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MONOTONICITY IN INVERSE MEDIUM SCATTERING ON
UNBOUNDED DOMAINS\ast 

ROLAND GRIESMAIER\dagger AND BASTIAN HARRACH\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We discuss a time-harmonic inverse scattering problem for the Helmholtz equa-
tion with compactly supported penetrable and possibly inhomogeneous scattering objects in an
unbounded homogeneous background medium, and we develop a monotonicity relation for the far
field operator that maps superpositions of incident plane waves to the far field patterns of the corre-
sponding scattered waves. We utilize this monotonicity relation to establish novel characterizations
of the support of the scattering objects in terms of the far field operator. These are related to and
extend corresponding results known from factorization and linear sampling methods to determine the
support of unknown scattering objects from far field observations of scattered fields. An attraction
of the new characterizations is that they only require the refractive index of the scattering objects to
be above or below the refractive index of the background medium locally and near the boundary of
the scatterers. An important tool to prove these results are so-called localized wave functions that
have arbitrarily large norm in some prescribed region while at the same time having arbitrarily small
norm in some other prescribed region. We present numerical examples to illustrate our theoretical
findings.
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1. Introduction. Accurately recovering the location and the shape of unknown
scattering objects from far field observations of scattered acoustic or electromagnetic
waves is a basic but severely ill-posed inverse problem in remote sensing, and in the
past twenty years efficient qualitative reconstruction methods for this purpose have
received a lot of attention (see, e.g., [5, 7, 9, 36, 41] and the references therein). In
this work we develop a new approach for this shape reconstruction problem that is
based on a monotonicity relation for the far field operator that maps superpositions
of incident plane waves, which are being scattered at the unknown scattering objects,
to the far field patterns of the corresponding scattered waves. Throughout we assume
that the scattering objects are penetrable, nonabsorbing, and possibly inhomogeneous.

The new monotonicity relation generalizes similar results for the Neumann-to-
Dirichlet map for the Laplace equation on bounded domains that have been estab-
lished in [26], where they have been utilized to justify and extend an earlier mono-
tonicity based reconstruction scheme for electrical impedance tomography developed
in [43], using so-called localized potentials introduced in [13]. This is also related to
corresponding estimates for the Laplace equation developed in [29, 30]. The analy-
sis from [26] has recently been extended for the Neumann-to-Dirichlet operator for
the Helmholtz equation on bounded domains in [24], and the main contribution of
the present work is the generalization of these results to the inverse medium scat-
tering problem on unbounded domains with plane wave incident fields and far field
observations of the scattered waves.
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The monotonicity relation for the far field operator essentially states that the real
part of a suitable unitary transform of the difference of two far field operators cor-
responding to two different inhomogeneous media is positive or negative semidefinite
up to a finite dimensional subspace if the difference of the corresponding refractive
indices is either nonnegative or nonpositive pointwise almost everywhere. This can
be translated into criteria and algorithms for shape reconstruction by comparing a
given (or observed) far field operator to various virtual (or simulated) far field opera-
tors corresponding to a sufficiently small or large index of refraction on some probing
domains to decide whether these probing domains are contained inside the support of
the unknown scattering objects or whether the probing domains contain the unknown
scattering objects. In fact the situation is even more favorable, since it turns out to be
sufficient to compare the given far field operator to linearized versions of the probing
far field operators, i.e., Born far field operators, which can be simulated numerically
very efficiently. An advantage of these new characterizations is that they only require
the refractive index of the scattering object to be above or below the refractive index
of the background medium locally and near the boundary of the scatterers, i.e., they
apply to a large class of so-called indefinite scatterers.

Besides the monotonicity relation, the second main ingredient of our analysis are
so-called localized wave functions, which are special solutions to scattering problems
corresponding to suitably chosen incident waves that have arbitrarily large norm on
some prescribed region B \subseteq \BbbR d, while at the same time having arbitrarily small norm
on a different prescribed regionD \subseteq \BbbR d, assuming that \BbbR d\setminus D is connected and B \not \subseteq D.
This generalizes corresponding results on so-called localized potentials for the Laplace
equation established in [13]. The arguments that we use to prove the existence of such
localized wave functions are inspired by the analysis of the factorization method (see
[4, 31, 32, 33] for the origins of the method and [16, 19, 36] for recent overviews)
and of the linear sampling method for the inverse medium scattering problem (see,
e.g., [5, 7, 8]).

It is interesting to note that the characterizations of the support of the scattering
objects in terms of the far field operator developed in this work are independent of
so-called transmission eigenvalues (see, e.g., [5, 6, 9, 39]). On the other hand, the
monotonicity relation for the far field operator is somewhat related to well-known
monotonicity principles for the phases of the eigenvalues of the so-called scattering
operator, which have been discussed, e.g., in [37], where they have actually been uti-
lized to characterize transmission eigenvalues. The latter have recently been extended
to monotonicity relations for the difference of far field operators in [38] that are closely
related to our results. Our work substantially extends the results in [38], using very
different analytical tools.

For further recent contributions on monotonicity based reconstruction methods
for various inverse problems for partial differential equations we refer to [2, 3, 10, 11,
12, 20, 21, 22, 23, 27, 40, 42, 44, 45, 46]. We further note that this approach has also
been utilized to obtain theoretical uniqueness results for inverse problems (see, e.g.,
[1, 17, 18, 25, 28]).

The outline of this article is as follows. After briefly introducing the mathematical
setting of the scattering problem in section 2, we develop the monotonicity relation
for the far field operator in section 3. In section 4 we discuss the existence of localized
wave functions for the Helmholtz equation in unbounded domains, and we use them
to provide a converse of the monotonicity relation from section 3. In section 5 we
establish rigorous characterizations of the support of scattering objects in terms of
the far field operator. An efficient and suitably regularized numerical implementation
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of these criteria is beyond the scope of this article, but we discuss a preliminary algo-
rithm and two numerical examples for the sign definite case (i.e., when the refractive
index of the scattering objects is either above or below the refractive index of the back-
ground medium) in section 6 to illustrate our theoretical findings. This preliminary
algorithm cannot be considered competitive when compared against state-of-the-art
implementations of linear sampling or factorization methods, but, as outlined in our
final remarks, this may change in the future.

2. Scattering by an inhomogeneous medium. We use the Helmholtz equa-
tion as a simple model for the propagation of time-harmonic acoustic or electromag-
netic waves in an isotropic nonabsorbing inhomogeneous medium in \BbbR d, d = 2, 3.
Assuming that the inhomogeneity is compactly supported, the refractive index can
be written as n2 = 1 + q with a real-valued contrast function q \in L\infty 

0,+(\BbbR d), where

L\infty 
0,+(\BbbR d) denotes the space of compactly supported L\infty -functions satisfying q >  - 1

a.e. on \BbbR d.
The wave motion caused by an incident field ui satisfying

(2.1) \Delta ui + k2ui = 0 in \BbbR d,

with wave number k > 0, that is being scattered at the inhomogeneous medium is
described by the total field uq, which is a superposition

(2.2a) uq = ui + usq

of the incident field and the scattered field usq such that the Helmholtz equation

(2.2b) \Delta uq + k2n2uq = 0 in \BbbR d

is satisfied together with the Sommerfeld radiation condition

(2.2c) lim
r\rightarrow \infty 

r
d - 1
2

\Bigl( \partial usq
\partial r

(x) - ikusq(x)
\Bigr) 

= 0 , r = | x| ,

uniformly with respect to all directions x/| x| \in Sd - 1.

Remark 2.1. Throughout this work, Helmholtz equations are always to be under-
stood in distributional (or weak) sense. For instance, uq \in H1

loc(\BbbR d) is a solution to
(2.2b) if and only if\int 

\BbbR d

(\nabla uq \cdot \nabla v  - k2n2uqv) dx = 0 for all v \in C\infty 
0 (\BbbR d) .

Accordingly, standard regularity results yield smoothness of uq and usq in \BbbR d \setminus BR(0),
where BR(0) is a ball containing the support of the contrast function supp(q), and the
entire solution ui is smooth throughout \BbbR d. In particular the Sommerfeld radiation
condition (2.2c) is well defined.1 \square 

Lemma 2.2. Suppose that the incident field ui \in H1
loc(\BbbR d) satisfies (2.1); then

the scattering problem (2.2) has a unique solution uq \in H1
loc(\BbbR d). Furthermore, the

scattered field usq = uq  - ui \in H1
loc(\BbbR d) has the asymptotic behavior

1As usual, we call a (weak) solution to a Helmholtz equation on an unbounded domain that
satisfies the Sommerfeld radiation condition a radiating solution.
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(2.3) usq(x) = Cd
eik| x| 

| x| d - 1
2

u\infty q (\widehat x) +O(| x|  - 
d+1
2 ) , | x| \rightarrow \infty ,

uniformly in all directions \widehat x := x/| x| \in Sd - 1, where

(2.4) Cd = ei\pi /4/
\surd 
8\pi k if n = 2 and Cd = 1/(4\pi ) if n = 3 ,

and the far field pattern u\infty q is given by

(2.5) u\infty q (\widehat x) =

\int 
\partial BR(0)

\Bigl( 
usq(y)

\partial e - ik\widehat x\cdot y
\partial \nu y

 - e - ik\widehat x\cdot y \partial usq
\partial \nu 

(y)
\Bigr) 
ds(y) , \widehat x \in Sd - 1 .

