

1 **The monotonicity method for the inverse elastic scattering on unbounded
2 domains ***

3 Bastian Harrach[†] and Jianli Xiang[‡]

5 **Abstract.** We discuss a time-harmonic inverse scattering problem for the Navier equation with compactly
6 supported penetrable and possibly inhomogeneous scattering objects in an unbounded homogeneous
7 background medium, and we develop a monotonicity relation for the far field operator that maps
8 superpositions of incident plane waves to the far field patterns of the corresponding scattered waves.
9 Combining the monotonicity relation with the method of localized potentials, we extend the so called
10 monotonicity method to characterize the support of inhomogeneities in the Lamé parameters and
11 the density in terms of the far field operator.

12 **Key words.** Monotonicity method, inverse scattering, Navier equation, far field operator, inhomogeneous medi-
13 um

14 **AMS subject classifications.** 35J20, 35P25, 35R30, 45Q05

15 **1. Introduction.** The wave scattering problem is an important research direction in the
16 inverse problem of partial differential equations, which has been widely used in engineering
17 fields such as nondestructive testing, environmental science, geophysical exploration and med-
18 ical diagnosis. While the well-posedness of the direct scattering problem has been thoroughly
19 investigated through the integral equation and variational methods, the inverse problem has
20 also attracted a wide variety of extensive and intensive investigations [5].

21 The reconstruction of the position and shape of unknown scatterers from the far field
22 data is a fundamental but severely ill-posed problem in inverse scattering problems. In the
23 past two decades, efficient qualitative reconstruction algorithms have received widespread
24 attention, and there are two representative non-iterative methods: decomposition methods and
25 sampling methods. Decomposition methods include the dual space method [5] and the point
26 source method [23], and sampling methods include the singular sources method [24], the probe
27 method [20], the linear sampling method [4] and the factorization method [21], whose main
28 idea is to construct a certification associated with measurement data to detect the targeted
29 object. Among qualitative methods for shape reconstruction, the monotonicity method has
30 been recently introduced by Harrach in [18] for the electrical impedance tomography. It is
31 formulated in terms of far field operators that map superpositions of incident plane waves,
32 which are being scattered at the unknown scattering objects, to the far field patterns of the
33 corresponding scattered waves. Comparing with the factorization method [21], the general
34 theorem of the monotonicity method does not assume that the real part of the middle operator
35 of the far field operator has a decomposition into a positive coercive operator and a compact
36 operator, which means that the monotonicity method generates reconstruction schemes under

*Submitted to the editors DATE.

[†]Institute for Mathematics, Goethe-University Frankfurt, Frankfurt am Main, Germany (harrach@math.uni-frankfurt.de).

[‡]Corresponding author: Three Gorges Mathematical Research Center, College of Mathematics and Physics, China
Three Gorges University, Yichang 443002, China (xiangjianli@ctgu.edu.cn).

37 weaker a priori assumptions for unknown targets [14].

38 In [22], Lakshtanov and Lechleiter have generalized the factorization method for inverse
39 medium scattering using a particular factorization of the difference of two far field operators
40 and obtained a monotonicity principle which yields a simple algorithm to compute upper and
41 lower bounds for boundary values. Therefore, the monotonicity method is closely related
42 to the factorization method. Very recently, the monotonicity analysis from [18] has been
43 extended to inverse coefficient problems for the Helmholtz equation in a bounded domain for
44 fixed nonresonance frequency and real-valued scattering coefficient function [16, 17], where the
45 authors have shown a monotonicity relation between the scattering coefficient and the local
46 Neumann-to-Dirichlet operator. Combining this with the method of localized potentials, they
47 have derived a constructive monotonicity based characterization of scatterers from partial
48 boundary data [16] and improved the bounds for the space dimension [17]. Then, Griesmaier
49 and Harrach [15] have made a generalization of these results to the inverse medium scattering
50 problem on unbounded domains with plane wave incident fields and far field observations of
51 the scattered waves. Furthermore, the monotonicity method has also been extended to the
52 inverse mixed obstacle scattering [1], an inverse Dirichlet crack detection [6], an open periodic
53 waveguide [13], a closed cylindrical waveguide [3] and the references therein [2, 14, 19].

54 Concerning the isotropic linear elasticity in the stationary case, the monotonicity result
55 between the Lamé parameters and the Neumann-to-Dirichlet operator and the existence of
56 localized potentials has been presented in [10], which has been applied to detect and recon-
57 struct inclusions based on the standard as well as linearized monotonicity tests in [8, 9, 12]. To
58 make a significant improvement over standard regularization techniques, Eberle and Harrach
59 have dealt with the same problem by the monotonicity-based regularization method [7]. For
60 the non-stationary or time harmonic case of the Navier equation, the paper [11] has extended
61 the monotonicity method for inclusion detection and shown how to determine certain types
62 of inhomogeneities in the Lamé parameters and the density. The main contribution of the
63 present work is the generalization of the monotonicity method to the time-harmonic inverse
64 elastic scattering problem on unbounded domains. Our approach relies on the monotonicity
65 of the far field operator with respect to the Lamé parameters as well as the density and the
66 techniques of localized potentials.

67 The outline of this article is as follows. After briefly introducing the mathematical setting
68 of the scattering problem in Section 2, we develop the monotonicity relation for the far field
69 operator in Section 3. In Section 4 we discuss the existence of localized wave functions for
70 the Navier equation in unbounded domains, and we use them to provide a converse of the
71 monotonicity relation from Section 3. In Section 5 we establish rigorous characterizations of
72 the support of scattering objects in terms of the far field operator.

