinger equation. In
this subsection, we extend the localized potentials result that was derived in [39]
for positive potentials to general L\infty (\Omega )-potentials and spaces of finite codimension.
Moreover, we will show a new result on controlling two localized potentials simulta-
neously. We will prove the following two theorems.

Theorem 3.10 (localized potentials). Let q \in L\infty (\Omega ). For every measurable set
M \subseteq \Omega with positive measure, and every finite dimensional subspace V \subseteq Hq(\Omega e)
there exists a sequence \{ F k\} k\in \BbbN \subseteq V \bot \subseteq Hq(\Omega e) so that the corresponding solutions
uk \in Hs

q (\BbbR n) of

(3.7) ( - \Delta )su+ qu = 0 in \Omega with u| \Omega e = F k,

fulfill

M | uk| 2 dx\rightarrow \infty and \Omega \setminus M | uk| 2 dx\rightarrow 0.

Theorem 3.11 (simultaneously localized potentials). Let q1, q2 \in L\infty (\Omega ), and
let supp(q1  - q2) \subseteq M , where M \subseteq \Omega is a measurable set with positive measure. For
every finite dimensional subspace V \subseteq Hq1,q2(\Omega e), there exists a sequence \{ F k\} k\in \BbbN \subseteq 
V \bot \subseteq Hq1,q2(\Omega e) so that the corresponding solutions uk1 \in Hs

q1(\BbbR 
n), uk2 \in Hs

q2(\BbbR 
n), of

( - \Delta )suk1 + q1u
k
1 = 0 in \Omega with uk1 | \Omega e = F k,

( - \Delta )suk2 + q2u
k
2 = 0 in \Omega with uk2 | \Omega e

= F k,
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fulfill

M | uk1 | 2 dx\rightarrow \infty , \Omega \setminus M | uk1 | 2 dx\rightarrow 0,

M | uk2 | 2 dx\rightarrow \infty , \Omega \setminus M | uk2 | 2 dx\rightarrow 0.

To prove Theorems 3.10 and 3.11, we follow the general line of reasoning developed
by one of the authors in [29]. We formulate the energy terms as norms of operator
evaluations and characterize their adjoints and the ranges of their adjoints using the
unique continuation property in section 2.4. We then prove the two theorems using
a functional analytic relation between norms of operator evaluations and ranges of
their adjoints.

We start by defining the so-called virtual measurement operators.

Lemma 3.12. For q \in L\infty (\Omega ), a measurable set M \subseteq \Omega with positive measure,
and a subspace H \subseteq Hq(\Omega e) with finite codimension, we define the operator

LM,q : H \rightarrow L2(M), F \mapsto \rightarrow u| M ,

where u \in Hs
q (\BbbR n) solves

(3.8) ( - \Delta )su+ qu = 0 in \Omega with u| \Omega e = F.

Furthermore, let VM := \{ u| M : u \in Nq\} .
Then LM,q is a linear bounded operator, dim(VM ) < \infty , and for all g \in V \bot 

M \subseteq 
L2(M) and F \in H \bigl( 

L\ast 
M,qg, F

\bigr) 
H(\Omega e)

=  - \langle ( - \Delta )sv| \Omega e
, F \rangle ,(3.9)

where v \in Hs
q (\BbbR n) solves ( - \Delta )sv + qv = g\chi M in \Omega , and v| \Omega e = 0.

Proof. By Lemma 2.1 and Corollary 2.2, we have that LM,q is a linear bounded
operator, dim(VM ) < \infty , and for all g \in V \bot 

M \subseteq L2(M) there exists a solution v \in 
Hs
q (\Omega ) of ( - \Delta )sv + qv = g\chi M in \Omega , and v| \Omega e

= 0. Then v \in Hs
0(\Omega ) fulfills

Bq(v, w) = M gw dx for all w \in Hs
0(\Omega ).

For F \in H let u = u(0) + u(F ) solve (3.8) as in Lemma 2.1. Then\bigl( 
L\ast 
M,qg, F

\bigr) 
H(\Omega e)

= M g(LM,qF ) dx = M gudx = M g(u(0) + u(F )) dx

= Bq(v, u
(0)) +M gu(F ) dx =  - Bq(v, u

(F )) +M gu(F ) dx

=  - \BbbR n( - \Delta )s/2v \cdot ( - \Delta )s/2u(F ) dx+ \Omega ( - \Delta )sv \cdot v(F ) dx

=  - \langle ( - \Delta )sv| \Omega e
, F \rangle .

We now proceed similarly to [45] to extend the functional analytic relation be-
tween the norms of two operators and the ranges of their adjoints from [29, Lemma
2.5], [23, Corollary 3.5] to spaces of finite codimension.

Lemma 3.13. Let X, Y , and Z be Hilbert spaces, A1 : X \rightarrow Y and A2 : X \rightarrow Z
be linear bounded operators, and let N \subseteq X be a finite dimensional subspace. Then

\scrR (A\ast 
1) \subseteq \scrR (A\ast 

2) +N if and only if \exists c > 0 : \| A1x\| \leq c\| A2x\| \forall x \in N\bot ,

where \scrR (A) denotes the range of the linear bounded operator A.



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

416 BASTIAN HARRACH AND YI-HSUAN LIN

Proof. For both implications, we use that there exists an orthogonal projection
operator PN : X \rightarrow X with

\scrR (PN ) = N, \scrN (PN ) = \scrR (I  - PN ) = N\bot , and P 2
N = PN = P \ast 

N .

To show the first implication, let \scrR (A\ast 
1) \subseteq \scrR (A\ast 

2) + N . Using block operator
matrix notation we then have that

\scrR (A\ast 
1) \subseteq \scrR (A\ast 

2) +\scrR (PN ) = \scrR 
\bigl( \bigl( 
A\ast 

2 PN
\bigr) \bigr) 
.

Hence, by [29, Lemma 2.5] there exists c > 0 so that

\| A1x\| 2 \leq c2
\bigm\| \bigm\| \bigm\| \bigm\| \biggl( A2

PN

\biggr) 
x

\bigm\| \bigm\| \bigm\| \bigm\| 2 = c2\| A2x\| 2 + c2\| PNx\| 2 for all x \in X,

and thus
\| A1x\| \leq c\| A2x\| for all x \in \scrN (PN ) = N\bot .

To show the converse implication, let c > 0 and \| A1x\| \leq c\| A2x\| for all x \in N\bot .
Then

\| A1(I  - PN )x\| \leq c\| A2(I  - PN )x\| for all x \in X,

so that [29, Lemma 2.5] yields that

\scrR ((I  - PN )A\ast 
1) \subseteq \scrR ((I  - PN )A\ast 

2).

Hence,

\scrR (A\ast 
1) \subseteq \scrR ((I  - PN )A\ast 

1) +N \subseteq \scrR ((I  - PN )A\ast 
2) +N \subseteq \scrR (A\ast 

2) +N.

For the application of Lemma 3.13, the following elementary (and purely alge-
braic) observation will also be useful.

Lemma 3.14. Let X and Y be vector spaces, let A : X \rightarrow Y be linear, and let Y \prime 

be a subspace of Y . The following two statements are equivalent:
(a) There exists a finite dimensional subspace N \subseteq Y with A(X) \subseteq Y \prime +N .
(b) There exists a subspace X \prime \subseteq X with finite codimension so that A(X \prime ) \subseteq Y \prime .

Moreover, for all subspaces X \prime \subseteq X with finite codimension, there exists a finite
dimensional subspace N \subseteq Y with A(X) \subseteq A(X \prime ) + N , and dim(A(X \prime )) = \infty holds
if dimA(X) = \infty .

Proof. Let A(X) \subseteq Y \prime +N , where Y \prime andN are subspaces of Y , and dim(N) <\infty .
Since any basis of N can be extended to a Hamel basis of Y \prime +N , there exists a linear
projection

P : Y \prime +N \rightarrow N with \scrR (P ) = N and \scrN (P ) \subseteq Y \prime .

Define X \prime := \{ x \in X : PAx = 0\} = \scrN (PA). Then

codim(X \prime ) = dim(\scrR (PA)) \leq dim(\scrR (P )) = dim(N),

and by definition A(X \prime ) \subseteq \scrN (P ) \subseteq Y \prime . This shows that (a) implies (b).
Clearly, (b) implies (a) by setting N := A(X \prime \prime ), where X \prime \prime is a linear complement

of X \prime in X.
Moreover, if X \prime is a subspace of finite codimension then (b) holds with Y \prime =

A(X \prime ), so that (a) implies the existence of a finite dimensional subspace N \subseteq Y with
A(X) \subseteq A(X \prime ) +N . Clearly, this also implies that dim(A(X \prime )) = \infty if dim(A(X)) =
\infty .
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Now, we are ready to prove Theorems 3.10 and 3.11.