Proof. The unique solvability follows, e.g., immediately from [9, Thm. 8.7] (see
also [34, Thm. 6.9]), and the farfield asymptotics are, e.g., shown in [9, Thm. 2.6].

For the special case of a plane wave incident field ui(x; \theta ) := eik\theta \cdot x, we explicitly
indicate the dependence on the incident direction \theta \in Sd - 1 by a second argument,
and accordingly we write uq(\cdot ; \theta ), usq(\cdot ; \theta ), and u\infty q (\cdot ; \theta ) for the corresponding scattered
field, total field, and far field pattern, respectively. As usual, we collect the far field
patterns u\infty q (\widehat x; \theta ) for all possible observation and incident directions \widehat x, \theta \in Sd - 1 in
the far field operator

(2.6) Fq : L2(Sd - 1) \rightarrow L2(Sd - 1) , (Fqg)(\widehat x) := \int 
Sd - 1

u\infty q (\widehat x; \theta )g(\theta ) ds(\theta ) ,
which is compact and normal (see, e.g., [9, Thm. 3.24]). Moreover, the scattering
operator is defined by

(2.7) \scrS q : L2(Sd - 1) \rightarrow L2(Sd - 1) , \scrS qg := (I + 2ik| Cd| 2Fq)g ,

where Cd is again the constant from (2.4). The operator \scrS q is unitary, and con-
sequently the eigenvalues of Fq lie on the circle of radius 1/(2k| Cd| 2) centered in
i/(2k| Cd| 2) in the complex plane (cf., e.g., [9, pp. 285--286]).

By linearity, for any given function g \in L2(Sd - 1), the solution to the direct
scattering problem (2.2) with incident field

(2.8a) uig(x) =

\int 
Sd - 1

eikx\cdot \theta g(\theta ) ds(\theta ) , x \in \BbbR d ,

is given by

(2.8b) uq,g(x) =

\int 
Sd - 1

uq(x; \theta )g(\theta ) ds(\theta ) , x \in \BbbR d ,

and the corresponding scattered field

(2.8c) usq,g(x) =

\int 
Sd - 1

usq(x; \theta )g(\theta ) ds(\theta ) , x \in \BbbR d ,

has the far field pattern u\infty q,g = Fqg satisfying
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(2.8d) u\infty q,g(\widehat x) =

\int 
\partial BR(0)

\Bigl( 
usq,g(y)

\partial e - ik\widehat x\cdot y
\partial \nu y

 - e - ik\widehat x\cdot y \partial usq,g
\partial \nu 

(y)
\Bigr) 
ds(y) , \widehat x \in Sd - 1 .

Incident fields as in (2.8a) are usually called Herglotz wave functions.

3. A monotonicity relation for the far field operator. We will frequently
be discussing relative orderings compact self-adjoint operators. The following exten-
sion of the Loewner order was introduced in [24]. Let A,B : X \rightarrow X be two compact
self-adjoint linear operators on a Hilbert space X. We write

A \leq r B for some r \in \BbbN 

if B  - A has at most r negative eigenvalues. Similarly, we write A \leq fin B if A \leq r B
holds for some r \in \BbbN , and the notations A \geq r B and A \geq fin B are defined accordingly.

The following result was shown in [24, Cor. 3.3].

Lemma 3.1. Let A,B : X \rightarrow X be two compact self-adjoint linear operators on a
Hilbert space X with scalar product \langle \cdot , \cdot \rangle , and let r \in \BbbN . Then the following statements
are equivalent:

(a) A \leq r B.
(b) There exists a finite dimensional subspace V \subseteq X with dim(V ) \leq r such that

\langle (B  - A)v, v\rangle \geq 0 for all v \in V \bot .

In particular this lemma shows that \leq fin and \geq fin are transitive relations (see [24,
Lem. 3.4]) and thus preorders. We use this notation in the following monotonicity
relation for the far field operator.

Theorem 3.2. Let q1, q2 \in L\infty 
0,+(\BbbR d). Then there exists a finite dimensional

subspace V \subseteq L2(Sd - 1) such that

(3.1) Re
\Bigl( \int 

Sd - 1

g \scrS \ast 
q1(Fq2  - Fq1)g ds

\Bigr) 
\geq k2

\int 
\BbbR d

(q2 - q1)| uq1,g| 2 dx for all g \in V \bot .

In particular

(3.2) q1 \leq q2 implies that Re(\scrS \ast 
q1Fq1) \leq fin Re(\scrS \ast 

q1Fq2) ,

where as usual the real part of a linear operator A : X \rightarrow X on a Hilbert space X is
the self-adjoint operator given by Re(A) := 1

2 (A+A\ast ).

Remark 3.3. Since the scattering operators \scrS 1 and \scrS 2 are unitary, we find us-
ing (2.7) that

\scrS \ast 
q1(Fq2  - Fq1) =

1

2ik| Cd| 2
\scrS \ast 
q1(\scrS q2  - \scrS q1) =

1

2ik| Cd| 2
(\scrS \ast 

q1\scrS q2  - I)

=
\Bigl( 1

2ik| Cd| 2
(I  - \scrS \ast 

q2\scrS q1)
\Bigr) \ast 

=
\Bigl( 1

2ik| Cd| 2
\scrS \ast 
q2(\scrS q2  - \scrS q1)

\Bigr) \ast 
=

\bigl( 
\scrS \ast 
q2(Fq2  - Fq1)

\bigr) \ast 
.
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Recalling that the eigenvalues of a compact linear operator and of its adjoint are
complex conjugates of each other, we conclude that the spectra of Re(\scrS \ast 

q1(Fq2  - Fq1))
and Re(\scrS \ast 

q2(Fq2  - Fq1)) coincide. Consequently, the monotonicity relations (3.1)--(3.2)
remain true if we replace \scrS \ast 

q1 by \scrS \ast 
q2 in these formulas. \square 

Interchanging the roles of q1 and q2, except for \scrS \ast 
q1 (see Remark 3.3), we may

restate Theorem 3.2 as follows.

Corollary 3.4. Let q1, q2 \in L\infty 
0,+(\BbbR d). Then there exists a finite dimensional

subspace V \subseteq L2(Sd - 1) such that

(3.3) Re
\Bigl( \int 

Sd - 1

g \scrS \ast 
q1(Fq2  - Fq1)g ds

\Bigr) 
\leq k2

\int 
\BbbR d

(q2 - q1)| uq2,g| 2 dx for all g \in V \bot .

Remark 3.5. A well-known monotonicity principle for the phases of the eigenval-
ues of the far field operator, which has been discussed, e.g., in [37, Lem. 4.1], can be
rephrased as Re(Fq) \geq fin 0 if q > 0 and Re(Fq) \leq fin 0 if q < 0 a.e. on the support of
the contrast function supp(q). This result can now also be obtained as a special case
of (3.1) in Theorem 3.2 with q1 = 0 and q2 = q if q > 0 (or q1 = q and q2 = 0 and
\scrS \ast 
q1 replaced by \scrS \ast 

q2 (see Remark 3.3) if q < 0).
The monotonicity relation (3.2), which is a consequence of the stronger result

(3.1), has already been established in [38, Lem. 3], using rather different techniques. \square 

The proof of Theorem 3.2 is a simple corollary of the following lemmas. We begin
by summarizing some useful identities for the solution of the scattering problem (2.2).

Lemma 3.6. Let q \in L\infty 
0,+(\BbbR d), n2 = 1 + q, and let BR(0) be a ball containing

supp(q). Then

(3.4)

\int 
Sd - 1

g Fqg ds = k2
\int 
BR(0)

quiguq,g dx for all g \in L2(Sd - 1) ,

and, for any v \in H1(BR(0)),

(3.5)

\int 
BR(0)

\bigl( 
\nabla usq,g \cdot \nabla v - k2n2usq,gv

\bigr) 
dx - 

\int 
\partial BR(0)

v
\partial usq,g
\partial \nu 

ds = k2
\int 
BR(0)

quigv dx .

Furthermore, if q1, q2 \in L\infty 
0,+(\BbbR d) and BR(0) is a ball containing supp(q1) \cup 

supp(q2), then, for any j, l \in \{ 1, 2\} ,

(3.6)

\int 
\partial BR(0)

\Bigl( 
usqj ,g

\partial usql,g
\partial \nu 

 - usql,g
\partial usqj ,g

\partial \nu 

\Bigr) 
ds =  - 2ik| Cd| 2

\int 
Sd - 1

Fqjg Fqlg ds ,

where Cd denotes the constant from (2.4).