73 **2. Problem formulation.** In this paper, we consider the inverse medium scattering prob-
74 lem of time-harmonic elastic waves and deal with the shape reconstruction problem, which is
75 also known as the detection problem. Assume that the propagation of time-harmonic waves
76 is in an isotropic non-absorbing and inhomogeneous elastic medium with the density function
77 ρ and Lamé constants μ and λ satisfying $\mu > 0$, $\mu + \lambda > 0$ in \mathbb{R}^2 . We are specifically in-
78 terested in determining the region where the material properties λ , μ or ρ differ from some
79 known constant background values λ_0 , μ_0 or ρ_0 , when given a set of far field measurements

80 in the form of the far field operator. This problem corresponds physically to determining the
 81 inhomogeneous regions in the body Ω from far field measurements. Here we assume that λ_0 ,
 82 $\mu_0, \rho_0 > 0$ are some known constants, and there is a jump in the material parameters

83 $\lambda = \lambda_0 + \chi_{D_1} \psi_1, \quad D_1 \subseteq \Omega,$

84 $\mu = \mu_0 + \chi_{D_2} \psi_2, \quad D_2 \subseteq \Omega,$

85 $\rho = \rho_0 - \chi_{D_3} \psi_3, \quad D_3 \subseteq \Omega,$

87 where χ_{D_j} ($j = 1, 2, 3$) are the characteristic functions of the sets D_j and $\psi_j|_{D_j} \in L_+^\infty(D_j) :=$
 88 $\{\psi \in L^\infty(D_j), \text{ess inf}_{D_j} \psi > 0\}$, so that there is a jump in the material parameters at the
 89 boundaries ∂D_j of the regions where the material parameters differ from the background
 90 values.

91 The scattering problem we are dealing with is modeled by the following Navier equation:

92 (2.1)
$$\Delta_{\lambda, \mu}^* u_c + \rho \omega^2 u_c = 0, \quad \text{in } \mathbb{R}^2 \quad (c := (\lambda, \mu, \rho)).$$

93 The circular frequency $\omega > 0$ and $\Delta_{\lambda, \mu}^*$ denotes the Lamé operator $\mu \Delta + (\mu + \lambda) \nabla(\nabla \cdot)$. Here,
 94 $u_c = u^{\text{in}} + u_c^{\text{sc}}$ is the total displacement field, which is a superposition of the given incident
 95 plane wave u^{in} and the scattered wave u_c^{sc} . By the Helmholtz decomposition theorem, the
 96 scattered field u_c^{sc} can be decomposed as $u_c^{\text{sc}} = u_p + u_s$, where u_p denotes the compressional
 97 wave and u_s denotes the shear wave, k_p is the compressional wave number and k_s is the shear
 98 wave number. They are given by the following forms respectively:

99
$$u_p := u_p(\lambda, \mu, \rho) := -\frac{1}{k_p^2} \nabla(\nabla \cdot u_c^{\text{sc}}), \quad u_s := u_s(\lambda, \mu, \rho) := \frac{1}{k_s^2} \overrightarrow{\text{curl}} \text{curl } u_c^{\text{sc}},$$

100
$$k_p := k_p(\lambda, \mu, \rho) := \omega \sqrt{\frac{\rho}{2\mu + \lambda}}, \quad k_s := k_s(\lambda, \mu, \rho) := \omega \sqrt{\frac{\rho}{\mu}},$$

102 with

103
$$\nabla \cdot u := \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2}, \quad \text{curl } u = \nabla^\perp \cdot u := \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2}, \quad \overrightarrow{\text{curl}} := \left(\frac{\partial}{\partial x_2}, -\frac{\partial}{\partial x_1} \right)^\top, \quad u = [u_1, u_2]^\top.$$

104 And u_p, u_s satisfy $\Delta u_p + k_p^2 u_p = 0$ and $\Delta u_s + k_s^2 u_s = 0$. In addition, the Kupradze radiation
 105 condition is required to the scattered field u_c^{sc} , i.e.

106 (2.2)
$$\lim_{r \rightarrow \infty} \sqrt{r} \left(\frac{\partial u_p}{\partial r} - ik_{p0} u_p \right) = 0, \quad \lim_{r \rightarrow \infty} \sqrt{r} \left(\frac{\partial u_s}{\partial r} - ik_{s0} u_s \right) = 0, \quad r = |x|.$$

107 The radiation condition (2.2) is assumed to hold in all directions $\hat{x} = x/|x| \in \mathbb{S} := \{x \in$
 108 $\mathbb{R}^2, |x| = 1\}$ and $k_{t0} := k_t(\lambda_0, \mu_0, \rho_0)$ ($t = p, s$). Throughout this paper, the solution to the
 109 Navier equation (2.1) satisfying the Kupradze radiation condition (2.2) is called the radiating
 110 solution. It is well known that the radiating solution to the Navier equation has the following
 111 asymptotic expansions:

112
$$u_c^{\text{sc}}(x) = \frac{e^{ik_{p0}r}}{\sqrt{r}} u_p^\infty(\hat{x}) \hat{x} + \frac{e^{ik_{s0}r}}{\sqrt{r}} u_s^\infty(\hat{x}) \hat{x}^\perp + \mathcal{O}\left(\frac{1}{r^{3/2}}\right), \quad \text{as } r \rightarrow \infty,$$

113 and

114
$$T_{\lambda,\mu}u_c^{\text{sc}}(x) = \frac{i\omega^2}{k_{p_0}} \frac{e^{ik_{p_0}r}}{\sqrt{r}} u_p^\infty(\hat{x})\hat{x} + \frac{i\omega^2}{k_{s_0}} \frac{e^{ik_{s_0}r}}{\sqrt{r}} u_s^\infty(\hat{x})\hat{x}^\perp + \mathcal{O}\left(\frac{1}{r}\right), \quad \text{as } r \rightarrow \infty.$$

115 The stress vector $T_{\lambda,\mu}u$ is defined by

116
$$T_{\lambda,\mu}u := 2\mu \frac{\partial u}{\partial \nu} + \lambda \nu \cdot \nabla \cdot u - \mu \nu^\perp \nabla^\perp \cdot u,$$

117 where ν denotes the unit exterior normal vector and ν^\perp is obtained by rotating ν anticlockwise
118 by $\pi/2$. The functions u_p^∞ , u_s^∞ are known as compressional and shear far-field patterns of u_c^{sc} ,
119 respectively. We will denote the pair of far-field patterns $(u_p^\infty(\hat{x}), u_s^\infty(\hat{x}))$ of the corresponding
120 scattered field by $u_c^\infty(\hat{x})$, i.e.

