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The monotonicity method for the inverse elastic scattering on unbounded
domains *

Bastian Harrach® and Jianli Xiang *

Abstract. We discuss a time-harmonic inverse scattering problem for the Navier equation with compactly
supported penetrable and possibly inhomogeneous scattering objects in an unbounded homogeneous
background medium, and we develop a monotonicity relation for the far field operator that maps
superpositions of incident plane waves to the far field patterns of the corresponding scattered waves.
Combining the monotonicity relation with the method of localized potentials, we extend the so called
monotonicity method to characterize the support of inhomogeneities in the Lamé parameters and
the density in terms of the far field operator.

Key words. Monotonicity method, inverse scattering, Navier equation, far field operator, inhomogeneous medi-
um
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1. Introduction. The wave scattering problem is an important research direction in the
inverse problem of partial differential equations, which has been widely used in engineering
fields such as nondestructive testing, environmental science, geophysical exploration and med-
ical diagnosis. While the well-posedness of the direct scattering problem has been thoroughly
investigated through the integral equation and variational methods, the inverse problem has
also attracted a wide variety of extensive and intensive investigations [5].

The reconstruction of the position and shape of unknown scatterers from the far field
data is a fundamental but severely ill-posed problem in inverse scattering problems. In the
past two decades, efficient qualitative reconstruction algorithms have received widespread
attention, and there are two representative non-iterative methods: decomposition methods and
sampling methods. Decomposition methods include the dual space method [5] and the point
source method [23], and sampling methods include the singular sources method [24], the probe
method [20], the linear sampling method [4] and the factorization method [21], whose main
idea is to construct a certification associated with measurement data to detect the targeted
object. Among qualitative methods for shape reconstruction, the monotonicity method has
been recently introduced by Harrach in [18] for the electrical impedance tomography. It is
formulated in terms of far field operators that map superpositions of incident plane waves,
which are being scattered at the unknown scattering objects, to the far field patterns of the
corresponding scattered waves. Comparing with the factorization method [21], the general
theorem of the monotonicity method does not assume that the real part of the middle operator
of the far field operator has a decomposition into a positive coercive operator and a compact
operator, which means that the monotonicity method generates reconstruction schemes under
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weaker a priori assumptions for unknown targets [14].

In [22], Lakshtanov and Lechleiter have generalized the factorization method for inverse
medium scattering using a particular factorization of the difference of two far field operators
and obtained a monotonicity principle which yields a simple algorithm to compute upper and
lower bounds for boundary values. Therefore, the monotonicity method is closely related
to the factorization method. Very recently, the monotonicity analysis from [18] has been
extended to inverse coefficient problems for the Helmholtz equation in a bounded domain for
fixed nonresonance frequency and real-valued scattering coefficient function [16, 17], where the
authors have shown a monotonicity relation between the scattering coefficient and the local
Neumann-to-Dirichlet operator. Combining this with the method of localized potentials, they
have derived a constructive monotonicity based characterization of scatterers from partial
boundary data [16] and improved the bounds for the space dimension [17]. Then, Griesmaier
and Harrach [15] have made a generalization of these results to the inverse medium scattering
problem on unbounded domains with plane wave incident fields and far field observations of
the scattered waves. Furthermore, the monotonicity method has also been extended to the
inverse mixed obstacle scattering [1], an inverse Dirichlet crack detection [6], an open periodic
waveguide [13], a closed cylindrical waveguide [3] and the references therein [2, 14, 19].

Concerning the isotropic linear elasticity in the stationary case, the monotonicity result
between the Lamé parameters and the Neumann-to-Dirichlet operator and the existence of
localized potentials has been presented in [10], which has been applied to detect and recon-
struct inclusions based on the standard as well as linearized monotonicity tests in [8, 9, 12]. To
make a significant improvement over standard regularization techniques, Eberle and Harrach
have dealed with the same problem by the monotonicity-based regularization method [7]. For
the non-stationary or time harmonic case of the Navier equation, the paper [11] has extended
the monotonicity method for inclusion detection and shown how to determine certain types
of inhomogeneities in the Lamé parameters and the density. The main contribution of the
present work is the generalization of the monotonicity method to the time-harmonic inverse
elastic scattering problem on unbounded domains. Our approach relies on the monotonicity
of the far field operator with respect to the Lamé parameters as well as the density and the
techniques of localized potentials.

The outline of this article is as follows. After briefly introducing the mathematical setting
of the scattering problem in Section 2, we develop the monotonicity relation for the far field
operator in Section 3. In Section 4 we discuss the existence of localized wave functions for
the Navier equation in unbounded domains, and we use them to provide a converse of the
monotonicity relation from Section 3. In Section 5 we establish rigorous characterizations of
the support of scattering objects in terms of the far field operator.

