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1. An error in the proof of Theorem 5.3 in [3]. At the end of the proof
of Theorem 5.3 in [3] “Applying Theorem 4.5 with D = BR(0) \ O, q1 = 0, and
q2 = q . . . ” is not possible, because the assumption of Theorem 4.5 in [3] that
q1(x) = q2(x) for a.e. x ∈ Rd \D is not satisfied for this choice of D, q1 and q2.

To fix this issue we will extend the results on localized wave functions from Sec-
tion 4 of [3] in Section 2 below. Then, in Section 3 we will reformulate Theorem 5.3
of [3], making stronger assumptions on the domains and on the index of refraction,
and we will correct the final argument in the original proof in [3].

2. Simultaneously localized wave functions. We establish the existence of
simultaneously localized wave functions that have arbitrarily large norm on some
prescribed region E ⊆ Rd while at the same time having arbitrarily small norm in
a different region M ⊆ Rd, assuming among others that Rd \ (E ∪M) is connected.
The result generalizes Theorem 4.1 in [3] in the sense that we not only control the
total field but also the incident field. Similar results have recently been established for
the Schrödinger equation in [4, Thm. 3.11] and for the Helmholtz obstacle scattering
problem in [1, Thm. 4.5].

Theorem 2.1. Suppose that q ∈ L∞0,+(Rd), and let E,M ⊆ Rd be open and Lips-

chitz bounded such that supp(q) ⊆ E∪M , Rd \ (E∪M) is connected, and E∩M = ∅.
Assume furthermore that there is a connected subset Γ ⊆ ∂E \M that is relatively
open and C1,1 smooth.

Then for any finite dimensional subspace V ⊆ L2(Sd−1) there exists a sequence
(gm)m∈N ⊆ V ⊥ such that∫

E

|uq,gm |2 dx→∞ and

∫
M

(
|uq,gm |2 + |uigm |

2
)

dx→ 0 as m→∞ ,

where uigm , uq,gm ∈ H
1
loc(Rd) are given by (2.8a)–(2.8b) in [3] with g = gm.

The proof of Theorem 2.1 relies on the following three lemmas.

Lemma 2.2. Suppose that q ∈ L∞0,+(Rd), let n2 = 1 + q, and assume that D ⊆ Rd
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is open and bounded. We define

Lq,D : L2(Sd−1)→ H1(D) , g 7→ uq,g|D ,

where uq,g ∈ H1
loc(Rd) is given by (2.8b) in [3]. Then Lq,D is a linear operator and

its adjoint is given by

L∗q,D : H1(D)∗ → L2(Sd−1) , f 7→ S∗qw∞ ,

where H1(D)∗ is the dual of H1(D), S∗q denotes the adjoint of the scattering operator

from (2.7) in [3], and w∞ ∈ L2(Sd−1) is the far field pattern of the radiating solution
w ∈ H1

loc(Rd) to

(2.1) ∆w + k2n2w = −f in Rd .

Proof. This follows from the same arguments that have been used in the proof of
Lemma 4.2 in [3].

Lemma 2.3. Suppose that q ∈ L∞0,+(Rd), and let E,M ⊆ Rd be open and Lipschitz

bounded such that supp(q) ⊆ E ∪M , Rd \ (E ∪M) is connected, and E ∩M = ∅.
Assume furthermore that there is a connected subset Γ ⊆ ∂E \M that is relatively
open and C1,1 smooth. Then,

R(L∗q,E) 6⊆ R
((
L∗q,M L∗0,M

))
and there exists an infinite dimensional subspace Z ⊆ R(L∗q,E) such that

Z ∩R
((
L∗q,M L∗0,M

))
= {0} .

Proof. Let h ∈ R(L∗q,E) ∩R
((
L∗q,M L∗0,M

))
. Then Lemma 2.2 shows that there

exist fq,E ∈ H1(E)∗ and fq,M , f0,M ∈ H1(M)∗ such that the far field patterns
w∞q,E , w

∞
q,M , w

∞
0,M of the radiating solutions wq,E , wq,M , w0,M ∈ H1

loc(Rd) to

∆wq,E + k2(1 + q)wq,E = −fq,E in Rd ,

∆wq,M + k2(1 + q)wq,M = −fq,M in Rd ,

∆w0,M + k2w0,M = −f0,M in Rd ,

satisfy

h = S∗qw∞q,E = w∞0,M + S∗qw∞q,M .