121
$$u_c^\infty(\hat{x}) = (u_p^\infty(\hat{x}), u_s^\infty(\hat{x})).$$

122 Next we introduce the elastic Herglotz wave function with density $g = (g_p, g_s) \in [L^2(\mathbb{S})]^2$
123 defined by

124 (2.3)
$$v_g(x) = e^{-i\pi/4} \int_{\mathbb{S}} \left\{ \sqrt{\frac{k_{p_0}}{\omega}} e^{ik_{p_0}d \cdot x} g_p(d) + \sqrt{\frac{k_{s_0}}{\omega}} e^{ik_{s_0}d \cdot x} d^\perp g_s(d) \right\} ds(d).$$

125 The Hilbert space $[L^2(\mathbb{S})]^2$ in this paper is equipped with the inner product:

126
$$\langle g, h \rangle = \frac{\omega}{k_p} \int_{\mathbb{S}} g_p \overline{h_p} ds + \frac{\omega}{k_s} \int_{\mathbb{S}} g_s \overline{h_s} ds, \quad g, h \in [L^2(\mathbb{S})]^2.$$

127 For the special case of a plane wave incident field $u^{\text{in}}(x, d) = d e^{ik_{p_0}x \cdot d} + d^\perp e^{ik_{s_0}x \cdot d}$, we
128 explicitly indicate the dependence on the incident direction $d \in \mathbb{S}$ by a second argument and
129 accordingly we write $u_c^{\text{sc}}(x, d)$, $u_c(x, d)$ and $u_c^\infty(x, d)$ for the corresponding scattered field, total
130 field, and far field pattern of the problem (2.1)-(2.2), respectively. Define the elastic far-field
131 operator $F_{cg} : [L^2(\mathbb{S})]^2 \rightarrow [L^2(\mathbb{S})]^2$ ($c := (\lambda, \mu, \rho)$) by

132 (2.4)
$$(F_{cg})(\hat{x}) = e^{-i\pi/4} \int_{\mathbb{S}} \left\{ \sqrt{\frac{k_{p_0}}{\omega}} u_c^\infty(\hat{x}, d) g_p(d) + \sqrt{\frac{k_{s_0}}{\omega}} u_c^\infty(\hat{x}, d) d^\perp g_s(d) \right\} ds(d),$$

133 By linearity, for any given function $g \in [L^2(\mathbb{S})]^2$, the solution to the direct scattering
134 problem (2.1)-(2.2) with incident field of the elastic Herglotz wave function v_g defined by
135 (2.3) is

136 (2.5)
$$u_{c,g}(x) = \int_{\mathbb{S}} u_c(x, d) g(d) ds(d), \quad x \in \mathbb{R}^2,$$

137 and the corresponding scattered field

138
$$u_{c,g}^{\text{sc}}(x) = \int_{\mathbb{S}} u_c^{\text{sc}}(x, d) g(d) ds(d), \quad x \in \mathbb{R}^2,$$

139 has the far field pattern $u_{c,g}^\infty$ satisfying $u_{c,g}^\infty = F_c g$.

140 Finally, we introduce the fundamental solution of the Navier equation (2.1) in \mathbb{R}^2 space
141 which is given by

$$142 \quad \Gamma_c(x, y) = \frac{i}{4\mu} H_0^{(1)}(k_s|x - y|)I + \frac{i}{4\omega^2} \nabla_x^\top \nabla_x (H_0^{(1)}(k_s|x - y|) - H_0^{(1)}(k_p|x - y|))$$

143 for $x, y \in \mathbb{R}^2$ and $x \neq y$, where $H_0^{(1)}(\cdot)$ is the Hankel function of the first kind of order zero
144 and I is the identity matrix. In addition, the subscript x is used to denote differentiation with
145 respect to the corresponding variable. The far field patterns Γ_p^∞ and Γ_s^∞ are given by

$$146 \quad \Gamma_p^\infty(\hat{x}, y) = \frac{1}{\lambda + 2\mu} \frac{e^{\frac{i\pi}{4}}}{\sqrt{8\pi k_p}} e^{-ik_p \hat{x} \cdot y} J(\hat{x}), \quad \Gamma_s^\infty(\hat{x}, y) = \frac{1}{\mu} \frac{e^{\frac{i\pi}{4}}}{\sqrt{8\pi k_s}} e^{-ik_s \hat{x} \cdot y} J(\hat{x}^\perp),$$

147 where $J(z) = \frac{zz^\top}{|z|^2}$ for any $z \in \mathbb{R}^2$, $z \neq 0$.

148 **3. A monotonicity relation for the far field operator.** In this section we derive some
149 monotonicity relations between the parameters (λ, μ, ρ) and the far field operator F that are
150 of fundamental importance in justifying monotonicity based shape reconstruction, and will be
151 needed in the later sections.