2. Problem formulation. In this paper, we consider the inverse medium scattering prob-
lem of time-harmonic elastic waves and deal with the shape reconstruction problem, which is
also known as the detection problem. Assume that the propagation of time-harmonic waves
is in an isotropic non-absorbing and inhomogeneous elastic medium with the density function
p and Lamé constants p and A satisfying 4 > 0, p+ A > 0 in R2. We are specifically in-
terested in determining the region where the material properties A\, p or p differ from some
known constant background values Ag, g or pg, when given a set of far field measurements
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in the form of the far field operator. This problem corresponds physically to determining the
inhomogeneous regions in the body €2 from far field measurements. Here we assume that Ag,
1o, po > 0 are some known constants, and there is a jump in the material parameters

>\:)‘0+XD1¢17 Dng,
p= o+ XDy%2, D2 €K,
p:pO_Xng):Sa D3 QQ,

where xp, (j = 1,2,3) are the characteristic functions of the sets D; and +;|p, € LY(D;) :=
{1 € L*(Dj), essinfp;1) > 0}, so that there is a jump in the material parameters at the
boundaries 0D; of the regions where the material parameters differ from the background
values.

The scattering problem we are dealing with is modeled by the following Navier equation:

(2.1) Af e+ pwtue =0, in R® (c:=(\p,p)).

The circular frequency w > 0 and At\,u denotes the Lamé operator pA + (u+ A\)V(V-). Here,
ue = u™ + us¢ is the total displacement field, which is a superposition of the given incident
plane wave u'™ and the scattered wave uS°. By the Helmholtz decomposition theorem, the
scattered field u° can be decomposed as u® = u, + us, where u, denotes the compressional
wave and us denotes the shear wave, k, is the compressional wave number and k; is the shear
wave number. They are given by the following forms respectively:

1 . 1 — .
Up = Up(\, i, p) 1= 2 V(V - ulf), ug 1= us(A, 1, p) 1= ye) curl curl «}°,
p s
p p
k = k A = ks = ks )\7 9 = )
with
8U1 811,2 n 8’11,2 8U1 — 0 0 T T
U=+ lu = U= = l=+—,—5 = )
V-u e +8x2’ curlu = V—-u e cur 955" D , o u = [ug,ug]

And wuy, u, satisfy Au, + kgup = 0 and Aug + k2us = 0. In addition, the Kupradze radiation
condition is required to the scattered field u°, i.e.

. aup . . 3us .
(2.2) rlggo \/;<W - kaoup) =0, 1}520 \/;(W - sto“s) =0, r=lx|
The radiation condition (2.2) is assumed to hold in all directions & = z/|z| € S := {z €

R2, |z| = 1} and ky, := k¢(Xo, fto, po) (t = p,s). Throughout this paper, the solution to the
Navier equation (2.1) satisfying the Kupradze radiation condition (2.2) is called the radiating
solution. It is well known that the radiating solution to the Navier equation has the following
asymptotic expansions:
eikpor eikSOr‘ 1
sc _ 00 (AN A4 0o\ 4L
ull(z) = us’ () + 7 u(z)z +O(r3/2)’ as r — oo,
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22 JikpaT 22 Jiksyr
w* e'"Po 1w= e 1
T sc — 00 (4 4 oo s) a1 O(*), )
Al () PR uy” (%)% + he V7 u(2)z— + as r — 0o

The stress vector T) ,u is defined by

0
Ty u:= 2”677; +AvV.u— ,LWLVL -,

where v denotes the unit exterior normal vector and v is obtained by rotating v anticlockwise

by /2. The functions u,°, ug® are known as compressional and shear far-field patterns of ug°,

respectively. We will denote the pair of far-field patterns (up°(2), us°(2)) of the corresponding
scattered field by u2°(2), i.e.

Next we introduce the elastic Herglotz wave function with density g = (gp, gs) € [L*(S)]?
defined by

23) () = e/ / {\/lzoeikpod'xdgp(d)+ \/]Z‘)eiksod'degs(d)}ds(d).
S

The Hilbert space [L?(S)]? in this paper is equipped with the inner product:
w — w —
(g,h) = k/gphpds + T /gshsds, g,h € [L*(S)]2.
p JS s JS

For the special case of a plane wave incident field u™(z,d) = de*ro™? 4 dletso™d e
explicitly indicate the dependence on the incident direction d € S by a second argument and
accordingly we write ui°(x, d), uc(z, d) and u2°(z, d) for the corresponding scattered field, total
field, and far field pattern of the problem (2.1)-(2.2), respectively. Define the elastic far-field
operator F.g : [L2(S)]2 — [L%(S))? (c := (A, i1, p)) by

(24)  (Fg)(@) =7/ /S {ﬁu?(@d)dgp(d) + Eu?(s@d)digs(d)} ds(d),

By linearity, for any given function g € [L?(S)]?, the solution to the direct scattering
problem (2.1)-(2.2) with incident field of the elastic Herglotz wave function v, defined by
(2.3) is

(2.5) Ueg(T) = /Suc(m,d)g(d)ds(d), r € R?,

and the corresponding scattered field

Ugg(T) = /S wC(z,d)g(d)ds(d), x€ R
4



139 has the far field pattern ugy, satisfying ugy = Feg.
140 Finally, we introduce the fundamental solution of the Navier equation (2.1) in R? space
141 which is given by

1

142 Le(z,y) = m

1
HG (sl =y + 5 V0V (G (sl — y]) = Hg (ke = )

143 for x,y € R? and z # y, where H(()l)(-) is the Hankel function of the first kind of order zero
144 and [ is the identity matrix. In addition, the subscript x is used to denote differentiation with
115 respect to the corresponding variable. The far field patterns I')° and I'° are given by

ir
1 ea

; \/8mks

1 ei;r
A+2u /87rk

147 where J(z) = B |2 for any z € R?, 2 # 0.