Proof. Let g \in L2(Sd - 1); then the scattered field usq,g \in H1
loc(\BbbR d) from (2.8c)

solves

\Delta usq,g + k2n2usq,g =  - \Delta uiq,g  - k2n2uiq,g =  - k2quiq,g in BR(0) ,

and accordingly Green's formula shows that, for any v \in H1(BR(0)),\int 
BR(0)

\nabla usq,g \cdot \nabla v dx =

\int 
\partial BR(0)

v
\partial usq,g
\partial \nu 

ds+ k2
\int 
BR(0)

n2usq,gv dx+ k2
\int 
BR(0)

quiq,gv dx ,
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which proves (3.5).
Likewise, we obtain from (2.8d) and Green's formula that

u\infty q,g(\theta ) =

\int 
\partial BR(0)

\Bigl( 
usq,g(y)

\partial e - ik\theta \cdot y

\partial \nu y
 - e - ik\theta \cdot y \partial u

s
q,g

\partial \nu 
(y)

\Bigr) 
ds(y)

= k2
\int 
BR(0)

q(y)uq,g(y)e
 - ik\theta \cdot y dy ,

and thus \int 
Sd - 1

g Fqg ds = k2
\int 
BR(0)

q(y)uq,g(y)

\int 
Sd - 1

g(\theta )eik\theta \cdot y ds(\theta ) dy .

Using (2.8a) this shows (3.4).
To see (3.6) let r > R. Then usqj ,g, u

s
ql,g

\in H1
loc(\BbbR d) solve (for q = qj and q = ql)

\Delta usq,g + k2usq,g = 0 in Br(0) \setminus BR(0) ,

and applying Green's formula we obtain that

(3.7)

\int 
\partial Br(0)

\Bigl( 
usqj ,g

\partial usql,g
\partial \nu 

 - usql,g
\partial usqj ,g

\partial \nu 

\Bigr) 
ds =

\int 
\partial BR(0)

\Bigl( 
usqj ,g

\partial usql,g
\partial \nu 

 - usql,g
\partial usqj ,g

\partial \nu 

\Bigr) 
ds .

Using the radiation condition (2.2c) and the far field expansion (2.3) (for q = qj and
q = ql) we find that, as r \rightarrow \infty ,

\int 
\partial Br(0)

\Bigl( 
usqj ,g

\partial usql,g
\partial \nu 

 - usql,g
\partial usqj ,g

\partial \nu 

\Bigr) 
ds =  - 2ik

\int 
\partial Br(0)

usqj ,gu
s
ql,g

ds+ o(1)

=  - 2ik| Cd| 2
\int 
Sd - 1

Fqjg Fqlg ds+ o(1) .

(3.8)

Substituting (3.8) into (3.7) and letting r \rightarrow \infty finally gives (3.6).

The next tool we will use to prove the monotonicity relation for the far field
operator in Theorem 3.2 is the following integral identity.

Lemma 3.7. Let q1, q2 \in L\infty 
0,+(\BbbR d), and let BR(0) be a ball containing supp(q1)\cup 

supp(q2). Then, for any g \in L2(Sd - 1),

(3.9)

\int 
Sd - 1

(g Fq2g  - g Fq1g) ds+ 2ik| Cd| 2
\int 
Sd - 1

Fq1g Fq2g ds+ k2
\int 
\BbbR d

(q1  - q2)| uq1,g| 2 dx

=

\int 
BR(0)

(| \nabla (usq2,g  - usq1,g)| 
2  - k2n22| usq2,g  - usq1,g| 

2) dx

 - 
\int 
\partial BR(0)

(usq2,g  - usq1,g)
\partial (usq2,g  - usq1,g)

\partial \nu 
ds .

Proof. The identity (3.6) (with j = 1 and l = 2) immediately implies that



2540 ROLAND GRIESMAIER AND BASTIAN HARRACH

2Re

\int 
\partial BR(0)

usq1,g
\partial usq2,g
\partial \nu 

ds

=

\int 
\partial BR(0)

\Bigl( 
usq1,g

\partial usq2,g
\partial \nu 

+ usq2,g
\partial usq1,g
\partial \nu 

\Bigr) 
ds - 2ik| Cd| 2

\int 
Sd - 1

Fq1g Fq2g ds .

Using this and (3.5) we find that\int 
BR(0)

\bigl( 
| \nabla usq2,g  - \nabla usq1,g| 

2  - k2n22| usq2,g  - usq1,g| 
2
\bigr) 
dx

 - 
\int 
\partial BR(0)

(usq2,g  - usq1,g)
\partial (usq2,g  - usq1,g)

\partial \nu 
ds

=

\int 
BR(0)

\bigl( 
| \nabla usq2,g| 

2  - k2n22| usq2,g| 
2
\bigr) 
dx+

\int 
BR(0)

\bigl( 
| \nabla usq1,g| 

2  - k2n22| usq1,g| 
2
\bigr) 
dx

 - 2Re
\Bigl( \int 

BR(0)

\bigl( 
\nabla usq2,g \cdot \nabla usq1,g  - k2n22u

s
q2,gu

s
q1,g

\bigr) 
dx - 

\int 
\partial BR(0)

usq1,g
\partial usq2,g
\partial \nu 

ds
\Bigr) 

+ 2ik| Cd| 2
\int 
Sd - 1

Fq1g Fq2g ds - 
\int 
\partial BR(0)

usq2,g
\partial usq2,g
\partial \nu 

ds - 
\int 
\partial BR(0)

usq1,g
\partial usq1,g
\partial \nu 

ds

= k2
\int 
BR(0)

q2u
i
gu

s
q2,g dx - 2Re

\Bigl( 
k2

\int 
BR(0)

q2u
i
gu

s
q1,g dx

\Bigr) 
+ k2

\int 
BR(0)

q1u
i
gu

s
q1,g dx

+ k2
\int 
BR(0)

(q1  - q2)| usq1,g| 
2 dx+ 2ik| Cd| 2

\int 
Sd - 1

Fq1g Fq2g ds .

Further simple manipulations give\int 
BR(0)

\bigl( 
| \nabla usq2,g  - \nabla usq1,g| 

2  - k2n22| usq2,g  - usq1,g| 
2
\bigr) 
dx

 - 
\int 
\partial BR(0)

(usq2,g  - usq1,g)
\partial (usq2,g  - usq1,g)

\partial \nu 
ds

= k2
\int 
BR(0)

q2u
i
gu

s
q2,g dx - 2Re

\Bigl( 
k2

\int 
BR(0)

(q2  - q1)u
i
gu

s
q1,g dx

\Bigr) 
 - k2

\int 
BR(0)

q1uigu
s
q1,g dx - k2

\int 
BR(0)

(q2  - q1)| usq1,g| 
2 dx+ 2ik| Cd| 2

\int 
Sd - 1

Fq1g Fq2g ds

= k2
\int 
BR(0)

q2u
i
guq2,g dx - k2

\int 
BR(0)

q1uiguq1,g dx - k2
\int 
BR(0)

(q2  - q1)| uig| 2 dx

 - 2Re
\Bigl( 
k2

\int 
BR(0)

(q2  - q1)uigu
s
q1,g dx

\Bigr) 
 - k2

\int 
BR(0)

(q2  - q1)| usq1,g| 
2 dx

+ 2ik| Cd| 2
\int 
Sd - 1

Fq1g Fq2g ds

= k2
\int 
BR(0)

q2u
i
guq2,g dx - k2

\int 
BR(0)

q1uiguq1,g dx - k2
\int 
BR(0)

(q2  - q1)| uq1,g| 2 dx

+ 2ik| Cd| 2
\int 
Sd - 1

Fq1g Fq2g ds .
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Finally, applying (3.4) we obtain that\int 
BR(0)

\bigl( 
| \nabla usq2,g  - \nabla usq1,g| 

2  - k2n22| usq2,g  - usq1,g| 
2
\bigr) 
dx

 - 
\int 
\partial BR(0)

(usq2,g  - usq1,g)
\partial (usq2,g  - usq1,g)

\partial \nu 
ds

=

\int 
Sd - 1

(g Fq2g  - g Fq1g) ds - k2
\int 
BR(0)

(q2  - q1)| uq1,g| 2 dx

+ 2ik| Cd| 2
\int 
Sd - 1

Fq1g Fq2g ds ,

which proves the assertion.

Remark 3.8. Since the adjoint of the scattering operator \scrS q1 from (2.7) is given by

\scrS \ast 
q1 = I  - 2ik| Cd| 2F \ast 

q1 ,

we find that

\scrS \ast 
q1(Fq2  - Fq1) = Fq2  - Fq1  - 2ik| Cd| 2(F \ast 

q1Fq2  - F \ast 
q1Fq1) ,

and accordingly,

Re(\scrS \ast 
q1(Fq2  - Fq1)) = Re(Fq2  - Fq1  - 2ik| Cd| 2F \ast 

q1Fq2) .

Therefore the real part of the first two terms on the left-hand side of (3.9) fulfills

Re
\Bigl( \int 

Sd - 1

(g Fq2g  - g Fq1g) ds+ 2ik| Cd| 2
\int 
Sd - 1

Fq1g Fq2g ds
\Bigr) 

= Re
\Bigl( \int 

Sd - 1

g(Fq2  - Fq1  - 2ik| Cd| 2F \ast 
q1Fq2)g ds

\Bigr) 
= Re

\Bigl( \int 
Sd - 1

g \scrS \ast 
q1(Fq2  - Fq1)g ds

\Bigr) 
.