Proof of Theorem 3.10. Let q \in L\infty (\Omega ),M \subseteq \Omega be a measurable set with positive
measure, and V \subseteq Hq(\Omega e) be a finite dimensional subspace. As in Lemma 3.12, we
define the virtual measurement operators

LM,q : Hq(\Omega e) \rightarrow L2(M), F \mapsto \rightarrow u| M , and

L\Omega \setminus M,q : Hq(\Omega e) \rightarrow L2(\Omega \setminus M), F \mapsto \rightarrow u| \Omega \setminus M ,

where u \in Hs
q (\BbbR n) solves

( - \Delta )su+ qu = 0 in \Omega with u| \Omega e
= F.

Then the assertion follows if we can show that there exists a sequence \{ F k\} k\in \BbbN \subseteq 
V \bot \subseteq Hq(\Omega e) so that

\| LM,qF
k\| L2(M) \rightarrow \infty and \| L\Omega \setminus M,qF

k\| L2(\Omega \setminus M) \rightarrow 0.

By a simple normalization argument (cf., e.g., the proof of [39, Corollary 3.5]), it
suffices to show that

\not \exists c > 0 : \| LM,qF\| L2(M) \leq c\| L\Omega \setminus M,qF\| L2(\Omega \setminus M) for all F \in V \bot \subseteq Hq(\Omega e).

This follows from Lemma 3.13 if we can show that

(3.10) \scrR (L\ast 
M,q) \not \subseteq \scrR (L\ast 

\Omega \setminus M,q) + V.

We prove this by contradiction and assume that \scrR (L\ast 
M,q) \subseteq \scrR (\ast \Omega \setminus M,q) + V .
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As in Lemma 3.12, define

VM := \{ u| M : u \in Nq\} and V\Omega \setminus M := \{ u| \Omega \setminus M : u \in Nq\} .

Then V \bot 
M and V \bot 

\Omega \setminus M have finite codimension in L2(M) and L2(\Omega \setminus M), resp. Moreover,
we define their subspaces

WM :=
\bigl\{ 
g \in V \bot 

M : \langle ( - \Delta )svM | \Omega e
, F \rangle = 0 for all F \in Hq(\Omega e)

\bot \bigr\} ,
W\Omega \setminus M :=

\Bigl\{ 
g \in V \bot 

\Omega \setminus M : \langle ( - \Delta )sv\Omega \setminus M | \Omega e , F \rangle = 0 for all F \in Hq(\Omega e)
\bot 
\Bigr\} 
,

where vM , v\Omega \setminus M \in Hs
q (\BbbR n) are the solutions of

( - \Delta )svM + qvM = gM\chi M in \Omega , vM | \Omega e = 0,(3.11)

( - \Delta )sv\Omega \setminus M + qv\Omega \setminus M = g\Omega \setminus M\chi \Omega \setminus M in \Omega , v\Omega \setminus M | \Omega e = 0.(3.12)

Then also WM and W\Omega \setminus M are subspaces of L2(M), resp., L2(\Omega \setminus M), with finite
codimension, since the conditions in their definitions are equivalent to a system of
finitely many homogeneous linear equations.

From Lemma 3.14 we then obtain that

L\ast 
M,q(WM ) \subseteq \scrR (L\ast 

M,q) \subseteq \scrR (L\ast 
\Omega \setminus M,q) + V \subseteq L\ast 

\Omega \setminus M,q(W\Omega \setminus M ) + V \prime 

with a finite dimensional space V \prime . Moreover, using Lemma 3.14 again, there exists
a subspace W \prime 

M \subseteq WM with finite codimension in WM and thus in L2(M), so that

(3.13) L\ast 
M,q(W

\prime 
M ) \subseteq L\ast 

\Omega \setminus M,q(W\Omega \setminus M ).

Let gM \in W \prime 
M . Then, by (3.13), there exists g\Omega \setminus M \in W\Omega \setminus M , so that the corre-

sponding solutions vM , v\Omega \setminus M \in Hs
q (\BbbR n) of (3.11) and (3.12) fulfill

 - \langle ( - \Delta )svM | \Omega e
, F \rangle =

\bigl( 
L\ast 
M,qgM , F

\bigr) 
H(\Omega e)

=  - \langle ( - \Delta )sv\Omega \setminus M | \Omega e
, F \rangle for all F \in Hq(\Omega e),

where we have utilized (3.9). By the definition of WM and W\Omega \setminus M , it also holds that

\langle ( - \Delta )svM | \Omega e
, F \rangle = 0 = \langle ( - \Delta )sv\Omega \setminus M | \Omega e

, F \rangle for all F \in Hq(\Omega e)
\bot .

Hence v := vM  - v\Omega \setminus M fulfills

( - \Delta )sv + qv = gM\chi M  - g\Omega \setminus M\chi \Omega \setminus M in \Omega 

with vanishing Cauchy data v| \Omega e
= 0 and ( - \Delta )sv| \Omega e

= 0. From the unique continua-
tion result in Corollary 2.6(b) it follows that v \equiv 0 in \BbbR n. But this yields gM = 0, and
since this arguments holds for all gM \in W \prime 

M , it follows that W \prime 
M = \{ 0\} which contra-

dicts the fact that W \prime 
M is a subspace of finite codimension in the infinite dimensional

space L2(M). Hence, (3.10) and thus the assertion is proven.

Proof of Theorem 3.11. Let q1, q2 \in L\infty (\Omega ), and let supp(q1  - q2) \subseteq M where
M \subseteq \Omega is a measurable set with positive measure. We first note that it suffices to
show that for all finite dimensional subspaces V \subseteq Hq1,q2(\Omega e), there exists a sequence
\{ F k\} k\in \BbbN \subseteq V \bot \subseteq Hq1,q2(\Omega e) with

M | uk1 | 2 dx\rightarrow \infty and \Omega \setminus M
\bigl( 
| uk1 | 2 + | uk2 | 2

\bigr) 
dx\rightarrow 0,(3.14)
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since M | uk1 | 2 dx\rightarrow \infty implies M | uk2 | 2 dx\rightarrow \infty on a subspace of finite codimension in
Hq1,q2(\Omega e) by Remark 3.5.

We define as in Lemma 3.12,

LM,q1 : Hq1,q2(\Omega e) \rightarrow L2(M), F \mapsto \rightarrow u1| M ,
L\Omega \setminus M,q1 : Hq1,q2(\Omega e) \rightarrow L2(\Omega \setminus M), F \mapsto \rightarrow u1| \Omega \setminus M , and

L\Omega \setminus M,q2 : Hq1,q2(\Omega e) \rightarrow L2(\Omega \setminus M), F \mapsto \rightarrow u2| \Omega \setminus M ,

where uj \in Hs
qj (\BbbR 

n) solves (for j = 1, 2)

( - \Delta )suj + qjuj = 0 in \Omega with uj | \Omega e
= F.

Thus (3.14) can be reformulated as

\| LM,q1F
k\| L2(M) \rightarrow \infty and

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( L\Omega \setminus M,q1

L\Omega \setminus M,q2

\biggr) 
F k

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega \setminus M)\times L2(\Omega \setminus M)

\rightarrow 0.

Hence, using Lemma 3.13 as in the proof of Theorem 3.10, the assertion follows if we
can show that

(3.15) \scrR (L\ast 
M,q1) \not \subseteq \scrR 

\Bigl( \Bigl( 
L\ast 
\Omega \setminus M,q1

L\ast 
\Omega \setminus M,q2

\Bigr) \Bigr) 
+V = \scrR (L\ast 

\Omega \setminus M,q1
)+\scrR (L\ast 

\Omega \setminus M,q2
)+V.

We argue by contradiction and assume that

\scrR (L\ast 
M,q1) \subseteq \scrR (L\ast 

\Omega \setminus M,q1
) +\scrR (L\ast 

\Omega \setminus M,q2
) + V.