146 X(Z,y) = e MTVI(E),  TR(@,y) = e TV (@),

148 3. A monotonicity relation for the far field operator. In this section we derive some
149 monotonicity relations between the parameters (A, i, p) and the far field operator F' that are
150 of fundamental importance in justifying monotonicity based shape reconstruction, and will be
151 needed in the later sections.

152 Lemma 3.1. Let A\, i, p € LL(R?), and let Bg(O) be a ball containing . Then

153 (3.1) (9, Feg) = (Tovg us” TouicgJr vg)ds.

1
V8rw JaBr(0)

154 If Nj, py, pj € L (R?), then for any j,1 € {1,2} we have
55 (32) | o (U5 Ty T i) = 2l g, Fag).
R

156 Proof. The general form of E) ,(u,v) is given by

. o 6u1 31}1 8u2 61;2 8u1 8’(}1 8u2 8112

o By, v) =(2p+A) <3x1 ory t ory 0o 3x2> <3m2 Oxo * o ory axl)
8U1 (%2 GUQ 87}1 6u1 81)2 8u2 81)1

)\(axl Oxs t oy Ora 8:61) <8x2 ox T ox1 8:132)

160 By Betti Representation Theorem, we have
T J—
o gt = [ [Tl )] T @) - o) T )]ds), @ e BRI
9BRr(O)
162 with

9
163 Tyu := Ty, ;0 2Mj£ F Ay V-tV u, A=A Bji= By

J Ajiskbs 3ok
5
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1
T;(2,y) = Lo, (2,) = ——H (ks |2 — y!)I+7VTV( Dk, |z —yl) = H (ks |2 = 9])).
41
e (o s D ko o=k (s s 0:) i= Pj ke — ko( s s 0:) 1= Pj
C] _( juujvp])7 Pj p( JaM]apj)'_w 2H]+>\J7 Sj T s( ]7,“/])p]) =w ,Ug

From the asymptotic behavior of the Hankel function Hél)(-) and the far field patterns I')°
I'2°, it follows that the far field patterns of ui?f(x) are given by

e/t k2 - |
oo (1 J(T. —ikpyd-y sc,+ — J(d —zkpod-yT sc,+ d ,
== o (@D T ) = T 0 Ty () s
[e'S) 1 z7r/4 kQ 1 —iks dyl T, sc,+ 1 —iksyd-y sc,+
u®(d)d* = {[J(d) Toe~*e0®) TSt (y) — J(d) e~ Foo v Tousts (y)}ds

\/87rkso w? JoBr(0)
where J(d)* = I — J(d). Thus,

w — w — 1 T
,Feg) = / ugeds(d / uXds = Tovg ey — Tous usst v, )ds.
<g cg> k;po S gp D So S gsUg \/871'7(4) 0B (O) ( g C 9 ¢,9 9)

Let r > R, then ug € | H (R?)]? solve (for ¢j := (A}, ij, pj))

oAU, + (1o + Ao)V (VU + powuS, =0 in B.(0)\Bg(0),
and applying Betti’s formula we obtain that

(3.3) /aB( (e Tousey — wg Tou )ds:/aB R ool Tyuley — uig Toud)ds
r R

Using the radiation condition (2.2) and the far field expansion we find that, as r — oo,

(3.4) /aB (0)( oy T ousg — uly T busT ) ds = —2iw(Fe g, Fu,g).
Substituting (3.4) into (3.3) and letting r — oo finally gives (3.2). [ ]

The next tool we will use to prove the monotonicity relation for the far field operator is
the following integral identity.

Lemma 3.2. If A, pj, pj € LL(R?) and Bgr(O) is a ball containing Q. Then, for any
g € [L2(S)]?, it holds that

(3.5) V8w ((Fe19,9) — (9, Fey9)) — 2iw(Fe, g, Fe,9)

:/ (UC2,g - U017g)(T2UCQ7g - Tlucl,g)ds
0BRr(0)
2 2 — —
+ / p2wW |u62,g - u61,g| - E2(u017g = Ucg,g) Uey,g — ch,g)dy
BRr(0)

+ / E2(ﬂ01,ga Uq,g) - b (ﬂq,g, Uq,g) +(p1 — P2)W2’u01,g|2dy-
BRr(0)
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Proof. The identity (3.1) and (3.2) (with j = 1 and [ = 2 ) immediately imply that

V8w (<Fc1gvg> -

/ (
BR(C )

Cl g

sc ,+
Cl 9

<g> Fc2g>) -

+
— Toui?; vg)ds — / (Tovg Ugsy g — Touey g vg)d
OBR(0)

Ty Ucy g

2iw(Fe, g, Feyg)

Sl ui;; — uig—g’_ ToustT)ds

C1,9

= Tset
— Ucy,g Toui(-i ;r)ds - / (Tng “02,9 Tgui;g Ug)ds
9dBRr(0)

:/ (ug, 1,9 ToUcy,g — Ucy,g T1U, g)ds - / (Vg ToUcy,g — Ucy,g Tovg)ds
0BRr(0) OBR(0)
— / (Tovg tcy,g — Toticy g vg)ds + / (Tovg vg — Tovg vg)ds
OBRr(0) OBR(0O)
:/BBR(O)( c1,9 TQUCQ»Q Ucy,g Tlu;l,g)ds’
where we have used the transmission boundary conditions
Uy + + Vg = U, 4, TousC + Tovg = Tjugjy on O0BRr(O).