(3.10)

The operator \scrS \ast 
q1(Fq2  - Fq1) is compact and normal (see [38, Lem. 1]). \square 

Next we consider the right-hand side of (3.9), and we show that it is nonnegative
if g belongs to the complement of a certain finite dimensional subspace V \subseteq L2(Sd - 1).
To that end we denote by I : H1(BR(0)) \rightarrow H1(BR(0)) the identity operator,
by J : H1(BR(0)) \rightarrow L2(BR(0)) the compact embedding, and accordingly we de-
fine, for any q \in L\infty 

0,+(\BbbR d) and any ball BR(0) containing supp(q), the operator
K : H1(BR(0)) \rightarrow H1(BR(0)) by

Kv := J\ast Jv ,

and Kq : H1(BR(0)) \rightarrow H1(BR(0)) by

Kqv := J\ast ((1 + q)Jv) .

ThenK andKq are compact self-adjoint linear operators, and, for any v \in H1(BR(0)),\bigl\langle 
(I  - K  - k2Kq)v, v

\bigr\rangle 
H1(BR(0))

=

\int 
BR(0)

(| \nabla v| 2  - k2(1 + q)| v| 2) dx .
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For 0 < \varepsilon < R we denote by N\varepsilon : H1(BR(0)) \rightarrow L2(\partial BR(0)) the bounded linear
operator that maps v \in H1(BR(0)) to the normal derivative \partial v\varepsilon /\partial \nu on \partial BR(0) of the
radiating solution to the exterior boundary value problem

\Delta v\varepsilon + k2v\varepsilon = 0 in \BbbR d \setminus BR - \varepsilon (0) , v\varepsilon = v on \partial BR - \varepsilon (0) ,

and \Lambda : L2(\partial BR(0)) \rightarrow L2(\partial BR(0)) denotes the compact exterior Neumann-to-
Dirichlet operator that maps \psi \in L2(\partial BR(0)) to the trace w| \partial BR(0) of the radiat-
ing solution to

\Delta w + k2w = 0 in \BbbR d \setminus BR(0) ,
\partial w

\partial \nu 
= \psi on \partial BR(0)

(see, e.g., [9, pp. 51--55]). Then,

N\varepsilon v =
\partial v

\partial \nu 

\bigm| \bigm| \bigm| 
\partial BR(0)

and \Lambda N\varepsilon = v| \partial BR(0) ,

and accordingly\bigl\langle 
N\ast 

\varepsilon \Lambda N\varepsilon v, v
\bigr\rangle 
H1(BR(0))

=
\bigl\langle 
\Lambda N\varepsilon v,N\varepsilon v

\bigr\rangle 
L2(\partial BR(0))

=

\int 
\partial BR(0)

v
\partial v

\partial \nu 
ds

for any v \in H1(BR(0)) that can be extended to a radiating solution of the Helmholtz
equation

\Delta v + k2v = 0 in \BbbR d \setminus BR - \varepsilon (0) .

In particular this holds for v = usq2,g  - u
s
q1,g if the ball BR - \varepsilon (0) contains supp(q1) and

supp(q2).

Lemma 3.9. Let q1, q2 \in L\infty 
0,+(\BbbR d) and let BR(0) be a ball containing supp(q1) \cup 

supp(q2). Then there exists a finite dimensional subspace V \subset L2(Sd - 1) such that\int 
BR(0)

(| \nabla (usq2,g  - usq1,g)| 
2  - k2n22| usq2,g  - usq1,g| 

2) dx

 - Re
\Bigl( \int 

\partial BR(0)

(usq2,g  - usq1,g)
\partial (usq2,g  - usq1,g)

\partial \nu 
ds

\Bigr) 
\geq 0 for all g \in V \bot .

Proof. Let \varepsilon > 0 be sufficiently small, so that supp(q1) \cup supp(q2) \subset BR - \varepsilon (0).
Then\int 

BR(0)

(| \nabla (usq2,g  - usq1,g)| 
2  - k2n22| usq2,g  - usq1,g| 

2) dx

 - Re
\Bigl( \int 

\partial BR(0)

(usq2,g  - usq1,g)
\partial (usq2,g  - usq1,g)

\partial \nu 
ds

\Bigr) 
=

\bigl\langle 
(I  - K  - k2Kq2  - Re(N\ast 

\varepsilon \Lambda N\varepsilon ))(S2  - S1)g, (S2  - S1)g
\bigr\rangle 
H1(BR(0))

,

where for j = 1, 2 we denote by Sj : L2(Sd - 1) \rightarrow H1(BR(0)) the bounded linear op-
erator that maps g \in L2(Sd - 1) to the restriction of the scattered field usqj ,g on BR(0).

LetW be the sum of eigenspaces of the compact self-adjoint operatorK+k2Kq2+
Re(N\ast 

\varepsilon \Lambda N\varepsilon ) associated to eigenvalues larger than 1. ThenW is finite dimensional and



MONOTONICITY IN INVERSE MEDIUM SCATTERING 2543\bigl\langle 
(I  - K  - k2Kq2  - Re(N\ast 

\varepsilon \Lambda N\varepsilon ))w,w
\bigr\rangle 
H1(BR(0))

\geq 0 for all w \in W\bot .

Since, for any g \in L2(Sd - 1),

(S2  - S1)g \in W\bot if and only if g \in 
\bigl( 
(S2  - S1)

\ast W
\bigr) \bot 
,

and of course dim((S2  - S1)
\ast W ) \leq dim(W ) < \infty , choosing V := (S2  - S1)

\ast W ends
the proof.

Proof of Theorem 3.2. Taking the real part of (3.9) and applying (3.10), the result
follows immediately from Lemma 3.9.

4. Localized wave functions. In this section we establish the existence of local-
ized wave functions that have arbitrarily large norm on some prescribed region B \subseteq \BbbR d

while at the same time having arbitrarily small norm in a different region D \subseteq \BbbR d,
assuming that \BbbR d \setminus D is connected. These will be utilized to establish a rigorous
characterization of the support of scattering objects in terms of the far field operator
using the monotonicity relations from Theorem 3.2 and Corollary 3.4 in section 5
below.

Theorem 4.1. Suppose that q \in L\infty 
0,+(\BbbR d), and let B,D \subseteq \BbbR d be open and

bounded such that \BbbR d \setminus D is connected.
If B \not \subseteq D, then for any finite dimensional subspace V \subseteq L2(Sd - 1) there exists a

sequence (gm)m\in \BbbN \subseteq V \bot such that\int 
B

| uq,gm | 2 dx\rightarrow \infty and

\int 
D

| uq,gm | 2 dx\rightarrow 0 as m\rightarrow \infty ,

where uq,gm \in H1
loc(\BbbR d) is given by (2.8b) with g = gm.

The proof of Theorem 4.1 relies on the following lemmas.

Lemma 4.2. Suppose that q \in L\infty 
0,+(\BbbR d), let n2 = 1+ q, and assume that D \subseteq \BbbR d

is open and bounded. We define

Lq,D : L2(Sd - 1) \rightarrow L2(D) , g \mapsto \rightarrow uq,g| D ,

where uq,g \in H1
loc(\BbbR d) is given by (2.8b). Then Lq,D is a compact linear operator and

its adjoint is given by

L\ast 
q,D : L2(D) \rightarrow L2(Sd - 1) , f \mapsto \rightarrow \scrS \ast 

qw
\infty ,

where \scrS q denotes the scattering operator from (2.7), and w\infty \in L2(Sd - 1) is the far
field pattern of the radiating solution w \in H1

loc(\BbbR d) to2

(4.1) \Delta w + k2n2w =  - f in \BbbR d .

Proof. The representation formula for the total field in (2.8b) shows that Lq,D

is a Fredholm integral operator with square integrable kernel and therefore compact
and linear from L2(Sd - 1) to L2(D).

The existence and uniqueness of a radiating solution w \in H1
loc(\BbbR d) of (4.1) follows

again from [9, Thm. 8.7] (see also [34, Thm. 6.9]). To determine the adjoint of Lq,D we
first observe that, for any ball BR(0), this solution satisfies, for any v \in H1(BR(0)),

(4.2)

\int 
BR(0)

(\nabla w \cdot \nabla v  - k2n2wv) dx =

\int 
BR(0)

fv dx+

\int 
\partial BR(0)

v
\partial w

\partial \nu 
ds .

2Throughout, we identify f \in L2(D) with its continuation to \BbbR d by zero whenever appropriate.
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We choose R > 0 large enough such that supp(q) and D are contained in BR(0).
Applying (4.2), Green's formula, and the representation formula for the far field pat-
tern w\infty of w analogous to (2.5) we find that, for any g \in L2(Sd - 1) and f \in L2(D),\int 

D

(Lq,Dg)f dx =

\int 
BR(0)

(\nabla uq,g \cdot \nabla w  - k2n2uq,gw) dx - 
\int 
\partial BR(0)

uq,g
\partial w

\partial \nu 
ds

=

\int 
\partial BR(0)

\Bigl( \partial uq,g
\partial \nu 

w  - uq,g
\partial w

\partial \nu 

\Bigr) 
ds

=

\int 
Sd - 1

g(\theta )

\int 
\partial BR(0)

\Bigl( \partial eik\theta \cdot y
\partial \nu y

w(y) - eik\theta \cdot y
\partial w

\partial \nu 
(y)

\Bigr) 
ds(y) ds(\theta )

+

\int 
Sd - 1

g(\theta )

\int 
\partial BR(0)

\Bigl( \partial usq,g
\partial \nu y

(y; \theta )w(y) - usq,g(y; \theta )
\partial w

\partial \nu 
(y)

\Bigr) 
ds(y) ds(\theta )

=

\int 
Sd - 1

g(\theta )w\infty (\theta ) ds(\theta )

+

\int 
Sd - 1

g(\theta )

\int 
\partial BR(0)

\Bigl( \partial usq,g
\partial \nu y

(y; \theta )w(y) - usq,g(y; \theta )
\partial w

\partial \nu 
(y)

\Bigr) 
ds(y) ds(\theta ) .