As in the proof of Theorem 3.10, we define (for j = 1, 2)

VM,q1 := \{ u| M : u \in Nq1\} , V\Omega \setminus M,qj := \{ u| \Omega \setminus M : u \in Nqj\} ,

and

WM,q1 :=
\bigl\{ 
g \in V \bot 

M,q1 : \langle ( - \Delta )svM,q1 | \Omega e
, F \rangle = 0 for all F \in Hq1,q2(\Omega e)

\bot \bigr\} ,
W\Omega \setminus M,qj :=

\Bigl\{ 
g \in V \bot 

\Omega \setminus M,qj
: \langle ( - \Delta )sv\Omega \setminus M,qj | \Omega e

, F \rangle = 0 for all F \in Hq1,q2(\Omega e)
\bot 
\Bigr\} 
,

where vM,q1 , v\Omega \setminus M,qj \in Hs
q (\BbbR n) are the solutions of

( - \Delta )svM,q1 + q1vM,q1 = gM,q1\chi M in \Omega , vM,q1 | \Omega e = 0,(3.16)

( - \Delta )sv\Omega \setminus M,qj + qjv\Omega \setminus M,qj = g\Omega \setminus M,qj\chi \Omega \setminus M in \Omega , v\Omega \setminus M,qj | \Omega e = 0,(3.17)

for j = 1, 2. Then, as in the proof of Theorem 3.10, we obtain using Lemma 3.14 that

(3.18) L\ast 
M,q1(W

\prime 
M,q1) \subseteq L\ast 

\Omega \setminus M,q1
(W\Omega \setminus M,q1) + L\ast 

\Omega \setminus M,q2
(W\Omega \setminus M,q2)

with a subspace W \prime 
M,q1

\subseteq WM,q1 that has finite codimension in L2(M).
Let gM,q1 \in W \prime 

M,q1
. As in the proof of Theorem 3.10, it then follows from

(3.18) and the definition of WM,q1 , W\Omega \setminus M,qj , and W\Omega \setminus M,q2 , that there exist gqj ,\Omega \setminus M \in 
W\Omega \setminus M,qj (j = 1, 2), so that the solutions vM,q1 , v\Omega \setminus M,q1 , and v\Omega \setminus M,q2 of (3.16) and
(3.17) fulfill

( - \Delta )svq1,M | \Omega e = ( - \Delta )svq1,\Omega \setminus M | \Omega e + ( - \Delta )svq2,\Omega \setminus M | \Omega e .
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It follows that v := vq1,\Omega \setminus M + vq2,\Omega \setminus M  - vq1,M solves

( - \Delta )sv + q1v = gq1,\Omega \setminus M\chi \Omega \setminus M + (q1  - q2)vq2,\Omega \setminus M + gq2,\Omega \setminus M\chi \Omega \setminus M  - gq1,M\chi M

with zero Cauchy data. Hence, by Corollary 2.6(b), v = 0, and with supp(q1 - q2) \subseteq M
this also implies

(q1  - q2)vq2,\Omega \setminus M  - gq1,M = 0.

Since vq2,\Omega \setminus M \in Hs
0(\Omega ), and the above arguments hold for all gM,q1 \in W \prime 

M,q1
, it

follows that

W \prime 
M,q1 \subseteq (Mq1  - Mq2)\iota (H

s
0(\Omega )) \subseteq L2(\Omega ).

Hence, the range of the compact operator (Mq1  - Mq2)\iota would be a subspace of finite
codimension in L2(\Omega ) and thus closed. But the range of a compact operator can
only be closed if it is finite dimensional (cf., e.g., [68, Theorem. 4.18]), so that this
contradicts the infinite dimensionality of L2(\Omega ). Thus, (3.15) is proven.

Remark 3.15. Our proof of the existence of simultaneously localized potentials
followed the approach from [29] that is based on a functional analytic relation between
norms of operator evaluations and ranges of their adjoints. For some applications
(cf. [45, 40]), and also in the first part of this work [39], the existence of localized
potentials also followed from Runge approximations arguments. It is an interesting
open question whether this alternative route of directly using a Runge approximation
argument could also yield an alternative proof of the existence of simultaneously
localized potentials.

4. Converse monotonicity, uniqueness, and inclusion detection. Using
the localized potentials and monotonicity relations from the last section, we can now
extend the results from [39] to the case of a general potential q \in L\infty (\Omega ).

4.1. Converse monotonicity and the Calder\'on problem. We first derive
an if-and-only-if monotonicity relation between the potential and the DtN operators.

Theorem 4.1. Let n \in \BbbN , \Omega \subset \BbbR n be a Lipschitz bounded open set and s \in (0, 1).
For any two potential q1, q2 \in L\infty (\Omega ), we have

q1 \geq q2 if and only if \Lambda (q1) \geq d(q2) \Lambda (q2) if and only if \Lambda (q1) \geq fin \Lambda (q2),
(4.1)

where d(q2) is the integer given in section 3.

Proof. Via Theorem 3.3, q1 \geq q2 implies \Lambda (q1) \geq d(q2) \Lambda (q2), and clearly \Lambda (q1)
\geq d(q2) \Lambda (q2) implies \Lambda (q1) \geq fin \Lambda (q2). The assertion is proven if we can show that
\Lambda (q1) \geq fin \Lambda (q2) implies q1 \geq q2 a.e. in \Omega .

Let \Lambda (q1) \geq fin \Lambda (q2). Using this together with Remark 3.5 and that the inter-
section of subspaces with finite codimension still has finite codimension, we obtain a
subspace V \subseteq Hq1,q2(\Omega e) so that

0 \leq \langle (\Lambda (q1) - \Lambda (q2))F, F \rangle \leq \Omega (q1  - q2)| u2| 2 dx for all F \in V \bot \subseteq Hq1,q2(\Omega e),

(4.2)

where u2 \in Hs
q2(\BbbR 

n) solves

(4.3) ( - \Delta )su2 + q2u2 = 0 in \Omega and u2| \Omega e
= F.
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To show that this implies q1 \geq q2 a.e. in \Omega , we argue by contradiction and assume
that there exists \delta > 0 and a positive measurable set M \subset \Omega such that q2  - q1 \geq \delta on
M . Then utilizing the localized potentials from Theorem 3.10 we obtain a sequence
(F k)k\in \BbbN \subset V \bot \subseteq Hq1,q2(\Omega e) where the corresponding solutions of (4.3) with F = F k

solve

M | uk2 | 2 dx\rightarrow \infty and \Omega \setminus M | uk2 | 2 dx\rightarrow 0.

But together with (4.2) this yields the contradiction

0 \leq \Omega (q1  - q2)| uk2 | 2 dx \leq  - \delta M | uk2 | 2 dx+ \| q1  - q2\| L\infty (\Omega ) \Omega \setminus M | uk2 | 2 dx\rightarrow  - \infty ,

which proves q1 \geq q2 a.e. in \Omega .

Corollary 4.2. Let n \in \BbbN , \Omega \subset \BbbR n be a bounded Lipschitz domain and s \in 
(0, 1). For any two potentials q0, q1 \in L\infty 

+ (\Omega ),

q0 = q1 if and only if \Lambda (q0)
fin
= \Lambda (q1).

Proof. This follows immediately from Theorem 4.1.

4.2. A monotonicity-based reconstruction formula. In [39], we considered
positive potentials q \in L\infty 

+ (\Omega ), where L\infty 
+ (\Omega ) denotes the set of all L\infty (\Omega )-functions

with positive essential infima. We showed that q \in L\infty 
+ (\Omega ) can be reconstructed from

\Lambda (q) by taking the supremum of all positive density one simple functions \psi with
\Lambda (\psi ) \leq \Lambda (q). The space of density one simple functions is defined by

\Sigma :=
\Bigl\{ 
\psi =

\sum m
j=1 aj\chi Mj

: aj \in \BbbR , Mj \subseteq \Omega is a density one set
\Bigr\} 
,

where we call a subset M \subseteq \Omega a density one set if it is nonempty, measurable, and
has Lebesgue density 1 in all x \in M . Note that density one simple functions can be
regarded as simple functions where function values that are only attained on a null set
are replaced by zero, and that, by the Lebesgue's density theorem, every measurable
set agrees almost everywhere with a density one set, so that every simple function
agrees with a density one simple function almost everywhere. For our results, it is
important to control the values on null sets since these values might still affect the
supremum when the supremum is taken over uncountably many functions.

For general potentials we obtain the following reconstruction formula.

Theorem 4.3. Let n \in \BbbN , \Omega \subset \BbbR n be a bounded Lipschitz domain and s \in (0, 1).
A potential q \in L\infty (\Omega ) is uniquely determined by \Lambda (q) via the following formula

q(x) = sup\{ \psi (x) : \psi \in \Sigma , \Lambda (\psi ) \leq fin \Lambda (q)\} + inf\{ \psi (x) : \psi \in \Sigma , \Lambda (\psi ) \geq fin \Lambda (q)\} 
= sup\{ \psi (x) : \psi \in \Sigma , \Lambda (\psi ) \leq d(\psi ) \Lambda (q)\} + inf\{ \psi (x) : \psi \in \Sigma , \Lambda (\psi ) \geq d(q) \Lambda (q)\} 

for x \in \Omega (a.e.).

To prove Theorem 4.3, we first show the following lemma.

Lemma 4.4. For each function q \in L\infty (\Omega ), and x \in \Omega a.e., we have that

max\{ q(x), 0\} = sup\{ \psi (x) : \psi \in \Sigma with \psi \leq q\} .

Proof. Let q \in L\infty (\Omega ). By the standard simple function approximation lemma
(cf., e.g., [67]), there exists a sequence (\psi k), k \in \BbbN of simple functions with

(4.4) q(x) - 1

k
\leq \psi k(x) \leq q(x)
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for all k \in \BbbN and x \in \Omega . Since every simple function agrees with a density one
simple function almost everywhere, we can change the values of the countably many
functions \psi k on a null set, to obtain \psi k \in \Sigma for which (4.4) holds almost everywhere.
Hence, for x \in \Omega (a.e.),

q(x) = lim
k\rightarrow \infty 

\psi k(x) \leq sup\{ \psi (x) : \psi \in \Sigma , \psi \leq q\} .