152 **Lemma 3.1.** *Let $\lambda, \mu, \rho \in L_+^\infty(\mathbb{R}^2)$, and let $B_R(O)$ be a ball containing Ω . Then*

$$153 \quad (3.1) \quad \langle g, F_c g \rangle = \frac{1}{\sqrt{8\pi\omega}} \int_{\partial B_R(O)} (T_0 v_g \overline{u_{c,g}^{\text{sc},+}} - T_0 \overline{u_{c,g}^{\text{sc},+}} v_g) ds.$$

154 If $\lambda_j, \mu_j, \rho_j \in L_+^\infty(\mathbb{R}^2)$, then for any $j, l \in \{1, 2\}$ we have

$$155 \quad (3.2) \quad \int_{\partial B_R(O)} (u_{c_j,g}^{\text{sc},+} T_0 \overline{u_{c_l,g}^{\text{sc},+}} - \overline{u_{c_l,g}^{\text{sc},+}} T_0 u_{c_j,g}^{\text{sc},+}) ds = -2i\omega \langle F_{c_j} g, F_{c_l} g \rangle.$$

156 *Proof.* The general form of $E_{\lambda,\mu}(u, v)$ is given by

$$157 \quad E_{\lambda,\mu}(u, v) = (2\mu + \lambda) \left(\frac{\partial u_1}{\partial x_1} \frac{\partial v_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} \frac{\partial v_2}{\partial x_2} \right) + \mu \left(\frac{\partial u_1}{\partial x_2} \frac{\partial v_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \frac{\partial v_2}{\partial x_1} \right) \\ 158 \quad + \lambda \left(\frac{\partial u_1}{\partial x_1} \frac{\partial v_2}{\partial x_2} + \frac{\partial u_2}{\partial x_2} \frac{\partial v_1}{\partial x_1} \right) + \mu \left(\frac{\partial u_1}{\partial x_2} \frac{\partial v_2}{\partial x_1} + \frac{\partial u_2}{\partial x_1} \frac{\partial v_1}{\partial x_2} \right).$$

160 By Betti Representation Theorem, we have

$$161 \quad u_{c,g}^{\text{sc},+}(x) = \int_{\partial B_R(O)} \left[[T_0 \Gamma_0(x, y)]^\top u_{c,g}^{\text{sc},+}(y) - \Gamma_0(x, y) T_0 u_{c,g}^{\text{sc},+}(y) \right] ds(y), \quad x \in \mathbb{R}^2 \setminus \overline{\Omega},$$

162 with

$$163 \quad T_j u := T_{\lambda_j, \mu_j} u = 2\mu_j \frac{\partial u}{\partial \nu} + \lambda_j \nu \cdot \nabla \cdot u - \mu_j \nu^\perp \nabla^\perp \cdot u, \quad \Delta_j^* := \Delta_{\lambda_j, \mu_j}^*, \quad E_j := E_{\lambda_j, \mu_j},$$

164

165 $\Gamma_j(x, y) := \Gamma_{c_j}(x, y) = \frac{i}{4\mu_j} H_0^{(1)}(k_{s_j}|x - y|)I + \frac{i}{4\omega^2} \nabla_x^\top \nabla_x (H_0^{(1)}(k_{s_j}|x - y|) - H_0^{(1)}(k_{p_j}|x - y|)),$ 166

167 $c_j := (\lambda_j, \mu_j, \rho_j), \quad k_{p_j} := k_p(\lambda_j, \mu_j, \rho_j) := \omega \sqrt{\frac{\rho_j}{2\mu_j + \lambda_j}}, \quad k_{s_j} := k_s(\lambda_j, \mu_j, \rho_j) := \omega \sqrt{\frac{\rho_j}{\mu_j}}.$

168 From the asymptotic behavior of the Hankel function $H_0^{(1)}(\cdot)$ and the far field patterns $\Gamma_p^\infty,$
169 Γ_s^∞ , it follows that the far field patterns of $u_{c,g}^{sc,+}(x)$ are given by

170 $u_p^\infty(d)d = \frac{e^{i\pi/4}}{\sqrt{8\pi k_{p_0}}} \frac{k_{p_0}^2}{\omega^2} \int_{\partial B_R(O)} \left\{ [J(d)T_0 e^{-ik_{p_0}d \cdot y}]^\top u_{c,g}^{sc,+}(y) - J(d)e^{-ik_{p_0}d \cdot y} T_0 u_{c,g}^{sc,+}(y) \right\} ds,$ 171

172 $u_s^\infty(d)d^\perp = \frac{e^{i\pi/4}}{\sqrt{8\pi k_{s_0}}} \frac{k_{s_0}^2}{\omega^2} \int_{\partial B_R(O)} \left\{ [J(d)^\perp T_0 e^{-ik_{s_0}d \cdot y}]^\top u_{c,g}^{sc,+}(y) - J(d)^\perp e^{-ik_{s_0}d \cdot y} T_0 u_{c,g}^{sc,+}(y) \right\} ds$

173 where $J(d)^\perp = I - J(d)$. Thus,

174 $\langle g, F_c g \rangle = \frac{\omega}{k_{p_0}} \int_{\mathbb{S}} g_p \overline{u_p^\infty} ds(d) + \frac{\omega}{k_{s_0}} \int_{\mathbb{S}} g_s \overline{u_s^\infty} ds = \frac{1}{\sqrt{8\pi\omega}} \int_{\partial B_R(O)} (T_0 v_g \overline{u_{c,g}^{sc,+}} - T_0 \overline{u_{c,g}^{sc,+}} v_g) ds.$ 175

176 Let $r > R$, then $u_{c_j,g}^{sc} \in [H_{loc}^1(\mathbb{R}^2)]^2$ solve (for $c_j := (\lambda_j, \mu_j, \rho_j)$)

177 $\mu_0 \Delta u_{c,g}^{sc} + (\mu_0 + \lambda_0) \nabla(\nabla \cdot) u_{c,g}^{sc} + \rho_0 \omega^2 u_{c,g}^{sc} = 0 \quad \text{in } B_r(O) \setminus \overline{B_R(O)},$

178 and applying Betti's formula we obtain that

179 (3.3) $\int_{\partial B_r(O)} (u_{c_j,g}^{sc,+} T_0 \overline{u_{c_l,g}^{sc,+}} - \overline{u_{c_l,g}^{sc,+}} T_0 u_{c_j,g}^{sc,+}) ds = \int_{\partial B_R(O)} (u_{c_j,g}^{sc,+} T_0 \overline{u_{c_l,g}^{sc,+}} - \overline{u_{c_l,g}^{sc,+}} T_0 u_{c_j,g}^{sc,+}) ds$