Here we used that S0 is the identity operator. Accordingly, using the definition of the
scattering operator in (2.7) of [3], we find that

0 = w∞q,E − w∞q,M − Sqw∞0,M
= w∞q,E − w∞q,M − w∞0,M − 2ik|Cd|2Fqw

∞
0,M

= w∞q,E − (w∞q,M + w∞0,M + v∞q ) ,

where v∞q is the far field of a radiating solution vq ∈ H1
loc(Rd) to

∆vq + k2(1 + q)vq = 0 in Rd .
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Since supp(q) ⊆ E ∪M and Rd \ (E ∪M) is connected, Rellich’s lemma and unique
continuation guarantee that

(2.2) wq,E − (wq,M + w0,M + vq) = 0 in Rd \ (E ∪M)

(cf., e.g., [2, Thm. 2.14]).
Next we discuss the regularity of the traces of wq,E and wq,M + w0,M + vq at

the boundary segment Γ ⊆ ∂E \ M . W.l.o.g. we may assume that Γ is bounded
away from M . Since supp(fq,M + f0,M ) ⊆ M , interior regularity results (see, e.g.,

[7, Thm. 4.18]) show that (wq,M + w0,M + vq)
∣∣
Γ
∈ H 3

2 (Γ). Thus (2.2) implies that

wq,E

∣∣+
Γ
∈ H 3

2 (Γ) as well.

On the other hand, let H̃
1
2 (Γ) be the closure ofD(Γ) inH

1
2 (Γ) (see, e.g., [7, p. 99]).

We will construct sources f ∈ H1(E)∗ such that L∗q,Ef 6∈ R
((
L∗q,M L∗0,M

))
. Given

any g ∈ H̃ 1
2 (Γ), we denote by g̃ ∈ H 1

2 (∂E) its extension to ∂E by zero. Accordingly,
let u+ ∈ H1

loc(Rd \ E) be the radiating solution to the exterior Dirichlet problem

(2.3) ∆u+ + k2n2u+ = 0 in Rd \ E , u+ = g̃ on ∂E .

Similarly, we define u− ∈ H1(E) as the solution to the interior Dirichlet problem

∆u− = 0 in E , u− = g̃ on ∂E .

Therewith we introduce u ∈ L2
loc(Rd) by

u :=

{
u− in E ,

u+ in Rd \ E ,

and f ∈ H1(E)∗ by

f := −k2n2u− − γ∗
(∂u
∂ν

∣∣∣+
∂E
− ∂u

∂ν

∣∣∣−
∂E

)
,

where γ∗ : H−
1
2 (∂E) → H1(E)∗ denotes the adjoint of the interior trace operator

γ : H1(E)→ H
1
2 (∂E). Then u ∈ H1

loc(Rd) (see, e.g., [8, Lmm. 5.3]), and

∆u+ k2n2u = −f in Rd

(see, e.g., [7, Lmm. 6.9]). Accordingly, L∗q,Ef = S∗qu∞, where u∞ ∈ L2(Sd−1)

coincides with the far field of the radiating solution u+ to the exterior Dirichlet
problem (2.3). If g̃ 6∈ H 3

2 (∂E), then our regularity considerations above show that
L∗q,Ef 6∈ R

((
L∗q,M L∗0,M

))
.

Now let X ⊆ H̃
1
2 (Γ) be an infinite dimensional subspace of H̃

1
2 (Γ) such that

X ∩ H 3
2 (Γ) = {0} (e.g., the subspace of piecewise linear functions on Γ that vanish

on ∂Γ as considered in the proof of Lemma 4.6 in [1]). Let GE : H
1
2 (Γ)→ L2(Sd−1) be

the operator that maps g ∈ H 1
2 (Γ) to the far field pattern of the radiating solution u+

of (2.3), where g̃ ∈ H 1
2 (∂E) is again the extension of g to ∂E by zero. Then GE is

one-to-one (see, e.g., [1, Thm. 3.2]), and thus Z := S∗qGE(X) is infinite dimensional.
Furthermore, we have just shown that

Z ⊆ R(L∗q,E) and Z ∩R
((
L∗q,M L∗0,M

))
= {0} .