For notational simplicity, we omit the superscript, that is,

/ ( Ue, g T2u02 9
0BRr(0)

_/ (66279 - 66179)(T2u6279 - Tlucu])ds
9BRr(O)

uc_z,g Uey g)ds = / (Uer,g Tolcy,g — ey gT1Uey,g)ds
9BR(0)

+ / (Uey,gToUcy,g = Ucy,gToUcy,g + Ucy g ToUcy,g — Uey g T1Uey g)ds.
0BRr(O)
Applying Betti’s formula yields
/ (u61 79T2ﬂ02,g - 562,9T2u02,9 + U, ,QTQUC%Q — Uey g Tlucl ,g)ds
0BRr(0)
:/ E2(UC1,9 = Ucy,g, UC%Q) + Eo (561,97 Ueg,g — UCLQ) + E2(ﬂ61797 uq,g) - £ (601797 uq,g)dy
BRr(0)
2 _ _ _ _
+w / P2 Ucy,glhcy,g — P2 Ucy,glcy,g — P2 Ucy,glcy,g T P1 uchguchgdy
Br(O

_ 2 2 _ _
—/ P2w[Uey g — Uey g|” — Ea(ticy,g — Ucy,g, Uey,g — Ucy,g)dY
BRr(0)

2dy,

+/ E2(ﬂc:l,ga Uq,g) - E (ﬂchgvuchg) + (p1 — 92)‘*’2‘“61,9
BRr(0)

7



215 Consequently, we obtain that

216 V87Tw(<Fclg’g>_<gaFczg>)_27;(")<FC197F02.9>
217 :/ (Ucmg - Uchg)(TQuC%Q - Tlucl,g)ds
OBRr(0)

218 + / p2w2|u62,g - u61,g|2 - E2(u017g — Ucy,gy Ucy,g — ﬂczyg)dy

Br(0)
219 + / E2(ﬂ01,97 uCl:g) — kB (ﬂ01797u0179) + (pl - p2)w2’u0179 Qdy‘ u
220 Br(0)
221 Lemma 3.3 (Theorem 2 in [25]). The scattering matriz given by S. = I + i\/5-F¢ is a
222 unitary operator, i.e. S;S. = S.5; = 1.
223 Remark 3.4. Since the adjoint of the scattering operator S, is given by

224 Se, =11y /%Fjl,

225 we find that

226 Sty (Fey = Foy) = Fey = Foy —iy| 5~ (F& Foy = FL Fuy)

227 and accordingly

28 R (S2 (Foy — Foy)) = R (FCQ — F,, —iy /;TF;;FCQ) .

229 Therefore the real part of the first two terms on the left-hand side of (3.5) fulfills

230 R (v 87w ((Fe, 9, 9) — (9, Fep9)) — 2iw (Fe, g, Fc29>>
— Cfw

231 =—V8rw N <<ga chg> - <F01g7g> +1 % <Fc1ga F029>>

Cfw

= — VB R ((Pag) — (Frg.9) — 1y [ 2 (a9, Fag) )

333 =— V8w R(S; (Fo, — F.) 9,9) .

235 That is,

(3.6)
236 V8rw RSk (Foy — Fey) 9,9) +/ o Exy i jio—pi (Tey g Ueyg) + (1 — p2)w?|ue, o dy
Br
237 :/ Es (ucl»g = Ucy,gy Uey,g — UC%Q) - p2w2|u02,9 - u61,9|2dy
Br(0)
238 - R / (ﬂ@,g - ﬂclyg)(T2u02,g - Tluchg)ds .
239 9Br(0)

8
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264

Next we consider the right-hand side of (3.6), and we show that it is nonnegative if
g belongs to the complement of a certain finite dimensional subspace V C [L%(S)]>. To
that end we denote by J : [H(Bg(0))]?> — [L*(Bg(0))]? the compact embedding for any
ball Bg(O) containing €, and accordingly we define, for any p € LP(R?), the operator
K : [H(Br(O))? — [H(Br(O))]? by

Kv:= J"Juv,
and K, : [H'(B(O))]? — [H (Ba(0))]? by
Kyv = pJ*Jv.