180 Using the radiation condition (2.2) and the far field expansion we find that, as $r \rightarrow \infty$,

181 (3.4) $\int_{\partial B_r(O)} (u_{c_j,g}^{sc,+} T_0 \overline{u_{c_l,g}^{sc,+}} - \overline{u_{c_l,g}^{sc,+}} T_0 u_{c_j,g}^{sc,+}) ds = -2i\omega \langle F_{c_j} g, F_{c_l} g \rangle.$

182 Substituting (3.4) into (3.3) and letting $r \rightarrow \infty$ finally gives (3.2). ■183 The next tool we will use to prove the monotonicity relation for the far field operator is
184 the following integral identity.185 **Lemma 3.2.** *If $\lambda_j, \mu_j, \rho_j \in L_+^\infty(\mathbb{R}^2)$ and $B_R(O)$ is a ball containing Ω . Then, for any
186 $g \in [L^2(\mathbb{S})]^2$, it holds that*

187 (3.5)
$$\begin{aligned} & \sqrt{8\pi\omega} (\langle F_{c_1} g, g \rangle - \langle g, F_{c_2} g \rangle) - 2i\omega \langle F_{c_1} g, F_{c_2} g \rangle \\ &= \int_{\partial B_R(O)} (\overline{u}_{c_2,g} - \overline{u}_{c_1,g})(T_2 u_{c_2,g} - T_1 u_{c_1,g}) ds \\ &+ \int_{B_R(O)} \rho_2 \omega^2 |u_{c_2,g} - u_{c_1,g}|^2 - E_2(u_{c_1,g} - u_{c_2,g}, \overline{u}_{c_1,g} - \overline{u}_{c_2,g}) dy \\ &+ \int_{B_R(O)} E_2(\overline{u}_{c_1,g}, u_{c_1,g}) - E_1(\overline{u}_{c_1,g}, u_{c_1,g}) + (\rho_1 - \rho_2) \omega^2 |u_{c_1,g}|^2 dy. \end{aligned}$$
 188
189
190
191

192 *Proof.* The identity (3.1) and (3.2) (with $j = 1$ and $l = 2$) immediately imply that

$$\begin{aligned}
193 & \sqrt{8\pi\omega} (\langle F_{c_1}g, g \rangle - \langle g, F_{c_2}g \rangle) - 2i\omega \langle F_{c_1}g, F_{c_2}g \rangle \\
194 &= \int_{\partial B_R(O)} (T_0 \overline{v_g} u_{c_1,g}^{\text{sc},+} - T_0 u_{c_1,g}^{\text{sc},+} \overline{v_g}) ds - \int_{\partial B_R(O)} (T_0 v_g \overline{u_{c_2,g}^{\text{sc},+}} - T_0 \overline{u_{c_2,g}^{\text{sc},+}} v_g) ds \\
195 &+ \int_{\partial B_R(O)} (u_{c_1,g}^{\text{sc},+} T_0 \overline{u_{c_2,g}^{\text{sc},+}} - \overline{u_{c_2,g}^{\text{sc},+}} T_0 u_{c_1,g}^{\text{sc},+}) ds \\
196 &= \int_{\partial B_R(O)} (u_{c_1,g}^{\text{sc},+} T_2 \overline{u_{c_2,g}^-} - \overline{u_{c_2,g}^-} T_0 u_{c_1,g}^{\text{sc},+}) ds - \int_{\partial B_R(O)} (T_0 v_g \overline{u_{c_2,g}^{\text{sc},+}} - T_0 \overline{u_{c_2,g}^{\text{sc},+}} v_g) ds \\
197 &= \int_{\partial B_R(O)} (u_{c_1,g}^- T_2 \overline{u_{c_2,g}^-} - \overline{u_{c_2,g}^-} T_1 u_{c_1,g}^-) ds - \int_{\partial B_R(O)} (v_g T_2 \overline{u_{c_2,g}^-} - \overline{u_{c_2,g}^-} T_0 v_g) ds \\
198 &- \int_{\partial B_R(O)} (T_0 v_g \overline{u_{c_2,g}^-} - T_2 \overline{u_{c_2,g}^-} v_g) ds + \int_{\partial B_R(O)} (T_0 v_g \overline{v_g} - T_0 \overline{v_g} v_g) ds \\
200 &= \int_{\partial B_R(O)} (u_{c_1,g}^- T_2 \overline{u_{c_2,g}^-} - \overline{u_{c_2,g}^-} T_1 u_{c_1,g}^-) ds,
\end{aligned}$$

201 where we have used the transmission boundary conditions

$$202 \quad u_{c_j,g}^{\text{sc},+} + v_g = u_{c_j,g}^-, \quad T_0 u_{c_j,g}^{\text{sc},+} + T_0 v_g = T_j u_{c_j,g}^- \quad \text{on } \partial B_R(O).$$

203 For notational simplicity, we omit the superscript, that is,

$$\begin{aligned}
204 & \int_{\partial B_R(O)} (u_{c_1,g}^- T_2 \overline{u_{c_2,g}^-} - \overline{u_{c_2,g}^-} T_1 u_{c_1,g}^-) ds := \int_{\partial B_R(O)} (u_{c_1,g}^- T_2 \overline{u_{c_2,g}} - \overline{u_{c_2,g}} T_1 u_{c_1,g}^-) ds \\
205 &= \int_{\partial B_R(O)} (\overline{u_{c_2,g}} - \overline{u_{c_1,g}}) (T_2 u_{c_2,g} - T_1 u_{c_1,g}) ds \\
206 &+ \int_{\partial B_R(O)} (u_{c_1,g}^- T_2 \overline{u_{c_2,g}} - \overline{u_{c_2,g}} T_2 u_{c_2,g} + \overline{u_{c_1,g}} T_2 u_{c_2,g} - \overline{u_{c_1,g}} T_1 u_{c_1,g}) ds. \\
207
\end{aligned}$$