4 R. GRIESMAIER AND B. HARRACH

In the next lemma we quote a special case of Lemma 2.5 in [6].

Lemma 2.4. Let X,Y and Z be Hilbert spaces, and let A : X → Y and B : X → Z
be bounded linear operators. Then,

∃C > 0 : ‖Ax‖ ≤ C‖Bx‖ ∀x ∈ X if and only if R(A∗) ⊆ R(B∗) .

Now we give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let V ⊆ L2(Sd−1) be a finite dimensional subspace. We
denote by PV : L2(Sd−1) → L2(Sd−1) the orthogonal projection on V . Combining
Lemma 2.3 with a simple dimensionality argument (see [5, Lmm. 4.7]) shows that

Z 6⊆ R
((
L∗q,M L∗0,M

))
+ V = R(

(
L∗q,M L∗0,M PV

)
) ,

where Z ⊆ R(L∗q,E) denotes the subspace in Lemma 2.3. Thus,

R(L∗q,E) 6⊆ R
((
L∗q,M L∗0,M

))
+ V = R(

(
L∗q,M L∗0,M PV

)
) ,

and accordingly Lemma 2.4 implies that there is no constant C > 0 such that

‖Lq,Eg‖2L2(E) ≤ C2

∥∥∥∥
Lq,M

L0,M

PV

 g

∥∥∥∥2

L2(M)×L2(M)×L2(Sd−1)

= C2
(
‖Lq,Mg‖2L2(M) + ‖L0,Mg‖2L2(M) + ‖PV g‖2L2(Sd−1)

)
for all g ∈ L2(Sd−1). Hence, there exists as sequence (g̃m)m∈N ⊆ L2(Sd−1) such that

‖Lq,E g̃m‖L2(E) →∞ ,

‖Lq,M g̃m‖L2(M) + ‖L0,M g̃m‖L2(M) + ‖PV g̃m‖L2(Sd−1) → 0 as m→∞ .

Setting gm := g̃m − PV g̃m ∈ V ⊥ ⊆ L2(Sd−1) for any m ∈ N, we finally obtain

‖Lq,Egm‖L2(E) ≥ ‖Lq,E g̃m‖L2(E) − ‖Lq,E‖‖PV g̃m‖L2(Sd−1) → ∞ as m→∞ ,

and

‖Lq,Mgm‖L2(M) + ‖L0,Mgm‖L2(M) ≤ ‖Lq,M g̃m‖L2(M) + ‖L0,M g̃m‖L2(M)

+ (‖Lq,M‖+ ‖L0,M‖)‖PV g̃m‖L2(Sd−1) → 0 as m→∞ .

Since Lq,Egm = uq,gm |E , Lq,Mgm = uq,gm |M , and L0,Mgm = uigm |M , this ends the
proof.

3. Correction of the statement and of the proof of Theorem 5.3 in [3].

Theorem 3.1. Let B,D ⊆ Rd be open and Lipschitz bounded such that ∂D is
piecewise C1,1 smooth, and Rd \B as well as Rd \D are connected. Let q ∈ L∞0,+(Rd)

with supp(q) = D, and suppose that −1 < qmin ≤ q ≤ qmax < ∞ a.e. on D for some
constants qmin, qmax ∈ R.

Furthermore, we assume that for any point x ∈ ∂D on the boundary of D, there
exists a connected unbounded neighborhood O ⊆ Rd of x such that, for E := O ∩D,

(3.1) q|E ≥ qmin,E > 0 or q|E ≤ qmax,E < 0

for some constants qmin,E , qmax,E ∈ R.



MONOTONICITY IN INVERSE MEDIUM SCATTERING 5

(a) If D ⊆ B, then there exists a constant C > 0 such that

αTB ≤fin Re(Fq) ≤fin βTB for all α ≤ min{0, qmin} , β ≥ max{0, Cqmax} .

(b) If D 6⊆ B, then

αTB 6≤fin Re(Fq) for any α ∈ R or Re(Fq) 6≤fin βTB for any β ∈ R .