The special identity operator I , : [H'(Br(0))]* — [H'(Br(0))]? is defined by

<I)\,//an>[H1(BR(O))}2 = / EA,M(,L“@) + vwdy.
Br(0)

Then K and K, are compact self-adjoint linear operators, and, for any v € [H!(Bg(0))]?,

(I — K — wQKp)v,v>[H1(BR(O))]z = / Eyu(v,7) — pw?|v|2dy.
Br(0)

For 0 < ¢ < R we denote by N, : [H(Bgr(0))]? — [L*(0Br(0))]? the bounded linear
operator that maps v € [H'(Bg(0))]? to the stress vector Tov. on dBg(O) of the radiating
solution to the exterior boundary value problem

Ajve + pow?ve =0 inR®\Bp_.(0), v.=v ondBr_.(0),

and A : [L?(0Bg(0)))? — [L?(0BRr(0))])? denotes the compact exterior Neumann-to-Dirichlet
operator that maps v € [L2(0Br(0))]? to the trace wlpp,(0) Of the radiating solution to

Ajw + poww =0  in RA\Bg(0), Tow =1 on dBr(O).
Then,
Nev =Tovlapro) and  ANv = v|ap,0);

and accordingly

<N:AN6U>U>[H1(BR(O))]2 = <AN€U,NE’U>[L2(33R(O))]2 = / v To@ ds
9BRr(O)

for any v € [H*(Bg(0))]? that can be extended to a radiating solution of the Navier equation

Ajv + pow?v =0 in R:\Bg_.(0).
9
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Lemma 3.5. Let Aj, pj, p;j € LL(R?) and let Bg(O) be a ball containing Q. Then there
exists a finite dimensional subspace V C [L*(S)]? such that

— — 2 2
/ Eo(tcy,g — Ucy gy Uey,g — Ucy,g) — P2w|Uey,g — Ucy,g| dy
BRr(0)

L / (Tcy,g — Uey,g)(ToUcy,g — Thte, g)ds | >0,  forall g € Vvt
0BRr(0)
Proof. Let € > 0 be sufficiently small, so that Q C Bgr_.(O). Then

— — 2 2
/ E2(“61,g = Ucg,g) Uey,g — “0279) — p2w ‘Ucz,g - UCLQ‘ dy
BRr(0)

- R (/ (HCQ,Q - ﬂ61,g)(T2U62,g - Tluq,g)dS)
0BRr(0)

:/ Eo(w, W) — paw?|w|?dy — RN / w Tow ds
Br(0) 9BRr(0)

:<(I)\27‘u2 - K — w2Kp2 —R(NIAN.))w, w>[H1(BR(O))]2
where w|p,,(0) 1= Ueyg — Uerg and wlpp,(0) = Ueyy — Uy g -
Let W be the sum of eigenspaces of the compact self-adjoint operator K + w2Kp2 +
Re(N}AN;) associated to eigenvalues larger than 1. Then W is finite dimensional and

<(I>\27M2 - K — w2Kp2 - %(N:ANE))IU’w>[H1(BR(O))]2 >0 for all w € WL.

For j = 1,2 we denote by S; : [L%(S)]? — [H(Bg(0))]? the bounded linear operator that maps
g € [L*(S)]? to the restriction of the scattered field ug g on Br(O). Then w|g,0) = (S2—S1)g.
Since, for any g € [L?(S)]?,

(Sy —S1)ge W+ if and only if g€ ((So—S1)* W),

and of course dim((S2—S1)*W) < dim(W) < oo, choosing V' := (S2 —S1)*W ends the proof.l

Applying the above Lemma 3.5 in the equality (3.6) yields the main monotonicity inequal-
ities (3.7)-(3.8) we will be using.

Theorem 3.6. Let Aj, pj, pj € LS’FO(RZ). Then there exists a finite dimensional subspace
V C [L3(S)]? such that

(3.7) V8mw 8%<S:1 (F62 - Fm)ga g) > /R2 EM—AQ,m—uz (ﬂcl,gv Uq,g) + (p2 — pl)WQ‘UCI,Q‘Qdy)

for all g € V. In particular,

(3.8) A1 > A2, p1 > 2, p2 > p1 implies  R(S7 Fe,) >an R(SE, Fry )
10



292 Remark 3.7. Since the scattering operators S., and S, are unitary, we find that

293 Sk (Fey — Foy) =iy —%Sjl(Scl —Se,) =iy —25 (I =Sz, Se,)
w
2T, " 2T, " . "
294 =17 ;(SCQSCI - I) N USCQ(SCI - Scz) = (SCQ(FCZ - Fc1)) :

295

206 Recalling that the eigenvalues of a compact linear operator and of its adjoint are complex
297 conjugates of each other, we conclude that the spectra of (S}, (Fe, — F.,)) and R(S}, (F, —
298 Fp,)) coincide. Consequently, the monotonicity relations (3.7)-(3.8) remain true if we replace
299 Sz by Sg, in these formulas.

300 Note that by interchanging A1, p1, p1 and g, p2, p2, except for S (see Remark 3.7), we
301 may restate Theorem 3.6 as follows.

302 Corollary 3.8. Let \j, pj, pj € Lf(]R@). Then there ezists a finite dimensional subspace
303V C [L2(S)]? such that

304 (3.9) V8w R(SE (Fe, — Fey)g,9) < /R2 Exy gy —pn Wy g, Uey ) + (P2 — PI)WQWCz,g‘QdZ/,

305 for all g € VL.

306 4. Localized potentials for the Navier equation. In this section we establish the existence
307 of localized wave functions that have arbitrarily large norm on some prescribed region B C R?
308 while at the same time having arbitrarily small norm in a different region D C R?, assuming
309 that R?\D is connected. These will be utilized to establish a rigorous characterization of
310 the region 2 = supp(A — A\g) U supp(u — po) U supp(p — po) where the material parameters
311 differ from background in terms of the far field operator using the monotonicity relations from
312 Theorem 3.6 and Corollary 3.8 in section 5 below.