208 Applying Betti's formula yields

$$\begin{aligned}
209 & \int_{\partial B_R(O)} (u_{c_1,g}^- T_2 \overline{u_{c_2,g}} - \overline{u_{c_2,g}} T_2 u_{c_2,g} + \overline{u_{c_1,g}} T_2 u_{c_2,g} - \overline{u_{c_1,g}} T_1 u_{c_1,g}) ds \\
210 &= \int_{B_R(O)} E_2(u_{c_1,g}^- - u_{c_2,g}, \overline{u_{c_2,g}}) + E_2(\overline{u_{c_1,g}}, u_{c_2,g} - u_{c_1,g}) + E_2(\overline{u_{c_1,g}}, u_{c_1,g}) - E_1(\overline{u_{c_1,g}}, u_{c_1,g}) dy \\
211 &+ \omega^2 \int_{B_R(O)} \rho_2 u_{c_2,g} \overline{u_{c_2,g}} - \rho_2 u_{c_1,g} \overline{u_{c_2,g}} - \rho_2 \overline{u_{c_1,g}} u_{c_2,g} + \rho_1 \overline{u_{c_1,g}} u_{c_1,g} dy \\
212 &= \int_{B_R(O)} \rho_2 \omega^2 |u_{c_2,g} - u_{c_1,g}|^2 - E_2(u_{c_1,g}^- - u_{c_2,g}, \overline{u_{c_1,g}} - \overline{u_{c_2,g}}) dy \\
213 &+ \int_{B_R(O)} E_2(\overline{u_{c_1,g}}, u_{c_1,g}) - E_1(\overline{u_{c_1,g}}, u_{c_1,g}) + (\rho_1 - \rho_2) \omega^2 |u_{c_1,g}|^2 dy, \\
214
\end{aligned}$$

215 Consequently, we obtain that

$$\begin{aligned}
216 \quad & \sqrt{8\pi\omega} (\langle F_{c_1}g, g \rangle - \langle g, F_{c_2}g \rangle) - 2i\omega \langle F_{c_1}g, F_{c_2}g \rangle \\
217 \quad &= \int_{\partial B_R(O)} (\bar{u}_{c_2,g} - \bar{u}_{c_1,g})(T_2 u_{c_2,g} - T_1 u_{c_1,g}) ds \\
218 \quad &+ \int_{B_R(O)} \rho_2 \omega^2 |u_{c_2,g} - u_{c_1,g}|^2 - E_2(u_{c_1,g} - u_{c_2,g}, \bar{u}_{c_1,g} - \bar{u}_{c_2,g}) dy \\
219 \quad &+ \int_{B_R(O)} E_2(\bar{u}_{c_1,g}, u_{c_1,g}) - E_1(\bar{u}_{c_1,g}, u_{c_1,g}) + (\rho_1 - \rho_2)\omega^2 |u_{c_1,g}|^2 dy. \quad \blacksquare
\end{aligned}$$

221 **Lemma 3.3 (Theorem 2 in [25]).** *The scattering matrix given by $S_c = I + i\sqrt{\frac{\omega}{2\pi}}F_c$ is a*
222 *unitary operator, i.e. $S_c^*S_c = S_cS_c^* = I$.*

223 **Remark 3.4.** Since the adjoint of the scattering operator S_{c_1} is given by

$$224 \quad S_{c_1}^* = I - i\sqrt{\frac{\omega}{2\pi}}F_{c_1}^*,$$

225 we find that

$$226 \quad S_{c_1}^* (F_{c_2} - F_{c_1}) = F_{c_2} - F_{c_1} - i\sqrt{\frac{\omega}{2\pi}} (F_{c_1}^* F_{c_2} - F_{c_1}^* F_{c_1}),$$

227 and accordingly

$$228 \quad \Re(S_{c_1}^* (F_{c_2} - F_{c_1})) = \Re\left(F_{c_2} - F_{c_1} - i\sqrt{\frac{\omega}{2\pi}} F_{c_1}^* F_{c_2}\right).$$

229 Therefore the real part of the first two terms on the left-hand side of (3.5) fulfills

$$\begin{aligned}
230 \quad & \Re\left(\sqrt{8\pi\omega} (\langle F_{c_1}g, g \rangle - \langle g, F_{c_2}g \rangle) - 2i\omega \langle F_{c_1}g, F_{c_2}g \rangle\right) \\
231 \quad &= -\sqrt{8\pi\omega} \Re\left(\langle g, F_{c_2}g \rangle - \langle F_{c_1}g, g \rangle + i\sqrt{\frac{\omega}{2\pi}} \langle F_{c_1}g, F_{c_2}g \rangle\right) \\
232 \quad &= -\sqrt{8\pi\omega} \Re\left(\langle F_{c_2}g, g \rangle - \langle F_{c_1}g, g \rangle - i\sqrt{\frac{\omega}{2\pi}} \langle F_{c_2}g, F_{c_1}g \rangle\right) \\
233 \quad &= -\sqrt{8\pi\omega} \Re\langle S_{c_1}^* (F_{c_2} - F_{c_1}) g, g \rangle.
\end{aligned}$$

235 That is,

(3.6)

$$\begin{aligned}
236 \quad & \sqrt{8\pi\omega} \Re\langle S_{c_1}^* (F_{c_2} - F_{c_1}) g, g \rangle + \int_{B_R(O)} E_{\lambda_2 - \lambda_1, \mu_2 - \mu_1}(\bar{u}_{c_1,g}, u_{c_1,g}) + (\rho_1 - \rho_2)\omega^2 |u_{c_1,g}|^2 dy \\
237 \quad &= \int_{B_R(O)} E_2(u_{c_1,g} - u_{c_2,g}, \bar{u}_{c_1,g} - \bar{u}_{c_2,g}) - \rho_2 \omega^2 |u_{c_2,g} - u_{c_1,g}|^2 dy \\
238 \quad & - \Re\left(\int_{\partial B_R(O)} (\bar{u}_{c_2,g} - \bar{u}_{c_1,g})(T_2 u_{c_2,g} - T_1 u_{c_1,g}) ds\right).
\end{aligned}$$