(4.3)

Using the radiation condition (2.2c) and the farfield expansion (2.3) we obtain that,
as R\rightarrow \infty ,\int 

\partial BR(0)

\Bigl( \partial usq,g
\partial \nu y

(y; \theta )w(y) - usq,g(y; \theta )
\partial w

\partial \nu 
(y)

\Bigr) 
ds(y)

= 2ik

\int 
\partial BR(0)

usq,g(y; \theta )w(y) ds(y) + o(1)

= 2ik| Cd| 2
\int 
Sd - 1

u\infty q,g(\widehat y; \theta )w\infty (\widehat y) ds(\widehat y) + o(1) .

Accordingly, substituting this into (4.3) and using (2.6) and (2.7) gives\int 
D

(Lq,Dg)f dx

=

\int 
Sd - 1

g(\theta )w\infty (\theta ) ds(\theta ) + 2ik| Cd| 2
\int 
Sd - 1

g(\theta )

\int 
Sd - 1

u\infty q,g(\widehat y; \theta )w\infty (\widehat y) ds(\widehat y) ds(\theta )
=

\int 
Sd - 1

g(\theta )w\infty (\theta ) ds(\theta ) + 2ik| Cd| 2
\int 
Sd - 1

(Fqg)(\widehat y)w\infty (\widehat y) ds(\widehat y) =

\int 
Sd - 1

g \scrS \ast 
qw

\infty ds .

Lemma 4.3. Suppose that q \in L\infty 
0,+(\BbbR d). Let B,D \subseteq \BbbR d be open and bounded

such that \BbbR d \setminus (B \cup D) is connected and B \cap D = \emptyset . Then,

\scrR (L\ast 
q,B) \cap \scrR (L\ast 

q,D) = \{ 0\} ,

and \scrR (L\ast 
q,B),\scrR (L\ast 

q,D) \subseteq L2(Sd - 1) are both dense.

Proof. To start with, we show the injectivity of Lq,B , and we note that the injec-
tivity of Lq,D follows analogously. Let R > 0 such that supp(q) \subseteq BR(0). Then the
solution uq,g of (2.2) from (2.8b) satisfies the Lippmann--Schwinger equation

uq,g(x) = uig(x) + k2
\int 
\BbbR d

q(y)\Phi (x - y)uq,g(y) dy , x \in BR(0) ,(4.4)
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where \Phi denotes the fundamental solution to the Helmholtz equation (cf., e.g., [9,
Thm. 8.3]). By unique continuation, Lq,Bg = uq,g| B = 0 implies that uq,g = 0 in \BbbR d

(cf., e.g., [24, sect. 2.3]). Substituting this into (4.4), we find that the Herglotz wave
function uig = 0 in BR(0) and thus by analyticity on all of \BbbR d. This implies that g = 0
(cf., e.g., [9, Thm. 3.19]); i.e., Lq,B is injective.

The injectivity of Lq,B and Lq,D immediately yields that \scrR (L\ast 
q,B) and \scrR (L\ast 

q,D)

are dense in L2(Sd - 1). Next suppose that h \in \scrR (L\ast 
q,B) \cap \scrR (L\ast 

q,D). Then Lemma 4.2

shows that there exist fB \in L2(B), fD \in L2(D), and wB , wD \in H1
loc(\BbbR d) such that

the far field patterns w\infty 
B and w\infty 

D of the radiating solutions to

\Delta wB + k2(1 + q)wB =  - fB and \Delta wD + k2(1 + q)wD =  - fD in \BbbR d

satisfy

w\infty 
B = w\infty 

D = \scrS qh .

Rellich's lemma and unique continuation guarantee that wB = wD in \BbbR d \setminus (B \cup D)
(cf., e.g., [9, Thm. 2.14]). Hence we may define w \in H1

loc(\BbbR d) by

w :=

\left\{     
wB = wD in \BbbR d \setminus (B \cup D) ,

wB in D ,

wD in B ,

and w is the unique radiating solution to

\Delta w + k2(1 + q)w = 0 in \BbbR d .

Thus w = 0 in \BbbR d, and since the scattering operator is unitary, this shows that
h = \scrS \ast 

qw
\infty = 0.

In the next lemma we quote a special case of Lemma 2.5 in [26].

Lemma 4.4. Let X,Y , and Z be Hilbert spaces, and let A : X \rightarrow Y and B : X \rightarrow 
Z be bounded linear operators. Then,

\exists C > 0 : \| Ax\| \leq C\| Bx\| \forall x \in X if and only if \scrR (A\ast ) \subseteq \scrR (B\ast ) .

Now we give the proof of Theorem 4.1.

Proof of Theorem 4.1. Suppose that q \in L\infty 
0,+(\BbbR d), let B,D \subseteq \BbbR d be open such

that \BbbR d \setminus D is connected, and let V \subseteq L2(Sd - 1) be a finite dimensional subspace.
We first note that without loss of generality we may assume that B \cap D = \emptyset and
that \BbbR d \setminus (B \cup D) is connected (otherwise we replace B by a sufficiently small ball\widetilde B \subseteq B \setminus D\varepsilon , where D\varepsilon denotes a sufficiently small neighborhood of D).

We denote by PV : L2(Sd - 1) \rightarrow L2(Sd - 1) the orthogonal projection on V .
Lemma 4.3 shows that \scrR (L\ast 

q,B) \cap \scrR (L\ast 
q,D) = \{ 0\} and that \scrR (L\ast 

q,B) is infinite di-
mensional. Using a simple dimensionality argument (see [24, Lem. 4.7]) it follows
that

\scrR (L\ast 
q,B) \not \subseteq \scrR (L\ast 

q,D) + V = \scrR (
\bigl( 
L\ast 
q,D P \ast 

V

\bigr) 
) = \scrR 

\biggl( \biggl( 
Lq,D

PV

\biggr) \ast \biggr) 
.

Accordingly, Lemma 4.4 implies that there is no constant C > 0 such that
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\| Lq,Bg\| 2L2(B) \leq C2

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( Lq,D

PV

\biggr) 
g

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(D)\times L2(Sd - 1)

= C2
\bigl( 
\| Lq,Dg\| 2L2(D) + \| PV g\| 2L2(Sd - 1)

\bigr) 
for all g \in L2(Sd - 1). Hence, there exists as sequence (\widetilde gm)m\in \BbbN \subseteq L2(Sd - 1) such that

\| Lq,B\widetilde gm\| L2(B) \rightarrow \infty and \| Lq,D\widetilde gm\| L2(D) + \| PV \widetilde gm\| L2(Sd - 1) \rightarrow 0 as m\rightarrow \infty .

Setting gm := \widetilde gm  - PV \widetilde gm \in V \bot \subseteq L2(Sd - 1) for any m \in \BbbN , we finally obtain

\| Lq,Bgm\| L2(B) \geq \| Lq,B\widetilde gm\| L2(B)  - \| Lq,B\| \| PV \widetilde gm\| L2(Sd - 1) \rightarrow \infty as m\rightarrow \infty ,

\| Lq,Dgm\| L2(D) \leq \| Lq,D\widetilde gm\| L2(D) + \| Lq,D\| \| PV \widetilde gm\| L2(Sd - 1) \rightarrow 0 as m\rightarrow \infty .

Since Lq,Bgm = uq,gm | B and Lq,Dgm = uq,gm | D, this ends the proof.

The next result is a simple consequence of the Lemmas 4.2 and 4.4.

Theorem 4.5. Suppose that q1, q2 \in L\infty 
0,+(\BbbR d), and let D \subseteq \BbbR d be open and

bounded. If q1(x) = q2(x) for a.e. x \in \BbbR d \setminus D, then there exist constants c, C > 0 such
that

c

\int 
D

| uq1,g| 2 dx \leq 
\int 
D

| uq2,g| 2 dx \leq C

\int 
D

| uq1,g| 2 dx for all g \in L2(Sd - 1) ,

where uqj ,g \in H1
loc(\BbbR d), j = 1, 2, is given by (2.8b) with q = qj.

Proof. Let q1, q2 \in L\infty 
0,+(\BbbR d). We denote by Lq1,D and Lq2,D the operators from

Lemma 4.2 with q = q1 and q = q2, respectively. We showed in Lemma 4.2 that for
any f \in L2(D)

(4.5) L\ast 
q1,Df = \scrS \ast 

q1w
\infty 
1 and L\ast 

q2,Df = \scrS \ast 
q2w

\infty 
2 ,

where w\infty 
j , j = 1, 2, are the far field patterns of the radiating solutions to

\Delta wj + k2(1 + qj)wj =  - f in \BbbR d .