Remark 3.2. The assumptions on B and D as well as the local definiteness as-
sumption (3.1) in Theorem 3.1 are stronger than in the original version of Theorem 5.3
in [3]. ♦

Proof of Theorem 3.1. If D ⊆ B, then Corollary 3.4 and Theorem 4.5 in [3] with
q1 = 0 and q2 = q show that there exists a constant C > 0 and a finite dimensional
subspace V ⊆ L2(Sd−1) such that, for all g ∈ V ⊥ and any β ≥ max{0, Cqmax},

Re

(∫
Sd−1

g Fqg ds

)
≤ k2

∫
D

q|uq,g|2 dx ≤ k2qmax

∫
D

|uq,g|2 dx

≤ k2Cqmax

∫
D

|uig|2 dx ≤ k2β

∫
B

|uig|2 dx .

Similarly, Theorem 3.2 in [3] with q1 = 0 and q2 = q shows that there exists
a finite dimensional subspace V ⊆ L2(Sd−1) such that, for all g ∈ V ⊥ and any
α ≤ min{0, qmin},

Re

(∫
Sd−1

g Fqg ds

)
≥ k2

∫
D

q|uig|2 dx ≥ k2qmin

∫
D

|uig|2 dx ≥ k2α

∫
B

|uig|2 dx ,

and part (a) is proven.
We prove part (b) by contradiction. Since D 6⊆ B, U := D \B is not empty, and

there exists x ∈ U ∩∂D as well as a connected unbounded open neighborhood O ⊆ Rd

of x with O ∩D ⊆ U and O ∩ B = ∅, such that (3.1) is satisfied with E := O ∩D.
Furthermore, let R > 0 be large enough such that B,D ⊆ BR(0). Without loss of
generality we assume that O ∩BR(0), and BR(0) \O are connected.

We first assume that q|E ≥ qmin,E > 0, and that Re(Fq) ≤fin βTB for some β ∈ R.
Using the monotonicity relation (3.1) in Theorem 3.2 of [3] with q1 = 0 and q2 = q,
we find that there exists a finite dimensional subspace V ⊆ L2(Sd−1) such that, for
any g ∈ V ⊥,

0 ≥
∫
Sd−1

g(Re(Fq)g − βTBg) ds ≥ k2

∫
BR(0)

(q − βχB)|uig|2 dx

= k2

∫
BR(0)\O

(q − βχB)|uig|2 dx+ k2

∫
BR(0)∩O

(q − βχB)|uig|2 dx

≥ −k2(‖q‖L∞(Rd) + |β|)
∫
BR(0)\O

|uig|2 dx+ k2qmin,E

∫
E

|uig|2 dx .

However, this contradicts Theorem 4.1 in [3] with B = E, D = BR(0) \O, and q = 0,
which guarantees the existence of a sequence (gm)m∈N ⊆ V ⊥ with∫

E

|uigm |
2 dx→∞ and

∫
BR(0)\O

|uigm |
2 dx→ 0 as m→∞ .
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Consequently, Re(Fq) 6≤fin βTB for all β ∈ R.
On the other hand, if q|E ≤ qmax,E < 0, and if αTB ≤fin Re(Fq) for some α ∈ R,

then the monotonicity relation (3.3) in Corollary 3.4 of [3] with q1 = 0 and q2 = q
shows that there exists a finite dimensional subspace V ⊆ L2(Sd−1) such that, for
any g ∈ V ⊥,

0 ≤
∫
Sd−1

g(Re(Fq)g − αTBg) ds ≤ k2

∫
BR(0)

(q|uq,g|2 − αχB |uig|2) dx

= k2

∫
BR(0)\O

(q|uq,g|2 − αχB |uig|2) dx+ k2

∫
BR(0)∩O

(q|uq,g|2 − αχB |uig|2) dx

≤ k2qmax

∫
BR(0)\O

|uq,g|2 dx+ k2|α|
∫
BR(0)\O

|uig|2 dx+ k2qmax,E

∫
E

|uq,g|2 dx .

Let M := BR(0) \O. Since ∂D is piecewise C1,1 smooth, there is a connected subset
Γ ⊆ ∂E \M that is relatively open and C1,1 smooth. Applying Theorem 2.1 we find
that there exists a sequence (gm)m∈N ⊆ V ⊥ such that∫

E

|uq,gm |2 dx→∞ and

∫
BR(0)\O

|uq,gm |2 + |uigm |
2 dx→ 0 as m→∞ .

However, since qmax,E < 0, this gives a contradiction. Consequently, αTB 6≤fin Re(Fq)
for all α ∈ R, which ends the proof of part (b).
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