240 Next we consider the right-hand side of (3.6), and we show that it is nonnegative if
241 g belongs to the complement of a certain finite dimensional subspace $V \subseteq [L^2(\mathbb{S})]^2$. To
242 that end we denote by $J : [H^1(B_R(O))]^2 \rightarrow [L^2(B_R(O))]^2$ the compact embedding for any
243 ball $B_R(O)$ containing Ω , and accordingly we define, for any $\rho \in L_+^\infty(\mathbb{R}^2)$, the operator
244 $K : [H^1(B_R(O))]^2 \rightarrow [H^1(B_R(O))]^2$ by

245
$$Kv := J^*Jv,$$

246 and $K_\rho : [H^1(B_R(O))]^2 \rightarrow [H^1(B_R(O))]^2$ by

247
$$K_\rho v := \rho J^*Jv.$$

248 The special identity operator $I_{\lambda,\mu} : [H^1(B_R(O))]^2 \rightarrow [H^1(B_R(O))]^2$ is defined by

249
$$\langle I_{\lambda,\mu}v, w \rangle_{[H^1(B_R(O))]^2} = \int_{B_R(O)} E_{\lambda,\mu}(v, \bar{w}) + v \bar{w} \, dy.$$

250 Then K and K_ρ are compact self-adjoint linear operators, and, for any $v \in [H^1(B_R(O))]^2$,

251
$$\langle (I_{\lambda,\mu} - K - \omega^2 K_\rho)v, v \rangle_{[H^1(B_R(O))]^2} = \int_{B_R(O)} E_{\lambda,\mu}(v, \bar{v}) - \rho \omega^2 |v|^2 \, dy.$$

252 For $0 < \varepsilon < R$ we denote by $N_\varepsilon : [H^1(B_R(O))]^2 \rightarrow [L^2(\partial B_R(O))]^2$ the bounded linear
253 operator that maps $v \in [H^1(B_R(O))]^2$ to the stress vector $T_0 v_\varepsilon$ on $\partial B_R(O)$ of the radiating
254 solution to the exterior boundary value problem

255
$$\Delta_0^* v_\varepsilon + \rho_0 \omega^2 v_\varepsilon = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{B_{R-\varepsilon}(O)}, \quad v_\varepsilon = v \quad \text{on } \partial B_{R-\varepsilon}(O),$$

256 and $\Lambda : [L^2(\partial B_R(O))]^2 \rightarrow [L^2(\partial B_R(O))]^2$ denotes the compact exterior Neumann-to-Dirichlet
257 operator that maps $\psi \in [L^2(\partial B_R(O))]^2$ to the trace $w|_{\partial B_R(O)}$ of the radiating solution to

258
$$\Delta_0^* w + \rho_0 \omega^2 w = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{B_R(O)}, \quad T_0 w = \psi \quad \text{on } \partial B_R(O).$$

259 Then,

260
$$N_\varepsilon v = T_0 v|_{\partial B_R(O)} \quad \text{and} \quad \Lambda N_\varepsilon v = v|_{\partial B_R(O)},$$

261 and accordingly

262
$$\langle N_\varepsilon^* \Lambda N_\varepsilon v, v \rangle_{[H^1(B_R(O))]^2} = \langle \Lambda N_\varepsilon v, N_\varepsilon v \rangle_{[L^2(\partial B_R(O))]^2} = \int_{\partial B_R(O)} v \, T_0 \bar{v} \, ds$$

263 for any $v \in [H^1(B_R(O))]^2$ that can be extended to a radiating solution of the Navier equation

264
$$\Delta_0^* v + \rho_0 \omega^2 v = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{B_{R-\varepsilon}(O)}.$$

265 **Lemma 3.5.** Let $\lambda_j, \mu_j, \rho_j \in L_+^\infty(\mathbb{R}^2)$ and let $B_R(O)$ be a ball containing Ω . Then there
266 exists a finite dimensional subspace $V \subseteq [L^2(\mathbb{S})]^2$ such that

$$267 \quad \int_{B_R(O)} E_2(u_{c_1,g} - u_{c_2,g}, \bar{u}_{c_1,g} - \bar{u}_{c_2,g}) - \rho_2 \omega^2 |u_{c_2,g} - u_{c_1,g}|^2 dy \\ 268 \quad - \Re \left(\int_{\partial B_R(O)} (\bar{u}_{c_2,g} - \bar{u}_{c_1,g})(T_2 u_{c_2,g} - T_1 u_{c_1,g}) ds \right) \geq 0, \quad \text{for all } g \in V^\perp. \\ 269$$

270 *Proof.* Let $\varepsilon > 0$ be sufficiently small, so that $\Omega \subseteq B_{R-\varepsilon}(O)$. Then

$$271 \quad \int_{B_R(O)} E_2(u_{c_1,g} - u_{c_2,g}, \bar{u}_{c_1,g} - \bar{u}_{c_2,g}) - \rho_2 \omega^2 |u_{c_2,g} - u_{c_1,g}|^2 dy \\ 272 \quad - \Re \left(\int_{\partial B_R(O)} (\bar{u}_{c_2,g} - \bar{u}_{c_1,g})(T_2 u_{c_2,g} - T_1 u_{c_1,g}) ds \right) \\ 273 \quad = \int_{B_R(O)} E_2(w, \bar{w}) - \rho_2 \omega^2 |w|^2 dy - \Re \left(\int_{\partial B_R(O)} \bar{w} T_0 w ds \right) \\ 274 \quad = \langle (I_{\lambda_2, \mu_2} - K - \omega^2 K_{\rho_2} - \Re(N_\varepsilon^* \Lambda N_\varepsilon))w, w \rangle_{[H^1(B_R(O))]^2}$$

276 where $w|_{B_R(O)} := u_{c_2,g}^{\text{sc},-} - u_{c_1,g}^{\text{sc},-}$ and $w|_{\partial B_R(O)} := u_{c_2,g}^{\text{sc},+} - u_{c_1,g}^{\text{sc},+}$.