Moreover, if x \in \Omega then \psi x =  - \| q\| L\infty (\Omega )\chi \Omega \setminus \{ x\} is a density one simple function
fulfilling \psi x(x) = 0 and \psi x(\xi ) \leq q(\xi ) for a.e. \xi \in \Omega , so that \psi x \leq q. Hence,

0 \leq sup\{ \psi (x) : \psi \in \Sigma , \psi \leq q\} for x \in \Omega (a.e.).

It remains to show that

(4.5) max\{ q(x), 0\} \geq sup\{ \psi (x) : \psi \in \Sigma , \psi \leq q\} for x \in \Omega (a.e.).

We argue as in the proof of [39, Lemma 4.4]. It suffices to show that for each \delta > 0
the set

(4.6) M := \{ x \in \Omega : max\{ q(x), 0\} + \delta < sup\{ \psi (x) : \psi \in \Sigma , \psi \leq q\} \} 

is a null set. To prove this, assume thatM is not a null set for some \delta > 0. By remov-
ing a null set from M , we can assume that M is a density one set. By using Lusin's
theorem (see [67] for instance), all measurable functions are approximately continu-
ous a.e. Hence, M must contain a point \widehat x in which the function x \mapsto \rightarrow max\{ q(x), 0\} is
approximately continuous, and thus the set

M \prime := \{ x \in \Omega : max\{ q(x), 0\} \leq max\{ q(\widehat x), 0\} + \delta /3\} 

has density one in \widehat x. Removing a null set, we can assume that M \prime is a density one
set still containing \widehat x.

Moreover, by the definition of M , there must exist a \psi \in \Sigma with \psi \leq q and

max\{ q(\widehat x), 0\} + 2

3
\delta \leq \psi (\widehat x).

This shows \psi (\widehat x) > 0, so that, by [39, Lemma 4.3], there exists a density one set M \prime \prime 

containing \widehat x, where \psi (x) = \psi (\widehat x) for all x \in M \prime \prime .
We thus have that for all x \in M \prime \cap M \prime \prime 

q(x) + \delta /3 \leq max\{ q(x), 0\} + \delta /3 \leq max\{ q(\widehat x), 0\} + 2

3
\delta \leq \psi (\widehat x) = \psi (x),

and M \prime \cap M \prime \prime possesses positive measure since M \prime and M \prime \prime are density one sets that
both contain \widehat x; cf., again, [39, Lemma 4.3]. But this contradicts that \psi (x) \leq q(x)
almost everywhere, and thus shows that M defined in (4.6) is a null set for all \delta > 0.
It follows that (4.5) holds, so that the assertion is proven.

Proof of Theorem 4.3. Using Lemma 4.4 and the if-and-only-if monotonicity re-
lation in Theorem 4.1, we have that for all q \in L\infty (\Omega ), and all x \in \Omega a.e.,

q(x) = max\{ q(x), 0\}  - max\{  - q(x), 0\} 
= sup\{ \psi (x) : \psi \in \Sigma , \psi \leq q\}  - sup\{ \psi (x) : \psi \in \Sigma , \psi \leq  - q\} 
= sup\{ \psi (x) : \psi \in \Sigma , \psi \leq q\} + inf\{ \psi (x) : \psi \in \Sigma , \psi \geq q\} 
= sup\{ \psi (x) : \psi \in \Sigma , \Lambda (\psi ) \leq fin \Lambda (q)\} + inf\{ \psi (x) : \psi \in \Sigma , \Lambda (\psi ) \geq fin \Lambda (q)\} 
= sup\{ \psi (x) : \psi \in \Sigma , \Lambda (\psi ) \leq d(\psi ) \Lambda (q)\} + inf\{ \psi (x) : \psi \in \Sigma , \Lambda (\psi ) \geq d(q) \Lambda (q)\} .

This completes the proof.
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4.3. The linearized Calder\'on problem. In this subsection, we will only con-
sider q \in L\infty (\Omega ) that fulfill the following assumption.

Definition 4.5. Let Nq be the set defined by (2.5), then we say that q \in L\infty (\Omega )
is nonresonant, if Nq = \{ 0\} .

This assumption is also called an eigenvalue condition in the literature, since it is
equivalent to \{ 0\} not being a Dirichlet eigenvalue of the fractional operator ( - \Delta )s+q
in \Omega . Note that it implies that Hq(\Omega e) = H(\Omega e) and H

s
q (\BbbR n) = Hs(\BbbR n), i.e., that the

Dirichlet problem is uniquely solvable for all Dirichlet data in H(\Omega e); cf. Corollary
2.2.

We start by showing that the nonresonant potentials are an open subset of L\infty (\Omega ),
on which the DtN operator is Fr\'echet differentiable.

Lemma 4.6. The set \scrO = \{ q \in L\infty (\Omega ) : Nq = \{ 0\} \} is an open subset of L\infty (\Omega ).
On this set, the DtN operator

\Lambda : \scrO \subseteq L\infty (\Omega ) \rightarrow \scrL (H(\Omega e), H(\Omega e)
\ast ), q \mapsto \rightarrow \Lambda (q),

is Fr\'echet differentiable. For each q \in \scrO its derivative is given by

\Lambda \prime (q) : L\infty (\Omega ) \rightarrow \scrL (H(\Omega e), H(\Omega e)
\ast ), r \mapsto \rightarrow \Lambda \prime (q)r,

\langle (\Lambda \prime (q)r)F,G\rangle : = \Omega rSq(F )Sq(G) dx for all r \in L\infty (\Omega ), F,G \in H(\Omega e),

where Sq : H(\Omega e) \rightarrow Hs(\BbbR n), F \mapsto \rightarrow u, is the solution operator of the Dirichlet problem

( - \Delta )su+ qu = 0 in \Omega and u| \Omega e = F.

Proof. The fact that \scrO is open immediately follows from Theorem 3.6(b).
Let q \in \scrO \subseteq L\infty 

+ (\Omega ). \Lambda \prime (q) is a linear bounded operator since Sq is linear and
bounded; cf. Corollary 2.2. For sufficiently small r \in L\infty (\Omega ), we have that q+ r \in \scrO ,
and it follows from Lemma 2.4 that

\langle (\Lambda (q + r) - \Lambda (q))F, F \rangle = \Omega rSq+r(F )Sq(F ) dx.

With the operator formulation from the proof of Lemma 2.1, it is then easy to show
that, for sufficiently small r \in L\infty (\Omega ), there exists a constant C > 0 with

\| Sq+r(F ) - Sq(F )\| Hs(\BbbR n) \leq C \| r\| L\infty (\Omega )\| F\| H(\Omega e).

Using that \Lambda (q), \Lambda (q + r), and \Lambda \prime (q)r are symmetric operators, it now follows
that

\| \Lambda (q + r) - \Lambda (q) - \Lambda \prime (q)r\| \scrL (H(\Omega e),H(\Omega e)\ast )

= sup
\| F\| H(\Omega e)=1

| \langle (\Lambda (q + r) - \Lambda (q) - \Lambda \prime (q)r)F, F \rangle | 

= sup
\| F\| H(\Omega e)=1

| \Omega r(Sq+r(F ) - Sq(F ))Sq(F ) dx| \leq C \| r\| 2
L\infty (\Omega )\| Sq\| \scrL (H(\Omega e),Hs(\BbbR n)),

which proves the assertion.

Using the Fr\'echet derivative from Lemma 4.6, the monotonicity relations in The-
orems 3.3 and 3.4 can now be written as follows.
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Corollary 4.7. For all nonresonant q1, q2 \in L\infty (\Omega ),

\Lambda \prime (q2)(q1  - q2) \geq d(q1) \Lambda (q1) - \Lambda (q2) \geq d(q2) \Lambda 
\prime (q1)(q1  - q2),

and there exists c > 0 so that for all measurable D \subseteq \Omega containing supp(q1  - q2)

c\Lambda \prime (q2)\chi D \geq d(q1) \Lambda 
\prime (q1)\chi D \geq d(q2)

1

c
\Lambda \prime (q2)\chi D.

Proof. Since q1, q2 \in L\infty (\Omega ) are nonresonant, we have that Hq1(\Omega e) = Hq2(\Omega e) =
Hq1,q2(\Omega e) = H(\Omega e). It then follows from Theorem 3.3 and Lemma 4.6 that there
exists a subspace V \subseteq H(\Omega e) with dim(V ) \leq d(q2) so that for all F \in V \bot 

\langle (\Lambda (q1) - \Lambda (q2))F, F \rangle \geq \Omega (q1  - q2)Sq1(F )
2 dx = \langle (\Lambda \prime (q1)(q1  - q2))F, F \rangle ,

which shows that \Lambda (q1) - \Lambda (q2) \geq d(q2) \Lambda \prime (q1)(q1  - q2).
Also, it follows from Theorem 3.4 and Lemma 4.6 that there exists a subspace

V+ \subseteq H(\Omega e) with dim(V+) \leq d(q2) +N(q2) = d(q2) and a constant \widetilde c > 0, so that for
all measurable D \subseteq \Omega containing supp(q1  - q2), and all F \in V \bot 

+ ,

\langle (\Lambda \prime (q2)\chi D)F, F \rangle = \| Sq2(F )\| 2
L2(D) \leq \widetilde c2\| Sq1(F )\| 2

L2(D) = \widetilde c2 \langle (\Lambda \prime (q1)\chi D)F, F \rangle ,

which shows \Lambda \prime (q2)\chi D \leq d(q2) c\Lambda \prime (q1)\chi D with c := \widetilde c2.
The other assertions follow by interchanging q1 and q2.