313 Lemma 4.1. Suppose that \, u, p € Lf(RQ) and assume that D C R? is open and bounded.
314 We define

315 Lep : [L2(S))? — [HY(D)]?, g ucylp,

316

317 L) [L2S)? = [LAD), g+ ueylp,

318

319 L) [LXS)? — LA(D), g+ V- ucylp,

320

321 Lc‘:% [L2(S)? = [L2(D)?*?, g = Vueylp,

322 where ueg € [HyL,

(R2)]2 is given by (2.5) and Vu := 2 (Vu+ (Vu)"). Then Lep, L((j])j, Lg)j

323 and LS% are linear operators and their dual operator are given by

324 Lop: [H' (D) = [LXO)P,  for Siwg:
11



326 L) 2D = [LAS)?, e Siwis

328 L((f,)j/ : L2(D) — [LA(S))?,  fo > SFwse;
329
330 L) LX) = [LAS)P, fz s Siwge

331 where S. denotes the scattering operator, and wi°® € [LA(S))? (j = 0,1,2,3) is the far field
332 pattern of the radiating solution w; € [HL _(R?)]? to

333 V8mw( fo,v) = / (E)\M(wo,ﬁ) — prwOW) dr — / v Ty ,wo ds,
Br(0) dBr(0)

334

335 V8w fivdr = / (E)w(wl,ﬁ) — prwﬁ) dz — / v Ty wy ds,

- Br(0) Br(0) dBr(0)

337 V8mw foV-vdr = / (E)\”u(’LUQ,@) — prwﬁ) dx — / v Ty we ds,
Br(0) B

r(O) 8BR(0)

339 V8rw fs: Vodz = /

(E>\7M(w3,5) — pw2w3®) dz — / v Ty w3 ds,
Br(0) Br(0)

9BRr(0)

310 for allv € [H*(Bg(0)))? with D C Bgr(O) (the round brackets denote the dual pairing between

2
341 HY(D) and its dual space H*(D)', and A : B = Y a;;bi; for matrices A = (a;;) and
ij=1
312 B = (bij)).
343 Proof. The representation formula for the total field in (2.5) shows that L, p is a Fredholm
311 integral operator with square integrable kernel and therefore linear from [L?(S)]? to [H'(D)]?.
345 Applying Betti’s formula and the representation formula for the far field pattern wg® of
316 the radiating solution wp, we find that, for any g € [L%(S)]? and fo € [H(D))?,
347 V8nw(Le,py, fo) = / (EA’“(%, Ueg) — pw2w70uc7g) dr — / Ue,g Th W0 ds
Br(0) 9BRr(0)
348 :/ (wio T)\”uuc’g — Ucyg TA’#WO) ds
OBRr(0)
349 :/ (Wo T uvg — vg Th u00) ds + / (UTU T ptirg — Uiy T/\,uwiﬂ) ds
9BR(0) 9BR(0) ’ ’
350 =V 8rw(g, wy®) + 2iw(Frg, wy®) = V8w < <I +1 ;Fc> g, w8°>
V 27
383 =V8rw (Seg,wg”) = V8rw (g, 52 wg®) -

That is, L/c, pfo = 5% wg®. The calculations for LS};, LEQg and LS’% are the same, we omit it
here for brevity. The proof is complete. |
12
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5 Lemma 4.2. Suppose that X\, u, p € L‘f(Rz) and let B, D C R? be open and bounded such
356 that R?\(B U D) is connected and BN D = (). Then,

w
ot Ot

- 0) ! ’ 1
RILYL) NR(L.p) = {0} and R(L.p) NR(L.p)=1{0} (£=1,23).
358 Proof. For simplicity, we focus on the case £ = 1 since the proof is similar. Suppose

359 that h € ’R(Lg%/) N R(L;D). Then Lemma 4.1 shows that there exist fp € [L%(B)]?, fp €
360 [HY(D)?, and wp, wp € [HL (R?)]? such that the far field patterns w® and w$ of the
361 radiating solutions to

362 A}‘\’#wB + pw?wp =0 in R®\B and A’;\yuw[) + pw?wp =0 in R2\D
363 satisfy
364 wy = wy = Sch.

365 Rellich’s lemma and unique continuation guarantee that wp = wp in R?\(B U D). Hence we
366 may define w € [H} _(R?)]? by

loc
wp =wp in RQ\(EUﬁ),
367 w = wp in D,

wp in B,

368 and w is the unique radiating solution to

369 Ay w0+ pw?w =0 in R%

70 Thus w = 0 in R?, and since the scattering operator is unitary, this shows that h = S}w™>
71 0.

372 Theorem 4.3. Suppose that A\, u, p € Lf(R2) and let B, D C R? be open and bounded such
373 that R?2\D is connected. If B € D, then for any finite dimensional subspace V C [L%(S)]?