This implies that

\Delta w1 + k2(1 + q2)w1 =  - (f + k2(q1  - q2)w1) in \BbbR d ,(4.6a)

\Delta w2 + k2(1 + q1)w2 =  - (f + k2(q2  - q1)w2) in \BbbR d .(4.6b)

Since q1  - q2 vanishes a.e. outside D, we find that

\scrS \ast 
q2w

\infty 
1 = L\ast 

q2,D(f + k2(q1  - q2)w1) and \scrS \ast 
q1w

\infty 
2 = L\ast 

q1,D(f + k2(q2  - q1)w2) .

Combining (4.5) and (4.6), we obtain that \scrR (\scrS q1L
\ast 
q1,D

) = \scrR (\scrS q2L
\ast 
q2,D

). Since \scrS q1

and \scrS q2 are unitary operators, the assertion follows from Lemma 4.4.

As a first application of Theorem 4.1 we establish a converse of (3.2) in Theo-
rem 3.2.

Theorem 4.6. Suppose that q1, q2 \in L\infty 
0,+(\BbbR d) with supp(qj) \subseteq BR(0). If O \subseteq \BbbR d

is an unbounded domain such that

q1 \leq q2 a.e. in O ,
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and if B \subseteq BR(0) \cap O is open with

(4.7) q1 \leq q2  - c a.e. in B for some c > 0 ,

then

Re(\scrS \ast 
q1Fq1) \not \geq fin Re(\scrS \ast 

q1Fq2);

i.e., the operator Re(\scrS \ast 
q1(Fq2  - Fq1)) has infinitely many positive eigenvalues. In

particular, this implies that Fq1 \not = Fq2 .

Proof. We prove the result by contradiction and assume that

(4.8) Re(\scrS \ast 
q1(Fq2  - Fq1)) \leq fin 0 .

Using the monotonicity relation (3.1) in Theorem 3.2, we find that there exists a finite
dimensional subspace V \subseteq L2(Sd - 1) such that
(4.9)

Re

\biggl( \int 
Sd - 1

g \scrS \ast 
q1(Fq2  - Fq1)g ds

\biggr) 
\geq k2

\int 
BR(0)

(q2  - q1)| uq1,g| 2 dx for all g \in V \bot .

Combining (4.8), (4.9), and (4.7) we obtain that there exists a finite dimensional

subspace \widetilde V \subseteq L2(Sd - 1) such that, for any g \in \widetilde V \bot ,

0 \geq Re

\biggl( \int 
Sd - 1

g \scrS \ast 
q1(Fq2  - Fq1)g ds

\biggr) 
\geq k2

\int 
BR(0)

(q2  - q1)| uq1,g| 2 dx

= k2
\int 
O\cap BR(0)

(q2  - q1)| uq1,g| 2 dx+ k2
\int 
BR(0)\setminus O

(q2  - q1)| uq1,g| 2 dx

\geq ck2
\int 
B

| uq1,g| 2 dx - Ck2
\int 
BR(0)\setminus O

| uq1,g| 2 dx ,

where C := \| q1\| L\infty (\BbbR d) + \| q2\| L\infty (\BbbR d). However, this contradicts Theorem 4.1 with

D = BR(0) \setminus O and q = q1, which guarantees the existence of (gm)m\in \BbbN \subseteq \widetilde V \bot with\int 
B

| uq1,gm | 2 dx\rightarrow \infty and

\int 
BR(0)\setminus O

| uq1,gm | 2 dx\rightarrow 0 as m\rightarrow \infty .

Consequently, Re(\scrS \ast 
q1(Fq2  - Fq1)) \not \leq fin 0.

5. Monotonicity based shape reconstruction. Given any open and bounded
subset B \subseteq \BbbR d, we define the operator TB : L2(Sd - 1) \rightarrow L2(Sd - 1) by

(5.1) TBg := k2H\ast 
BHBg ,

where HB : L2(Sd - 1) \rightarrow L2(B) denotes the Herglotz operator given by

(HBg)(x) :=

\int 
Sd - 1

eikx\cdot \theta g(\theta ) ds(\theta ) , x \in B .

Accordingly, \int 
Sd - 1

gTBg ds = k2
\int 
B

| uig| 2 dx for all g \in L2(Sd - 1) ,
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where uig denotes the Herglotz wave function with density g from (2.8a). The opera-
tor TB is bounded, compact, and self-adjoint, and it coincides with the Born approx-
imation of the far field operator Fq with contrast function q = \chi B , where \chi B denotes
the characteristic function of B (see, e.g., [35]).

In the following we discuss criteria to determine the support supp(q) of an un-
known scattering object in terms of the corresponding far field operator Fq. To begin
with we discuss the case when the contrast function q is positive a.e. on its support.

Theorem 5.1. Let B,D \subseteq \BbbR d be open and bounded such that \BbbR d\setminus D is connected,
and let q \in L\infty 

0,+(\BbbR d) with supp(q) = D. Suppose that 0 \leq qmin \leq q \leq qmax < \infty a.e.
in D for some constants qmin, qmax \in \BbbR .

(a) If B \subseteq D, then

\alpha TB \leq fin Re(Fq) for all \alpha \leq qmin .

(b) If B \not \subseteq D, then

\alpha TB \not \leq fin Re(Fq) for any \alpha > 0;

i.e., the operator Re(Fq)  - \alpha TB has infinitely many negative eigenvalues for
all \alpha > 0.

Proof. From Theorem 3.2 with q1 = 0 and q2 = q we obtain that there exists a
finite dimensional subspace V \subseteq L2(Sd - 1) such that

Re

\biggl( \int 
Sd - 1

g Fqg ds

\biggr) 
\geq k2

\int 
D

q| uig| 2 dx for all g \in V \bot .

Moreover, if B \subseteq D and \alpha \leq qmin, then

\alpha 

\int 
Sd - 1

gTBg ds = k2
\int 
B

\alpha | uig| 2 dx \leq k2
\int 
D

q| uig| 2 dx ,

which shows part (a).
We prove part (b) by contradiction. Let B \not \subseteq D, \alpha > 0, and assume that

(5.2) \alpha TB \leq fin Re(Fq) .

Using the monotonicity relation (3.3) in Corollary 3.4 with q1 = 0 and q2 = q, we find
that there exists a finite dimensional subspace V \subseteq L2(Sd - 1) such that

(5.3) Re

\biggl( \int 
Sd - 1

g Fqg ds

\biggr) 
\leq k2

\int 
D

q| uq,g| 2 dx for all g \in V \bot .

Combining (5.2) and (5.3), we obtain that there exists a finite dimensional sub-

space \widetilde V \in L2(Sd - 1) such that

k2\alpha 

\int 
B

| uig| 2 dx \leq k2
\int 
D

q| uq,g| 2 dx \leq k2qmax

\int 
D

| uq,g| 2 dx for all g \in \widetilde V \bot .

Applying Theorem 4.5 with q1 = 0 and q2 = q, this implies that there exists a
constant C > 0 such that

k2\alpha 

\int 
B

| uig| 2 dx \leq Ck2qmax

\int 
D

| uig| 2 dx for all g \in \widetilde V \bot .
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However, this contradicts Theorem 4.1 with q = 0, which guarantees the existence of
a sequence (gm)m\in \BbbN \subseteq \widetilde V \bot with\int 

B

| uigm | 2 dx\rightarrow \infty and

\int 
D

| uigm | 2 dx\rightarrow 0 as m\rightarrow \infty .

Hence, Re(Fq) - \alpha TB must have infinitely many negative eigenvalues.

The next result is analogous to Theorem 5.2 but with contrast functions being
negative on the support of the scattering objects, instead of being positive.

Theorem 5.2. Let B,D \subseteq \BbbR d be open and bounded such that \BbbR d\setminus D is connected,
and let q \in L\infty 

0,+(\BbbR d) with supp(q) = D. Suppose that  - 1 < qmin \leq q \leq qmax \leq 0 a.e.
in D for some constants qmin, qmax \in \BbbR .

(a) If B \subseteq D, then there exists a constant C > 0 such that

\alpha TB \geq fin Re(Fq) for all \alpha \geq Cqmax .

(b) If B \not \subseteq D, then

\alpha TB \not \geq fin Re(Fq) for any \alpha < 0;

i.e., the operator Re(Fq) - \alpha TB has infinitely many positive eigenvalues.

Proof. If B \subseteq D, then Corollary 3.4 and Theorem 4.5 with q1 = 0 and q2 = q show
that there exists a constant C > 0 and a finite dimensional subspace V \subseteq L2(Sd - 1)
such that, for any g \in V \bot ,

Re

\biggl( \int 
Sd - 1

g Fqg ds

\biggr) 
\leq k2

\int 
D

q| uq,g| 2 dx

\leq k2qmax

\int 
D

| uq,g| 2 dx \leq Ck2qmax

\int 
D

| uig| 2 dx .

In particular,

Re(Fq) \leq fin \alpha TB for all \alpha \geq Cqmax ,

and part (a) is proven.
We prove part (b) by contradiction. Let B \not \subseteq D, \alpha < 0, and assume that

(5.4) \alpha TB \geq fin Re(Fq) .