We also have an if-and-only-if monotonicity result for the linearized DtN opera-
tors.

Theorem 4.8. Let n \in \BbbN , \Omega \subset \BbbR n be a Lipschitz bounded open set and s \in (0, 1).
Then for all nonresonant q \in L\infty (\Omega ) and r1, r2 \in L\infty (\Omega ),

r1 \leq r2 if and only if \Lambda \prime (q)r1 \leq \Lambda \prime (q)r2 if and only if \Lambda \prime (q)r1 \leq fin \Lambda \prime (q)r2.

Proof. If r1 \leq r2 then \Lambda \prime (q)r1 \leq \Lambda \prime (q)r2 follows immediately from the character-
ization of \Lambda \prime (q) in Lemma 4.6. (Note that this holds on the whole space H(\Omega e), and
not just on a subspace of finite codimension).

Clearly, \Lambda \prime (q)r1 \leq \Lambda \prime (q)r2 implies \Lambda \prime (q)r1 \leq fin \Lambda \prime (q)r2, and the implication from
\Lambda \prime (q)r1 \leq fin \Lambda \prime (q)r2 to r1 \leq r2 follows from the same localized potentials argument
as in the proof of Theorem 4.1.

This implies uniqueness of the linearized fractional Calder\'on problem.

Corollary 4.9. Let n \in \BbbN , \Omega \subset \BbbR n be a Lipschitz bounded open set and s \in 
(0, 1). For all nonresonant q \in L\infty (\Omega ), the Fr\'echet derivative \Lambda \prime (q) is injective, i.e.,

\Lambda \prime (q)r
fin
= 0 if and only if \Lambda \prime (q)r = 0 if and only if r = 0.

Proof. This follows immediately from Theorem 4.8.

4.4. Inclusion detection by linearized monotonicity tests. In this section
we will study the inclusion detection (or shape reconstruction) problem of determining
regions where a nonresonant potential q \in L\infty (\Omega ) changes from a known nonresonant
reference potential q0 \in L\infty (\Omega ), i.e., we aim to reconstruct the support q  - q0 by
comparing \Lambda (q) with \Lambda (q0). q0 may describe a background coefficient, and q denotes
the coefficient function in the presence of anomalies or scatterers.
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We will generalize the results in [39] and show that the support of q  - q0 can be
reconstructed with linearized monotonicity tests [47, 25]. These linearized tests only
utilize the solution of the fractional Schr\"odinger equation with the reference coefficient
function q0 \in L\infty (\Omega ). They do not require any other special solutions of the equation.

In all of the following let n \in \BbbN , \Omega \subset \BbbR n be a Lipschitz bounded open set,
s \in (0, 1), and let q0, q \in L\infty (\Omega ) be nonresonant.

For a measurable subsetM \subseteq \Omega , we introduce the testing operator \scrT M : H(\Omega e) \rightarrow 
H(\Omega e)

\ast by setting \scrT M := \Lambda \prime (q0)\chi M , i.e.,

(4.7) \langle \scrT MF,G\rangle := M Sq0(F )Sq0(G)dx for all F,G \in H(\Omega e),

where Sq0 : H(\Omega e) \rightarrow Hs(\BbbR n) denotes the solution operator as in Lemma 4.6.
The following theorem shows that we can find the support of q  - q0 by shrinking

closed sets; cf. [47, 28].

Theorem 4.10. For each closed subset C \subseteq \Omega ,

supp(q  - q0) \subseteq C

if and only if \exists \alpha > 0 :  - \alpha \scrT C \leq d(q0)+d(q) \Lambda (q) - \Lambda (q0) \leq d(q) \alpha \scrT C ,
if and only if \exists \alpha > 0 :  - \alpha \scrT C \leq fin \Lambda (q) - \Lambda (q0) \leq fin \alpha \scrT C .

Hence,

supp(q  - q0)

=
\bigcap 

\{ C \subseteq \Omega closed : \exists \alpha > 0 :  - \alpha \scrT C \leq d(q0)+d(q) \Lambda (q) - \Lambda (q0) \leq d(q) \alpha \scrT C\} 

=
\bigcap 

\{ C \subseteq \Omega closed : \exists \alpha > 0 :  - \alpha \scrT C \leq fin \Lambda (q) - \Lambda (q0) \leq fin \alpha \scrT C\} .

Proof.
(a) Let supp(q  - q0) \subseteq C. Then, by Corollary 4.7, there exists a constant c > 0

with
\scrT C = \Lambda \prime (q0)\chi C \geq d(q) c\Lambda \prime (q)\chi C .

Moreover, supp(q  - q0) \subseteq C implies that for sufficiently large \alpha > 0

 - \alpha c\chi C \leq q  - q0 \leq \alpha \chi C .

Using Corollary 4.7 and Theorem 4.8, we thus obtain

\Lambda (q) \leq d(q) \Lambda (q0) + \Lambda \prime (q0)(q  - q0) \leq \Lambda (q0) + \Lambda \prime (q0)\alpha \chi C = \Lambda (q0) + \alpha \scrT C ,
\Lambda (q) \geq d(q0) \Lambda (q0) + \Lambda \prime (q)(q  - q0) \geq \Lambda (q0) - \alpha c\Lambda \prime (q)\chi C \geq d(q) \Lambda (q0) - \alpha \scrT C .

(b) We will now show that

(4.8) \exists \alpha > 0 :  - \alpha \scrT C \leq fin \Lambda (q) - \Lambda (q0) \leq fin \alpha \scrT C

implies supp(q  - q0) \subseteq C.
Let \alpha > 0 fulfill (4.8). Then we obtain from the first inequality in (4.8) with
Corollary 4.7

\Lambda \prime (q0)( - \alpha \chi C) =  - \alpha \scrT C \leq fin \Lambda (q) - \Lambda (q0) \leq fin \Lambda \prime (q0)(q  - q0),

so that Theorem 4.8 yields that

(4.9)  - \alpha \chi C \leq q  - q0.
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It remains to show that the second inequality in (4.8) implies that

(4.10) q  - q0 \leq 0 on \Omega \setminus C.

We argue by contradiction and assume that (4.10) is not true. Then there
exists \delta > 0, and a measurable subset M \subseteq \Omega \setminus C with positive measure so
that q  - q0 \geq \delta on M .
We now use an idea from [41] to rewrite energy terms by repeated application
of the monotonicity relation, and define

\widetilde q := q + \delta \chi M  - \alpha \chi C + (q0  - q)\chi \Omega \setminus (M\cup C) =

\left\{ 
q + \delta in M ,
q  - \alpha in C,
q0 in \Omega \setminus (M \cup C),

and note that

q  - q0 \geq \delta \chi M  - \alpha \chi C \geq \delta \chi M  - \alpha \chi C + (q0  - q)\chi \Omega \setminus (C\cup M) = \widetilde q  - q.

Using Theorem 3.3 and Remark 3.5, there exists a finite dimensional subspace
V \subseteq H\widetilde q(\Omega e) so that for all F \in V \bot \subseteq H\widetilde q(\Omega e)

\langle (\Lambda (q) - \Lambda (q0))F, F \rangle \geq \Omega (q  - q0)| uq| 2 dx \geq \Omega (\widetilde q  - q)| uq| 2 dx
\geq \langle (\Lambda (\widetilde q) - \Lambda (q))F, F \rangle \geq \Omega (\widetilde q  - q)| u\widetilde q| 2 dx(4.11)

\geq \delta M | u\widetilde q| 2 dx - \alpha \Omega \setminus M | u\widetilde q| 2 dx,
where uq = Sq(F ), u\widetilde q = S\widetilde q(F ), and, for the last inequality, we assumed
without loss of generality that \alpha > 0 is larger than \| q  - q0\| L\infty (\Omega ). For
the last argument, note that the inequalities in (4.11) each hold on possibly
different subspaces of finite codimension in H\widetilde q(\Omega e), so that V is obtained by
taking the orthogonal complement of the intersection of all these spaces.
We also define \widetilde q0 :=

\biggl\{ 
q  - \alpha in C,
q0 in \Omega \setminus C.