374 there exists a sequence (g%))meN C V2L such that

375 ||uc,g£,?) ||[H1(B)]2 — 0o and Huc,gﬁg) ”[Hl(D)P —0 asm — oo
376

377 Hqugﬂl) ||[L2(B)}2 — o0 and Huc,ggnl) ||[H1(D)]2 — 0 asm — oo;
378

379 |V - U, 4@ |2y — 00 and ||uc7gg) (1 (D)2 = 0 as m — oo;
380

381 HVUC,QSS) H[LQ(B)]2x2 — oo and Hqug) ”[Hl(D)]2 —0 asm— o

(R%)]2 is given by (2.5) with g = g,(;z) (7=0,1,2,3).
13
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394

395

396

397
398

399

100

401
102

Proof. Without loss of generality, we assume that BND = () and R?\(BUD) is connected
(otherwise we replace B by a sufficiently small ball BC B\ D, where D, denotes a sufficiently
small neighborhood of D).

We denote by Py : [L%(S)]? — [L*(S)]? the orthogonal projection on V. Lemma 4.2 shows
that R(L, 5)"R(L, p) = RILYHNR(LL p) = {0} (j = 1,2,3) and that R(L, ), R(LY)) are
infinite dimensional. Using a simple dimensionality argument (Lemma 4.7 in [16]) it follows
that (we just show the case j = 1 for brevity)

R ¢ R +V =R(( Ly Py )):R<<L]§’D>/>.
1%
It then follows from Lemma 4.6 in [16] that there is no constant C' > 0 such that
Len\ |I° 2 2 2
‘ < Py >gH[H1(D)Px[L2(S)]2 - (||L67Dg||[H1(D)]2 " Hpvg||[L2(S)]2>

for all g € [L%(S)]?. Hence, there exists a sequence (ﬁ%))meN C [L?(S))? such that

Setting g( ) ( ) _p g( Jevic [L2(S)]? for any m € N, we finally obtain

2

¢ BgH[L2 B2

L

(1) (1)
— 00 and )LC,ng H[Hl D)Q—i—HPvgm H —0 asm — oo.

H [L2(B)]2 [L2(8)]?

LM g e () ~)
‘ CB m H[L2 B)]2 - ‘ H[Lz B)J2 ‘ LCBH HPng H[L2(S)] — QO as m — 00,
Lepal?| < [ zeng?| ool | P H |
‘ DIm [HY(D)]2 — 7ng (H(D)]? + ” DH Vm as m — oo
Substituting the definitions of operators LS}B and L. p, this ends the proof. [

As an application of Theorem 4.3 we establish a converse of (3.8) in Theorem 3.6.

Theorem 4.4. Suppose that \;, pj, pj € LT(RQ) (7 =1,2) with Q C Br(0). If D C R? is
an unbounded domain such that

A1 > Ao, p1 > g, p2 > p1 a.e in D,
and if B C Br(O) N D is open with
(4.1) Al — 01 > Ao, 1 — 62 > o, p2 — 03 > p1 a.e. in B for some é; > 0,
then
R (Sy Fey) Zfin R(SKFey),

e., the operator R (S;‘1 (Fe, — Fcl)) has infinitely many positive eigenvalues. In particular,
this implies that Fi, # Fv,.

14



410

112
413

414

115
416

118

429

130
431

132
433
434

438

437
138

Proof. We prove the result by contradiction and assume that
(42) R (Szl (F02 - Fcl)) <fin 0.

Using the monotonicity relation (3.7) in Theorem 3.6, we find that there exists a finite dimen-
sional subspace V' C [L?(S)]? such that

(4.3) V87w %<S:1 (Fey — Fey)g,9) > / ©) Exi 2o —ps (ﬂq,g’ UCLQ) + (p2 — pl)w2|u61,g|2dyv
Br

for all g € V4. Combining (4.1), (4.2) and (4.3), we obtain that there exists a finite dimen-
sional subspace V' C [L?(S)]? such that, for any g € V*,

0 >Vv8rw 9%<S;k1 (FC2 - FCI )gvg> > /B ©) E>\1—>\2,M1—u2 (acl,gaucl,g) + (PZ - pl)w2|u01,g|2dy
R

- </ +/ > (E/\l—)\%#l—lm (501,97 Uq,g) + (p2 — Pl)w21U01,g|2) dy
DNBg(0) Br(O)\D

2/ E51752(a017g’u6179) + 03 W2|u017g|2 dz
B

Qdy

+ / _Ex oo (HCLQ? uChg) + (p2 — pl)WQ‘uCLg
Br(O)\D

Z 5min Cl H'LLcth[QHl(B)]2 - / _ Ej\,ﬂ(ﬂcl,gv uClvg) + ﬁw2 ‘uChg‘Qdy
Br(O)\D
> bmin C1 ey gl (my2 — C2 e lE g ,y0p\m)2

where C1, Cy are positive constants, dpyin := min{d;, oz, d3w?}, X = ||)\1||Li°(R2) + [ A2l o (2)
o= llpall e ey + llp2ll e w2y, £ = llp2llee®2) + [lp1llLee (2). However, this contradicts The-

orem 4.3 with D = Bp(O)\D and ¢ = ¢, which guarantees the existence of (gm),,eny © Vi
with

e gl (pyz =00 and  ltey gl g1 (gr0nD) =0 a8 m — oo

Consequently, 3 (S;"1 (Fe, — Fcl)) Zfin 0. =

5. Monotonicity based shape reconstruction. We will consider inhomogeneities in the
material parameters of the following type. Let D1, Dy, D3 C Q and D := D1 U Dy U D3. We
will now assume that A, u, p € LL(R?) are such that