Using the monotonicity relation (3.1) in Theorem 3.2 with q1 = 0 and q2 = q, we find
that there exists a finite dimensional subspace V \subseteq L2(Sd - 1) such that

(5.5) Re

\biggl( \int 
Sd - 1

g Fqg ds

\biggr) 
\geq k2

\int 
D

q| uig| 2 dx for all g \in V \bot .

Combining (5.4) and (5.5) shows that there exists a finite dimensional subspace\widetilde V \in L2(Sd - 1) such that

k2\alpha 

\int 
B

| uig| 2 dx \geq k2
\int 
D

q| uig| 2 dx \geq k2qmin

\int 
D

| uig| 2 dx for all g \in \widetilde V \bot .

However, since \alpha < 0, this contradicts Theorem 4.1 with q = 0, which guarantees the
existence of a sequence (gm)m\in \BbbN \subseteq \widetilde V \bot such that

\alpha 

\int 
B

| uigm | 2 dx\rightarrow  - \infty and

\int 
D

| uigm | 2 dx\rightarrow 0 .

Hence, Re(Fq) - \alpha TB must have infinitely many positive eigenvalues for all \alpha < 0.
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Next we consider the general case; i.e., the contrast function q is no longer required
to be either positive or negative a.e. on the support of all scattering objects. While
in the sign definite case the criteria developed in Theorems 5.1 and 5.2 determine
whether a certain probing domain B is contained in the support D of the scattering
objects or not, the criterion for the indefinite case established in Theorem 5.3 below
characterizes whether a certain probing domain B contains the support D of the
scattering objects or not.

Theorem 5.3. Let B,D \subseteq \BbbR d be open and bounded such that \BbbR d\setminus D is connected,
and let q \in L\infty 

0,+(\BbbR d) with supp(q) = D. Suppose that  - 1 < qmin \leq q \leq qmax < \infty 
a.e. on D for some constants qmin, qmax \in \BbbR .

Furthermore, we assume that for any point x \in \partial D on the boundary of D, and for
any neighborhood U \subseteq D of x in D, there exists an unbounded neighborhood O \subseteq \BbbR d

of x with O \cap D \subseteq U , and an open subset E \subseteq O \cap D, such that 3

(5.6) q| O \geq 0 and q| E \geq qmin,E > 0 or q| O \leq 0 and q| E \leq qmax,E < 0

for some constants qmin,E , qmax,E \in \BbbR .
(a) If D \subseteq B, then there exists a constant C > 0 such that

\alpha TB \leq fin Re(Fq) \leq fin \beta TB for all \alpha \leq min\{ 0, qmin\} , \beta \geq max\{ 0, Cqmax\} .

(b) If D \not \subseteq B, then

\alpha TB \not \leq fin Re(Fq) for any \alpha \in \BbbR or Re(Fq) \not \leq fin \beta TB for any \beta \in \BbbR .

Remark 5.4. The local definiteness property (5.6) in Theorem 5.3 is, e.g., always
satisfied, if the contrast function is piecewise analytic (see Appendix A of [26]) or if
the supports of the positive part and of the negative part of the constrast function
are well-separated from each other. \square 

Proof of Theorem 5.3. If D \subseteq B, then Corollary 3.4 and Theorem 4.5 with q1 = 0
and q2 = q show that there exists a constant C > 0 and a finite dimensional subspace
V \subseteq L2(Sd - 1) such that, for all g \in V \bot and any \beta \geq max\{ 0, Cqmax\} ,

Re

\biggl( \int 
Sd - 1

g Fqg ds

\biggr) 
\leq k2

\int 
D

q| uq,g| 2 dx \leq k2qmax

\int 
D

| uq,g| 2 dx

\leq k2Cqmax

\int 
D

| uig| 2 dx \leq k2\beta 

\int 
B

| uig| 2 dx .

Similarly, Theorem 3.2 with q1 = 0 and q2 = q shows that there exists a finite di-
mensional subspace V \subseteq L2(Sd - 1) such that, for all g \in V \bot and any \alpha \leq min\{ 0, qmin\} ,

Re

\biggl( \int 
Sd - 1

g Fqg ds

\biggr) 
\geq k2

\int 
D

q| uig| 2 dx \geq k2qmin

\int 
D

| uig| 2 dx \geq k2\alpha 

\int 
B

| uig| 2 dx ,

and part (a) is proven.
We prove part (b) by contradiction. Since D \not \subseteq B, U := D \setminus B is not empty,

and there exists x \in U \cap \partial D as well as an unbounded open neighborhood O \subseteq \BbbR d

of x with O \cap D \subseteq U , and an open subset E \subseteq O \cap D such that (5.6) is satisfied.
Furthermore, let R > 0 be large enough such that B,D \subseteq BR(0).

3As usual, the inequalities in (5.6) are to be understood pointwise a.e.
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We first assume that q| O \geq 0 and q| B \geq qmin,E > 0 and that Re(Fq) \leq fin \beta TB for
some \beta \in \BbbR . Using the monotonicity relation (3.1) in Theorem 3.2 with q1 = 0 and
q2 = q, we find that there exists a finite dimensional subspace V \subseteq L2(Sd - 1) such
that, for any g \in V \bot ,

0 \geq 
\int 
Sd - 1

g(Re(Fq)g  - \beta TBg) ds \geq k2
\int 
BR(0)

(q  - \beta \chi B)| uig| 2 dx

= k2
\int 
BR(0)\setminus O

(q  - \beta \chi B)| uig| 2 dx+ k2
\int 
BR(0)\cap O

(q  - \beta \chi B)| uig| 2 dx

\geq  - k2(\| q\| L\infty (\BbbR d) + | \beta | )
\int 
BR(0)\setminus O

| uig| 2 dx+ k2qmin,E

\int 
E

| uig| 2 dx .

However, this contradicts Theorem 4.1 with B = E, D = BR(0)\setminus O, and q = 0, which
guarantees the existence of a sequence (gm)m\in \BbbN \subseteq V \bot with\int 

E

| uigm | 2 dx\rightarrow \infty and

\int 
BR(0)\setminus O

| uigm | 2 dx\rightarrow 0 as m\rightarrow \infty .

Consequently, Re(Fq) \not \leq fin \beta TB for all \beta \in \BbbR .
On the other hand, if q| O \leq 0 and q| E \leq qmax,E < 0, and if \alpha TB \leq fin Re(Fq) for

some \alpha \in \BbbR , then the monotonicity relation (3.3) in Corollary 3.4 with q1 = 0 and
q2 = q shows that there exists a finite dimensional subspace V \subseteq L2(Sd - 1) such that,
for any g \in V \bot ,

0 \leq 
\int 
Sd - 1

g(Re(Fq)g  - \alpha TBg) ds \leq k2
\int 
BR(0)

(q| uq,g| 2  - \alpha \chi B | uig| 2) dx

= k2
\int 
BR(0)\setminus O

(q| uq,g| 2  - \alpha \chi B | uig| 2) dx+ k2
\int 
BR(0)\cap O

(q| uq,g| 2  - \alpha \chi B | uig| 2) dx

\leq k2qmax

\int 
BR(0)\setminus O

| uq,g| 2 dx+ k2| \alpha | 
\int 
BR(0)\setminus O

| uig| 2 dx+ k2qmax,E

\int 
E

| uq,g| 2 dx .

Applying Theorem 4.5 with D = BR(0) \setminus O, q1 = 0, and q2 = q we find that there
exists a constant C > 0 such that

0 \leq k2(Cqmax + | \alpha | )
\int 
BR(0)\setminus O

| uig| 2 dx+ k2Cqmax,E

\int 
E

| uig| 2 dx .

However, since qmax,E < 0, this contradicts Theorem 4.1 with B = E, D = BR(0)\setminus O,
and q = 0, which guarantees the existence of a sequence (gm)m\in \BbbN \subseteq V \bot with\int 

E

| uigm | 2 dx\rightarrow \infty and

\int 
BR(0)\setminus O

| uigm | 2 dx\rightarrow 0 as m\rightarrow \infty .

Consequently, \alpha TB \not \leq fin Re(Fq) for all \alpha \in \BbbR , which ends the proof of part (b).

6. Numerical examples. In the following we discuss two numerical examples
for the two-dimensional sign definite case to illustrate the theoretical results developed
in Theorems 5.1 and 5.2. The algorithm suggested below is preliminary and does not
immediately extend to the indefinite case considered in Theorem 5.3.

We assume that far field observations u\infty (\widehat xl; \theta m) are available for N equidistant
observation and incident directions

(6.1) \widehat xl, \theta m \in \{ (cos\phi n, sin\phi n) \in S1 | \phi n = (n - 1)2\pi /N , n = 0, . . . , N  - 1\} ,
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1 \leq l,m \leq N . Accordingly, the matrix

(6.2) \bfitF q =
2\pi 

N
[u\infty (\widehat xl; \theta m)]1\leq l,m\leq N \in \BbbC N\times N

approximates the far field operator Fq from (2.6). If the support of the contrast
function q, i.e., of the scattering objects, is contained in the ball BR(0) for some R > 0,
then it is appropriate to choose

(6.3) N \gtrsim 2kR,

where as before k denotes the wave number, to fully resolve the relevant information
contained in the far field patterns (see, e.g., [15]).