Since supp(\widetilde q0  - q0) \subseteq C, we can apply Theorem 3.4 to obtain a finite dimen-
sional subspace V \prime \subseteq H\widetilde q0,q0(\Omega e) = H\widetilde q0(\Omega e) (note that q0 is nonresonant),
and a constant c > 0, so that for all F \in V \prime \bot \subseteq H\widetilde q0(\Omega e)

\langle \scrT CF, F \rangle = C | uq0 | 2 dx \leq cC | u\widetilde q0 | 2 dx,
where uq0 = Sq0(F ), u\widetilde q0 = S\widetilde q0(F ). Hence, the second inequality in (4.8)
implies that

(4.12) cC | u\widetilde q0 | 2 dx \geq \delta M | u\widetilde q| 2 dx - \alpha \Omega \setminus M | u\widetilde q| 2 dx
for all F \in W\bot \subseteq H\widetilde q0,\widetilde q(\Omega e), where W \subseteq H\widetilde q0,\widetilde q(\Omega e) is a finite dimensional
subspace. But supp(\widetilde q  - \widetilde q0) \subseteq M , so that the result on simultaneously lo-
calized potentials in Theorem 3.11 (with Theorem 3.11 applied to the herein
constructed subspaceW ) yields the existence of a sequence \{ F k\} k\in \BbbN \subseteq W\bot \subseteq 
H\widetilde q0,\widetilde q(\Omega e), so that the corresponding solutions uk\widetilde q0 = S\widetilde q0(F k), uk\widetilde q = S\widetilde q(F k),
fulfill

M | uk\widetilde q | 2 dx\rightarrow \infty , \Omega \setminus M | uk\widetilde q0 | 2 dx\rightarrow 0, and \Omega \setminus M | uk\widetilde q | 2 dx\rightarrow 0,

which contradicts (4.12) since C \subseteq \Omega \setminus M . Hence, (4.10) and thus the assertion
is proven.
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We also extend the simpler results for the definite case, where either q \geq q0 or
q \leq q0 holds almost everywhere in \Omega , from [39] to general (but nonresonant) L\infty (\Omega )-
potentials. We will show that it suffices to test open balls to reconstruct the inner
support (for q \geq q0), resp., a set between the support of q - q0 and its inner support (for
q \leq q0), where, as in [47, section 2.2], the inner support inn supp(r) of a measurable
function r : \Omega \rightarrow \BbbR is defined as the union of all open sets U on which the essential
infimum of | \kappa | is positive.

Theorem 4.11.
(a) Let q \leq q0. For every open set B \subseteq \Omega and every \alpha > 0

q \leq q0  - \alpha \chi B implies \Lambda (q) \leq d(q) \Lambda (q0) - \alpha \scrT B ,(4.13)

\Lambda (q) \leq fin \Lambda (q0) - \alpha \scrT B implies B \subseteq supp(q  - q0).(4.14)

Hence,

inn supp(q  - q0)

\subseteq 
\bigcup 

\{ B \subseteq \Omega open ball : \exists \alpha > 0 : \Lambda (q) \leq d(q) \Lambda (q0) - \alpha \scrT B\} 

\subseteq 
\bigcup 

\{ B \subseteq \Omega open ball : \exists \alpha > 0 : \Lambda (q) \leq fin \Lambda (q0) - \alpha \scrT B\} 

\subseteq supp(q  - q0).

(b) Let q \geq q0. For every open set B \subseteq \Omega and every \alpha > 0

q \geq q0 + \alpha \chi B implies \exists \widetilde \alpha > 0 : \Lambda (q) \geq fin \Lambda (q0) + \widetilde \alpha \scrT B ,(4.15)

\Lambda (q) \geq fin \Lambda (q0) + \alpha \scrT B implies q \geq q0 + \alpha \chi B .(4.16)

Hence,

inn supp(q  - q0) =
\bigcup 

\{ B \subseteq \Omega open ball : \exists \alpha > 0 : \Lambda (q) \geq fin \Lambda (q0) + \alpha \scrT B\} .

Proof.
(a) If q1 \leq q0  - \alpha \chi B , then using Theorem 4.8, and Corollary 4.7 we obtain that

\Lambda (q) - \Lambda (q0) \leq d(q) \Lambda \prime (q0)(q  - q0) \leq  - \alpha \Lambda \prime (q0)\chi B =  - \alpha \scrT B ,

so that (4.13) is proven. On the other hand, if \Lambda (q) \leq fin \Lambda (q0)  - \alpha \scrT B then
we obtain from Theorem 4.8, and Corollary 4.7 that there exists c > 0 with

\alpha \Lambda \prime (q0)\chi B = \alpha \scrT B \leq fin \Lambda (q0) - \Lambda (q) \leq fin \Lambda \prime (q)(q0  - q)

\leq \| q0  - q\| L\infty (\Omega )\Lambda 
\prime (q)\chi supp(q - q0)

\leq fin c\| q0  - q\| L\infty (\Omega )\Lambda 
\prime (q0)\chi supp(q - q0),

and that this implies

\alpha \chi B \leq c\| q0  - q\| L\infty (\Omega )\chi supp(q - q0),

so that (4.14) is proven.
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(b) Let q \geq q0+\alpha \chi B . By Theorem 3.3, there exists a subspace V \subseteq Hq0+\alpha \chi B
(\Omega e)

with dim(V ) \leq d(q0 + \alpha \chi B) so that

\langle \Lambda (q)F, F \rangle \geq \langle \Lambda (q0 + \alpha \chi B)F, F \rangle for all F \in V \bot \subseteq Hq0+\alpha \chi B
(\Omega e).

Moreover, by Theorem 3.4 there also exists a subspace V \prime \subseteq Hq0+\alpha \chi B
(\Omega e)

with dim(V \prime ) \leq d(q0) and a constant c > 0 so that

\langle (\Lambda (q0 + \alpha \chi B) - \Lambda (q0))F, F \rangle \geq \alpha B | uq0+\alpha \chi B
| 2 dx

\geq \alpha cB | uq0 | 2 dx = c\alpha \langle \scrT BF, F \rangle 

for all F \in V \prime \bot \subseteq Hq0+\alpha \chi B
, where uq0+\alpha \chi B

= Sq0+\alpha \chi B
(F ), and uq0 = Sq0(F ).

Hence
\langle (\Lambda (q) - \Lambda (q0))F, F \rangle \geq c\alpha \scrT B

holds for all F \in (V +V \prime )\bot \subseteq Hq0+\alpha \chi B
(\Omega e), which is a subspace of codimen-

sion dim(Nq0+\alpha \chi B
) in H(\Omega e). Hence,

\Lambda (q) \geq d \Lambda (q0) + c\alpha \scrT B with d = d(q) + d(q0 + \alpha \chi B) + dim(Nq0+\alpha \chi B
),

which shows (4.15). On the other hand, \Lambda (q) \geq fin \Lambda (q0) + \alpha \scrT B implies by
Corollary 4.7

\alpha \Lambda \prime (q0)\chi B = \alpha \scrT B \leq fin \Lambda (q) - \Lambda (q0) \leq fin \Lambda \prime (q0)(q  - q0),

so that it follows from Theorem 4.8 that

\alpha \chi B \leq q  - q0,

which proves (4.15).

5. Uniqueness and Lipschitz stability for the fractional Calder\'on prob-
lem with finitely many measurements. In this section let \scrQ \subseteq L\infty (\Omega ) be a finite
dimensional subspace and, with a fixed constant a > 0, let

\scrQ [ - a,a] := \{ q \in \scrQ : \| q\| L\infty (\Omega ) \leq a\} .

We will show that a sufficiently high number of measurements of the DtN operator
uniquely determines a potential in \scrQ [ - a,a] and prove a Lipschitz stability result.

To formulate our result, we denote the orthogonal projection operators from
H(\Omega e) to a subspace H by PH , i.e., PH is the linear operator with

PH : H(\Omega e) \rightarrow H, PHF :=

\biggl\{ 
F if F \in H,
0 if F \in H\bot \subseteq H(\Omega e).

P \prime 
H : H\ast \rightarrow H(\Omega e)

\ast denotes the dual operator of PH . For possibly resonant potentials
q1, q2 \in L\infty (\Omega ), the subspace H might contain nonadmissible Dirichlet boundary
values, so we also require the orthogonal projection Pq1q2 := PHq1,q2

(\Omega e).

Theorem 5.1. For each sequence of subspaces

H1 \subseteq H2 \subseteq H3 \subseteq \cdot \cdot \cdot \subseteq H(\Omega e) with
\bigcup 
l\in \BbbN 

Hl = H(\Omega e),

there exists k \in \BbbN and c > 0 so that\bigm\| \bigm\| P \prime 
Hl
P \prime 
q1q2 (\Lambda (q2) - \Lambda (q1))Pq1q2PHl

\bigm\| \bigm\| 
\scrL (H(\Omega e),H(\Omega e)\ast )

\geq 1

c
\| q2  - q1\| L\infty (\Omega )(5.1)

for all q1, q2 \in \scrQ [ - a,a] and all l \geq k.
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Before we prove Theorem 5.1, let us briefly remark on its implications for some
special cases.