M) = Ao+ xp, (2)Ya(z), YA € LT(Q), ¥a(x) > ma,
(5.1) () = po + X, (2)u(@),  Yu € LT(Q),  Pulx) > mo,

p(x) = po = xDs(@)0p(x), 1y € LF(Q), mz < tp(x) < Ms,
where the constants \g, o, po > 0 and the bounds mq,mo, ms > 0 and pg > Ms. The coef-

ficients A\, i and p model inhomogeneities in an otherwise homogeneous background medium
15
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440
441
442

163
164

465

466

467

468

469
170
171

given by the coefficients A\g, po and pg. In this section, we will give a method to recover
osupp(D) := osupp(xp) (see Section 6 in [11]) from the far field operator, and thus the shape
of the region where the coefficients differ from the background coefficients g, po and po.

Let B C Q be a ball, the test coefficients \?, 1’ and p’ are defined by

N () = o + xB(x)od,
(5.2) 12(x) = po + xB(x)as,
p’(x) = po — xB(x)as,
where a; > 0 (j = 1,2,3) are constants.
Theorem 5.1. Let B C Q and aj > 0 be as in (5.2), and set o = (o, 00, 03). The
following holds:
(1) Assume that B C Dj, for j € I for some 1 C {1,2,3}. Then for all a;j with o;j < mj,
Jjel, andaj =0, j ¢ 1, the operator R (S} (F., — F¢)) has finitely many negative eigenvalues.
(11) If B € osupp(D), then for all o, || # 0, the operator R (S (F., — F.)) has infinitely
many negative eigenvalues.

Where F. is the far field operator for the coefficients in (5.1) and F,, is the far field
operator for the coefficients in (5.2).

Proof. Notice firstly that % (S} (F, — F¢)) is a compact self-adjoint operator.

(i) Assume that B C D; for j € I. Choose 0 < aj < mj for j € I and o; =0 for j ¢ L.
Moreover choose Fi, = F, and F, = F, in Theorem 3.6. According to Theorem 3.6 there
exists a finite dimensional subspace V' C [L%(S)]?, such that if g € V1, then

VBT RUSH(Fy = Fgss) 2 [ | Baso o (gt + (0 = p)?lucdy
= [ 200 1)t (A= XV P+ 07 = p)c Pl

> / 2(ma — azxB)|Vuey|* dy +/ (m1 — a1xB)|V - ucgl|® dy
Do

Dy
+/ w?(m3 — asXxp)|ucg|*> dy >0
D3

where we use the properties in (5.1) and

Eyu(u,v) = 2uVu: Vo+ AV -uV- v with Vu:= (Vu + (VU)T) .

N | =

That is,

R(SH(F, — F.)g,g) >0, VYgeV=,.

Hence, we have that R (S} (F., — F,)) has finitely many negative eigenvalues.
(ii) We assumed on the contrary that R (S} (F,, — F¢)) has finitely many negative eigen-
values, then there is a finite dimensional subspace V' C [L?(S)]?, such that

(5.3) R(S:(F, — F.)g,g) >0, Yge V=,
16



473 To obtain a contradiction we consider Theorem 3.6, where F,, =
474 is rearranged to give

and F,, = F, and which

e

175 V8rw R(S% (F, — F.)g,g) < /R2 By iy (s go U o) + (07 = p)w?[ugs o |*dy
o N /]Rz 2(p — Mbﬂvucb,g’Q + (A - )‘b)‘v ’ ucb,g‘Q + w2(pb o p)’ucb7g‘2 dy

477 - /522(¢MXD2 - a2XB)|vucb,g‘2 + (¢AXD1 - OqXB)|V ’ u0b79|2

478 + W’ (YpxDs — asxB) |y | dy.

480 By Theorem 4.3 we can choose some sequences (gg))meN CV+ (j =1,2,3) such that

481 Hucb,gﬁ,}) ||[L2(B)]2 — o0 and ”ucb,gﬁi) ||[H1(D)]2 —0 as m — oo;
482

483 HV : uc,,7g£3) ||L2(B) — oo and ||ucb7g£3) ||[H1(D)]2 —0 as m — oo
484

485 ”VUcb,gﬁ,? H[LQ(B)]QXQ — oo and ”ucb,g£3) H[Hl(D)P —0 asm — oo.

486 Inserting these solutions to the previous inequality yields

487 8w R(S% (Fs — Fo)g), g0y < C/ Vu, gmy? HIVuy, o+ luy, ol dy
D s9m »dm C"9m
5 _ AV 12 VA 12 12

190 Since || # 0 and «o; > 0, we see that the last integral becomes large and increasingly negative
491 while the first integral vanishes as m grows, and thus

492 §R< :(Fc" - FC)g'ﬁqu% 57?) = §R<S:b (F1cb - FC)g%)7g%)> < 07

193 for large enough m. This is in contradiction with (5.3) which complete the proof. [ |
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