We consider an equidistant grid on the region of interest

(6.4) [ - R,R]2 =

J\bigcup 
j=1

Pj , R > 0 ,

with quadratic pixels Pj = zj+[ - h
2 ,

h
2 ]

2, 1 \leq j \leq J , where zj \in \BbbR 2 denotes the center
of Pj and h is its side length. In this case a short computation shows that for each
pixel Pj the operator TPj

from (5.1) is approximated by the matrix

\bfitT Pj =
2\pi 

N

\Bigl[ 
(kh)2eikzj \cdot (\theta m - \theta l) sinc

\Bigl( kh
2
(\theta m  - \theta l)1

\Bigr) 
sinc

\Bigl( kh
2
(\theta m  - \theta l)2

\Bigr) \Bigr] 
1\leq l,m\leq N

\in \BbbC N\times N .

Therewith, we compute the eigenvalues \lambda 
(j)
1 , . . . , \lambda 

(j)
N \in \BbbR of the self-adjoint matrix

(6.5) \bfitA Pj
= sign(q)(Re(\bfitF q) - \alpha \bfitT Pj

) , 1 \leq j \leq J .

For numerical stabilization, we discard those eigenvalues whose absolute values
are smaller than some threshold. This number depends on the quality of the data. If
there are good reasons to believe that \bfitA Pj

is known up to a perturbation of size \delta > 0
(with respect to the spectral norm), then we can only trust in those eigenvalues with
magnitude larger than \delta (see, e.g., [14, Thm. 7.2.2]). To obtain a reasonable estimate
for \delta , we use the magnitude of the nonunitary part of \bfitS q := (\bfitI N + i/(4\pi )\bfitF q); i.e. we
take \delta = \| \bfitS \ast 

q\bfitS q  - \bfitI N\| 2, since this quantity should be zero for exact data and be of
the order of the data error, otherwise.

Assuming that the contrast function q is either larger or smaller than zero a.e.
in supp(q), and that the parameter \alpha \in \BbbR satisfies the conditions in part (a) of
Theorems 5.1 or 5.2, respectively, we then simply count for each pixel Pj the number
of negative eigenvalues of \bfitA Pj

, and define the indicator function I\alpha : [ - R,R]2 \rightarrow \BbbN ,

(6.6) I\alpha (x) = \#\{ \lambda (j)n | \lambda (j)n <  - \delta , 1 \leq n \leq N\} if x \in Pj .

Theorems 5.1 and 5.2 suggest that I\alpha is larger on pixels Pj that do not intersect the
support supp(q) of the scattering object than on pixels Pj contained in supp(q).

Example 6.1. We consider two penetrable scatterers, a kite and an ellipse, with
positive constant contrast functions q = 1 (kite) and q = 2 (ellipse) as sketched in
Figure 6.1 (dashed lines), and simulate the corresponding far field matrix \bfitF q \in \BbbC 64\times 64

for N = 64 observation and incident directions as in (6.1) using a Nystr\"om method for
a boundary integral formulation of the scattering problem with three different wave
numbers k = 1, 2, and k = 5.
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Fig. 6.1. Scatterers with positive contrast functions: Visualization of the indicator function
I\alpha for three different parameters \alpha = 0.01, 0.1, and \alpha = 1 (left to right) and three different wave
numbers k = 1, 2, and k = 5 (top down). Exact shape of the scatterers is shown as dashed lines.

In Figure 6.1, we show color coded plots of the indicator function I\alpha from (6.6)
with threshold parameter \delta = 10 - 14 (i.e., the number of negative eigenvalues smaller
than  - \delta =  - 10 - 14 of the matrix \bfitA Pj from (6.5) on each pixel Pj) in the region of
interest [ - 5, 5]2 \subseteq \BbbR 2 for three different parameters \alpha = 0.01, 0.1, and \alpha = 1 (left
to right) and three different wave numbers k = 1, 2, and k = 5 (top down). The
equidistant rectangular sampling grid on the region of interest from (6.4) consists
of 100 pixels in each direction.

Overall, the number of negative eigenvalues of the matrix \bfitA Pj
increases with

increasing wave number, and it is larger on pixels Pj sufficiently far away from the
support of the scatterers than on pixels Pj inside, as suggested by Theorems 5.1
and 5.2. The lower value always coincides with the number of negative eigenvalues
of the real part Re(\bfitF q) of the far field matrix from (6.2) that are smaller than the
threshold  - \delta . The number of eigenvalues of \bfitA Pj

, j = 1, . . . , J , whose absolute values
are larger than \delta is approximately (on average) 25 (for k = 1), 36 (for k = 2), and 62
(for k = 5), independent of \alpha .

If the parameter \alpha is suitably chosen, depending on the wave number, then the
lowest level set of the indicator function I\alpha nicely approximates the support of the
two scatterers. \square 

Example 6.2. In the second example, we consider three penetrable scatterers, a
kite, an ellipse and a nut-shaped scatterer, with negative constant contrasts q =  - 0.8



2554 ROLAND GRIESMAIER AND BASTIAN HARRACH

-10 0 10
-10

-5

0

5

10

0

1

2

3

4

-10 0 10
-10

-5

0

5

10

0

1

2

3

4

5

-10 0 10
-10

-5

0

5

10

0

1

2

3

4

5

-10 0 10
-10

-5

0

5

10

0

1

2

3

4

5

6

-10 0 10
-10

-5

0

5

10

0

1

2

3

4

5

6

7

-10 0 10
-10

-5

0

5

10

0

1

2

3

4

5

6

7

-10 0 10
-10

-5

0

5

10

10

11

12

13

14

15

16

17

18

19

20

21

-10 0 10
-10

-5

0

5

10

10

11

12

13

14

15

16

17

18

19

20

21

-10 0 10
-10

-5

0

5

10

10

11

12

13

14

15

16

17

18

19

20

21

Fig. 6.2. Scatterers with negative contrast functions: Visualization of the indicator function
I\alpha for three different parameters \alpha =  - 0.001, - 0.01, and \alpha =  - 0.1 (left to right) and three different
wave numbers k = 1, 2, and k = 5 (top down). Exact shape of the scatterers is shown as dashed
lines.

(kite), q =  - 0.4 (nut), and q =  - 0.2 (ellipse) as sketched in Figure 6.2 (dashed
lines) and simulate the corresponding far field matrix \bfitF q \in \BbbC 128\times 128 for N = 128
observation and incident directions for three different wave numbers k = 1, 2, and
k = 5. We increase the number of discretization points because the diameter of the
support of this configuration of scattering objects is roughly twice as large as in the
previous example (i.e., to fulfill the sampling condition (6.3)).

In Figure 6.1, we show color coded plots of the indicator function I\alpha from (6.6)
with threshold parameter \delta = 10 - 14 in the region of interest [ - 10, 10]2 \subseteq \BbbR 2 for
three different parameters \alpha =  - 0.001, - 0.01, and \alpha =  - 0.1 (left to right) and three
different wave numbers k = 1, 2, and k = 5 (top down). The equidistant rectangular
sampling grid on the region of interest from (6.4) on this region of interest consists of
100 pixels in each direction.

Again, the number of negative eigenvalues of the matrix \bfitA Pj increases with in-
creasing wave number, and it is larger on pixels Pj sufficiently far away from the
support of the scatterers than on pixels Pj inside, in compliance with Theorems 5.1
and 5.2. The lower value always coincides with the number of positive eigenvalues
of the matrix Re(\bfitF q) from (6.2) that are larger than the threshold \delta = 10 - 14. The
number of eigenvalues of \bfitA Pj

, j = 1, . . . , J , whose absolute values are larger than \delta 
is approximately (on average) 39 (for k = 1), 60 (for k = 2), and 115 (for k = 5),
independent of \alpha .
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If the parameter \alpha is suitably chosen, depending on the wave number, then the
support of the indicator function I\alpha approximates the support of the three scatterers
rather well. \square 

An efficient and suitably regularized numerical implementation of the theoretical
results developed in Theorems 5.1--5.3 is beyond the scope of this article, and the
preliminary algorithm discussed in this section cannot be considered competitive when
compared against state-of-the-art implementations of linear sampling or factorization
methods. The numerical results in the Examples 6.1 and 6.2 have been obtained for
highly accurate simulated far field data. Further numerical tests showed that the
algorithm is rather sensitive to noise in the data.

Conclusions. We have derived new monotonicity relations for the far field oper-
ator for the inverse medium scattering problem with compactly supported scattering
objects, and we used them to provide novel monotonicity tests to determine the sup-
port of unknown scattering objects from far field observations of scattered waves
corresponding to infinitely many plane wave incident fields. Along the way we have
shown the existence of localized wave functions that have arbitrarily large norm in
some prescribed region while having arbitrarily small norm in some other prescribed
region.

When compared to traditional qualitative reconstructions methods, advantages of
these new characterizations are that they apply to indefinite scattering configurations.
Moreover, these characterizations are independent of transmission eigenvalues. How-
ever, although we presented some preliminary numerical examples for the sign definite
case, a stable numerical implementation of these monotonicity tests still needs to be
developed.
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