Remark 5.2. Theorem 5.1 implies that there exists c > 0 so that

\| \Lambda (q2) - \Lambda (q1)\| \scrL (Hq1,q2 (\Omega e),H(\Omega e)\ast ) \geq c\| q2  - q1\| L\infty (\Omega ) for all q1, q2 \in \scrQ [ - a,a].

If \{ F1, F2, . . .\} \subseteq H(\Omega e) is a set of Dirichlet values whose linear span is dense in
H(\Omega e), then Theorem 5.1 implies that there exists k \in \BbbN , so that every nonresonant
q \in \scrQ [ - a,a] is uniquely determined by the finitely many entries of the matrix

A(q) = (\langle \Lambda (q)Fi, Fj\rangle )i,j=1,...,k \in \BbbR k\times k.

Moreover, if \{ F1, F2, . . .\} is an orthonormal (Schauder) basis of H(\Omega e), then there
exists k \in \BbbN and c > 0, so that

\| A(q2) - A(q1)\| 2 \geq c\| q2  - q1\| L\infty (\Omega ) for all nonresonant q \in \scrQ [ - a,a],

where \| A\| 2 is the spectral norm of the matrix A \in \BbbR k\times k.
The general outline of the proof of Theorem 5.1 is as follows. In Lemma 5.3,

we will derive a number of subsets M1, . . . ,Mm \subseteq \Omega , on which normalized potential
differences can be estimated from above or below. Then we define for each of these sets
a special potential \widehat qj \in L\infty (\Omega ), which is large onMj and small on \Omega \setminus Mj , and show (in
Lemma 5.4) that certain energy terms for the solutions for an arbitrary q \in L\infty (\Omega )
can always be estimated by solutions corresponding to these special potentials \widehat qj .
Lemma 5.5 gives a bound on the maximal codimension of the subspaces arising from
resonances, and Lemma 5.6 shows the existence of sufficiently many (depending on

the maximal codimension) Dirichlet boundary values \widehat Fij to control the energy terms
arising from the special potentials \widehat qj . The constant c > 0 of the Lipschitz stability
estimate (5.1) and the subspace index k \in \BbbN for Theorem 5.1, will be defined in

Lemma 5.6 via the maximal norm of the finitely many Dirichlet values \widehat Fij , and

the possibility of sufficiently well-approximating \widehat Fij in Hk. Finally, we prove that
Theorem 5.1 holds with these constants c > 0 and k \in \BbbN .

Let us stress that this construction (the setsM1, . . . ,Mm, the finitely many special

potentials \widehat qj , the dimension bounds, the finitely many special Dirichlet data \widehat Fij , and
thus the constant c > 0 of (5.1), and the subspace index k \in \BbbN ) do depend only on
the a priori data \scrQ [a,b] and \Omega \subseteq \BbbR n.

To motivate the first lemma, let us note that a piecewise constant function on
some partition of \Omega with L\infty (\Omega )-norm equal to 1, must be either 1 or  - 1 on at
least one of the subsets of the partition, which is a useful property for applying
monotonicity estimates; cf., e.g., [41]. The following lemma generalizes this property
to our arbitrary finite dimensional subspace \scrQ \subset L\infty (\Omega ).

Lemma 5.3. Let \scrQ 1 := \{ r \in \scrQ : \| r\| L\infty (\Omega ) = 1\} . There exists a family of
measurable subsets M1, . . . ,Mm, m \in \BbbN , with positive measure, so that for all r \in \scrQ 1,
there exists j \in \{ 1, . . . ,m\} with either r| Mj

\geq 1
2 or r| Mj \leq  - 1

2 . Hence, either

r \geq 1

2
\chi Mj

 - \chi \Omega \setminus Mj
or  - r \geq 1

2
\chi Mj

 - \chi \Omega \setminus Mj
.

Proof. We argue by compactness. For r \in \scrQ 1, \| r\| L\infty (\Omega ) = 1 implies that at least

one of the sets r - 1(] 12 ,
3
2 [) or r

 - 1(] - 3
2 , - 

1
2 [) must be of positive measure. In the first
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case we define

Mr := r - 1
\bigl( \bigr] 

1
2 ,

3
2

\bigl[ \bigr) 
, \scrO r :=

\bigl\{ \widetilde r \in L\infty (\Omega ) : \| \widetilde r| Mr
 - \chi Mr

\| L\infty (Mr) <
1
2

\bigr\} 
,

and otherwise we define

Mr := r - 1
\bigl( \bigr] 
 - 3

2 , - 
1
2

\bigl[ \bigr) 
, \scrO r :=

\bigl\{ \widetilde r \in L\infty (\Omega ) : \| \widetilde r| Mr
+ \chi Mr

\| L\infty (Mr) <
1
2

\bigr\} 
.

Then Mr has positive measure, \scrO r is an open subset of L\infty (\Omega ), and r \in \scrO r implies
that

\scrQ 1 \subseteq 
\bigcup 
r\in \scrQ 1

\scrO r.

By compactness, there exist r1, . . . , rm \in \scrQ 1 with \scrQ 1 \subseteq 
\bigcup 
j=1,...,m\scrO rj , so that the

assertion follows with Mj :=Mrj , j = 1, . . . ,m.

We now use the idea from the constructive Lipschitz stability proof in [41, section
5] to replace general potentials from \scrQ [ - a,a] by a finite number of special potentials.

Lemma 5.4. With the constant a > 0 and the sets M1, . . . ,Mm from Lemma 5.3,
we define

\widehat qj \in L\infty (\Omega ) by \widehat qj := 2a\chi Mj
 - 7a\chi \Omega \setminus Mj

, j = 1, . . . ,m.

If q \in \scrQ [ - a,a] and r \in \scrQ 1 fulfills r \geq 1
2\chi Mj

 - \chi \Omega \setminus Mj
with j \in \{ 1, . . . ,m\} , then

there exists a subspace V \subseteq Hq,\widehat qj (\Omega e) with dimV \leq d(q) + d(\widehat qj), so that

\Omega r| Sq(F )| 2 dx \geq \Omega 

\biggl( 
1

6
\chi Mj  - 

4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj (F )| 2 dx for all F \in V \bot \subseteq Hq,\widehat qj (\Omega e).

Proof. Let q \in \scrQ [ - a,a] and r \in \scrQ 1 fulfill r \geq 1
2\chi Mj

 - \chi \Omega \setminus Mj
with j \in \{ 1, . . . ,m\} .

Then we obtain from Remark 3.5 a subspace V \subseteq Hq,\widehat qj (\Omega e) with dimV \leq d(q)+d(\widehat qj),
so that for all F \in V \bot \subseteq Hq,\widehat qj (\Omega e)

\Omega (\widehat qj  - q)| S\widehat qj (F )| 2 dx \leq \langle (\Lambda (\widehat qj) - \Lambda (q))F, F \rangle \leq \Omega (\widehat qj  - q)| Sq(F )| 2 dx.

Observe that
a\chi Mj

 - 8a\chi \Omega \setminus Mj
\leq \widehat qj  - q \leq 3a\chi Mj

 - 6a\chi \Omega \setminus Mj
;

then it follows for all F \in V \bot \subseteq Hq,\widehat qj (\Omega e)
\Omega r| Sq(F )| 2 dx \geq \Omega 

\biggl( 
1

2
\chi Mj

 - \chi \Omega \setminus Mj

\biggr) 
| Sq(F )| 2 dx

=
1

6a
\Omega 

\bigl( 
3a\chi Mj

 - 6a\chi \Omega \setminus Mj

\bigr) 
| Sq(F )| 2 dx \geq 1

6a
\Omega (\widehat qj  - q) | Sq(F )| 2 dx

\geq 1

6a
\Omega (\widehat qj  - q)| S\widehat qj (F )| 2 dx \geq 1

6a
\Omega 

\bigl( 
a\chi Mj

 - 8a\chi \Omega \setminus Mj

\bigr) 
| S\widehat qj (F )| 2 dx

= \Omega 

\biggl( 
1

6
\chi Mj

 - 4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj (F )| 2 dx.

The next lemma shows that the codimension of the subspaces where the DtN
operators are defined, and the subspaces where the monotonicity relations hold, can
be uniformly bounded in \scrQ [ - a,a].
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Lemma 5.5. There exists numbers d,N \in \BbbN , so that

dim(Nq) \leq N and d(q) \leq d for all q \in \scrQ [ - a,a],

where Nq is defined by (2.5) and d(q) is given by Definition 3.2.

Proof. The first assertion follows from Theorem 3.6(b) with a standard compact-
ness argument. The second assertion follows from Theorem 3.6(a) with d := d( - a),
where d( - a) is the number defined in Definition 3.2 for q \equiv  - a.

Our last lemma demonstrates how to control the energy terms in Lemma 5.4, and
defines the Lipschitz stability constant c > 0 and the subspace index k \in \BbbN , with
which the assertion of Theorem 5.1 holds.

Lemma 5.6. Let d,N \in \BbbN be the numbers given in Lemma 5.5; then we have
(a) for all j \in \{ 1, . . . ,m\} , there exist Dirichlet data \widehat Fi,j \in H\widehat qj (\Omega e) with

\Omega 

\biggl( 
1

6
\chi Mj

 - 4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj ( \widehat Fi,j)| 2 dx \geq 2,(5.2)

\Omega 

\biggl( 
1

6
\chi Mj

 - 4

3
\chi \Omega \setminus Mj

\biggr) 
S\widehat qj ( \widehat Fi,j)S\widehat qj ( \widehat Fi\prime ,j) dx = 0,(5.3) \Bigl( \widehat Fi,j , \widehat Fi\prime ,j\Bigr) 

H(\Omega e)
= 0(5.4)

for all i, i\prime = 1, . . . , 3d+ 2N + 1 with i\prime \not = i. We set

c := 2max
\Bigl\{ 
\| \widehat Fi,j\| 2

H(\Omega e)
: j = 1, . . . ,m, i = 1, . . . , 3d+ 2N + 1

\Bigr\} 
;

(b) for \delta := 1
3d+2n+2 , and for each sequence of subspaces

H1 \subseteq H2 \subseteq H3 \subseteq \cdot \cdot \cdot \subseteq H(\Omega e) with
\bigcup 
l\in \BbbN 

Hl = H(\Omega e),

there exists k \in \BbbN , and Fi,j \in Hk \cap H\widehat qj (\Omega e), so that

\Omega 

\biggl( 
1

6
\chi Mj

 - 4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj (Fi,j)| 2 dx \geq 2 - \delta ,(5.5) \bigm| \bigm| \bigm| \bigm| \Omega \biggl( 

1

6
\chi Mj  - 

4

3
\chi \Omega \setminus Mj

\biggr) 
S\widehat qj (Fi,j)S\widehat qj (Fi\prime ,j) dx

\bigm| \bigm| \bigm| \bigm| \leq \delta ,(5.6) \bigm| \bigm| \bigm| (Fi,j , Fi\prime ,j)H(\Omega e)

\bigm| \bigm| \bigm| \leq c

2
\delta ,(5.7)

and \| Fi,j\| 2
H(\Omega e)

\leq (1 + \delta ) c2 for all j = 1, . . . ,m, and all i, i\prime = 1, . . . , 3d +

2N + 1 with i\prime \not = i;
(c) for all j = 1, . . . ,m, all subspaces V \subseteq H\widehat qj (\Omega e) with dimV \leq 3d + 2N ,

contain an element Fj \in V \bot \cap Hk with

\Omega 

\biggl( 
1

6
\chi Mj  - 

4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj (Fj)| 2 dx \geq 1 and \| Fj\| 2

H(\Omega e)
\leq c.

Proof. Let j \in \{ 1, . . . ,m\} .
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(a) Theorem 3.10 yields that every subspace V \bot of finite codimension in H\widehat qj (\Omega e)
contains F that fulfills the property (5.2). Hence, for i = 1, we can apply

Theorem 3.10 on H\widehat qj (\Omega e) to obtain \widehat F1,j , and for i > 1, we obtain \widehat Fi,j by
applying Theorem 3.10 on the subspace

\biggl\{ \widehat F \in H\widehat qj (\Omega e) : \Omega 

\biggl( 
1

6
\chi Mj

 - 4

3
\chi \Omega \setminus Mj

\biggr) 
S\widehat qj ( \widehat F )S\widehat qj ( \widehat Fi\prime ,j) dx = 0,

and
\Bigl( \widehat F , \widehat Fi\prime ,j\Bigr) 

H(\Omega e)
= 0 for all i\prime \in \{ 1, . . . , i - 1\} 

\biggr\} 
,

which is obviously of finite codimension in H\widehat qj (\Omega e), and this shows (5.3) and
(5.4).

(b) From the finite codimension of H\widehat qj (\Omega e) in H(\Omega e), we obtain that
\bigcup 
l\in \BbbN Hl \cap 

H\widehat qj (\Omega e) is dense in H\widehat qj (\Omega e). Hence, the assertion (b) follows from the con-
tinuity of the solution operator S\widehat qj .

(c) Since V \subseteq H\widehat qj (\Omega e) has dimV \leq 3d + 2N , there exists a nontrivial linear
combination

0 \not = Fj :=
3d+2N+1\sum 

i=1

\lambda iFi,j \in V \bot \cap Hk, with coefficient \lambda i \in \BbbR ,

where we normalize the coefficients so that
\sum 3d+2N+1
i=1 | \lambda i| 2 = 1 and k \in \BbbN is

the same number given as in (b). Then,

3d+2N+1\sum 
i,i\prime =1

| \lambda i| | \lambda i\prime | \leq 3d+ 2N + 1.

By using (5.5), (5.6), and (5.7), a simple calculation shows that

\Omega 

\biggl( 
1

6
\chi Mj

 - 4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj (Fj)| 2 dx \geq 2 - (3d+ 2N + 2)\delta = 1,

\| Fj\| 2
H(\Omega e)

\leq (1 + (3d+ 2N + 2)\delta )
c

2
= c.

This completes the proof.
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Now, we can prove Theorem 5.1.

Proof of Theorem 5.1. Let q1, q2 \in \scrQ [ - a,a] with q1 \not = q2, and set r := q2 - q1
\| q2 - q1\| L\infty (\Omega )

.

Then, by Lemma 5.3, there exist j \in \{ 1, . . . ,m\} with either

(a) r \geq 1

2
\chi Mj

 - \chi \Omega \setminus Mj
or (b)  - r \geq 1

2
\chi Mj

 - \chi \Omega \setminus Mj
.

In case (a), Theorem 3.3 yields that there exists a subspace V \prime \subseteq Hq1,q2(\Omega e) of
dimension d(q1), so that

\langle (\Lambda (q2) - \Lambda (q1))F, F \rangle 
\| q2  - q1\| L\infty (\Omega )

\geq \Omega r| Sq2(F )| 2 dx for all F \in (V \prime )\bot \subseteq Hq1,q2(\Omega e).

Also, Lemma 5.4 yields a subspace V \prime \prime \subseteq Hq2,\widehat qj (\Omega e) with dimV \prime \prime \leq d(q2) + d(\widehat qj), so
that

\Omega r| Sq2(F )| 2 dx \geq \Omega 

\biggl( 
1

6
\chi Mj

 - 4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj (F )| 2 dx \forall F \in (V \prime \prime )\bot \subseteq Hq2,\widehat qj (\Omega e).

Then V := V \prime + V \prime \prime + Hq1(\Omega e)
\bot + Hq2(\Omega e)

\bot is a subspace with dimV \leq 3d + 2N ,
and, by Lemma 5.6(c), there exists Fj \in V \bot \cap Hk with \| Fj\| 2

H(\Omega e)
\leq c, and

\Omega r| Sq2(Fj)| 2 dx \geq \Omega 

\biggl( 
1

6
\chi Mj  - 

4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj (Fj)| 2 dx \geq 1.

Since Fj \in V \bot \cap Hk, and the definition of V implies that V \bot \subseteq H\widehat qj (\Omega e) is a
subspace of Hq1,q2(\Omega e), we have that Pq1q2PHl

Fj = Pq1q2Fj = Fj for all l \geq k. Hence,
it follows from the self-adjointness of P \prime 

Hl
P \prime 
q1q2 (\Lambda (q2) - \Lambda (q1))Pq1q2PHl

that for all
l \geq k,

\| P \prime 
Hl
P \prime 
q1q2 (\Lambda (q2) - \Lambda (q1))Pq1q2PHl

\| \scrL (H(\Omega e),H(\Omega e)\ast )

\| q2  - q1\| L\infty (\Omega )

= sup
0\not =F\in H(\Omega e)

| \langle (\Lambda (q2) - \Lambda (q1))Pq1q2PHl
F, Pq1q2PHl

F \rangle | 
\| q2  - q1\| L\infty (\Omega ) \| F\| 2

H(\Omega e)

\geq | \langle (\Lambda (q2) - \Lambda (q1))Fj , Fj\rangle | 
\| q2  - q1\| L\infty (\Omega ) \| Fj\| 2

H(\Omega e)

\geq 1

\| Fj\| 2
H(\Omega e)

\Omega r| Sq2(Fj)| 2 dx

\geq 1

\| Fj\| 2
H(\Omega e)

\Omega 

\biggl( 
1

6
\chi Mj  - 

4

3
\chi \Omega \setminus Mj

\biggr) 
| S\widehat qj (Fj)| 2 dx \geq 1

\| Fj\| 2
H(\Omega e)

\geq 1

c
.

In case (b), Theorem 3.3 yields that there exists a subspace V \prime \subseteq Hq1,q2(\Omega e) with
dimension d(q2), so that

| \langle (\Lambda (q2) - \Lambda (q1))F, F \rangle | 
\| q2  - q1\| L\infty (\Omega )

\geq  - \Omega r| Sq1(F )| 2 dx for all F \in (V \prime )\bot \subseteq Hq1,q2(\Omega e),

and thus the assertion follows analogously by using Lemma 5.4 with  - r instead
of r.
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