277 Let W be the sum of eigenspaces of the compact self-adjoint operator $K + \omega^2 K_{\rho_2} +$
278 $\Re(N_\varepsilon^* \Lambda N_\varepsilon)$ associated to eigenvalues larger than 1. Then W is finite dimensional and

$$279 \quad \langle (I_{\lambda_2, \mu_2} - K - \omega^2 K_{\rho_2} - \Re(N_\varepsilon^* \Lambda N_\varepsilon))w, w \rangle_{[H^1(B_R(O))]^2} \geq 0 \quad \text{for all } w \in W^\perp.$$

280 For $j = 1, 2$ we denote by $\mathcal{S}_j : [L^2(\mathbb{S})]^2 \rightarrow [H^1(B_R(O))]^2$ the bounded linear operator that maps
281 $g \in [L^2(\mathbb{S})]^2$ to the restriction of the scattered field $u_{c_j,g}^{\text{sc},-}$ on $B_R(O)$. Then $w|_{B_R(O)} = (\mathcal{S}_2 - \mathcal{S}_1)g$.
282 Since, for any $g \in [L^2(\mathbb{S})]^2$,

$$283 \quad (\mathcal{S}_2 - \mathcal{S}_1)g \in W^\perp \quad \text{if and only if} \quad g \in ((\mathcal{S}_2 - \mathcal{S}_1)^* W)^\perp,$$

284 and of course $\dim((\mathcal{S}_2 - \mathcal{S}_1)^* W) \leq \dim(W) < \infty$, choosing $V := (\mathcal{S}_2 - \mathcal{S}_1)^* W$ ends the proof. ■

285 Applying the above Lemma 3.5 in the equality (3.6) yields the main monotonicity inequalities (3.7)-(3.8) we will be using.

287 **Theorem 3.6.** Let $\lambda_j, \mu_j, \rho_j \in L_+^\infty(\mathbb{R}^2)$. Then there exists a finite dimensional subspace
288 $V \subseteq [L^2(\mathbb{S})]^2$ such that

$$289 \quad (3.7) \quad \sqrt{8\pi\omega} \Re \langle S_{c_1}^*(F_{c_2} - F_{c_1})g, g \rangle \geq \int_{\mathbb{R}^2} E_{\lambda_1 - \lambda_2, \mu_1 - \mu_2}(\bar{u}_{c_1,g}, u_{c_1,g}) + (\rho_2 - \rho_1)\omega^2 |u_{c_1,g}|^2 dy,$$

290 for all $g \in V^\perp$. In particular,

$$291 \quad (3.8) \quad \lambda_1 \geq \lambda_2, \mu_1 \geq \mu_2, \rho_2 \geq \rho_1 \quad \text{implies} \quad \Re(S_{c_1}^* F_{c_2}) \geq_{\text{fin}} \Re(S_{c_1}^* F_{c_1}).$$

292 *Remark 3.7.* Since the scattering operators S_{c_1} and S_{c_2} are unitary, we find that

$$293 \quad S_{c_1}^*(F_{c_2} - F_{c_1}) = i\sqrt{\frac{2\pi}{\omega}}S_{c_1}^*(S_{c_1} - S_{c_2}) = i\sqrt{\frac{2\pi}{\omega}}(I - S_{c_1}^*S_{c_2}) \\ 294 \quad = \left(i\sqrt{\frac{2\pi}{\omega}}(S_{c_2}^*S_{c_1} - I)\right)^* = \left(i\sqrt{\frac{2\pi}{\omega}}S_{c_2}^*(S_{c_1} - S_{c_2})\right)^* = (S_{c_2}^*(F_{c_2} - F_{c_1}))^*.$$

296 Recalling that the eigenvalues of a compact linear operator and of its adjoint are complex
297 conjugates of each other, we conclude that the spectra of $\Re(S_{c_1}^*(F_{c_2} - F_{c_1}))$ and $\Re(S_{c_2}^*(F_{c_2} -$
298 $F_{c_1}))$ coincide. Consequently, the monotonicity relations (3.7)-(3.8) remain true if we replace
299 $S_{c_1}^*$ by $S_{c_2}^*$ in these formulas.

300 Note that by interchanging λ_1, μ_1, ρ_1 and λ_2, μ_2, ρ_2 , except for $S_{c_1}^*$ (see Remark 3.7), we
301 may restate Theorem 3.6 as follows.

302 *Corollary 3.8.* *Let $\lambda_j, \mu_j, \rho_j \in L_+^\infty(\mathbb{R}^2)$. Then there exists a finite dimensional subspace*
303 $V \subseteq [L^2(\mathbb{S})]^2$ *such that*

$$304 \quad (3.9) \quad \sqrt{8\pi\omega} \Re\langle S_{c_1}^*(F_{c_2} - F_{c_1})g, g \rangle \leq \int_{\mathbb{R}^2} E_{\lambda_1 - \lambda_2, \mu_1 - \mu_2}(\bar{u}_{c_2, g}, u_{c_2, g}) + (\rho_2 - \rho_1)\omega^2 |u_{c_2, g}|^2 dy,$$

305 *for all $g \in V^\perp$.*

306 **4. Localized potentials for the Navier equation.** In this section we establish the existence
307 of localized wave functions that have arbitrarily large norm on some prescribed region $B \subseteq \mathbb{R}^2$
308 while at the same time having arbitrarily small norm in a different region $D \subseteq \mathbb{R}^2$, assuming
309 that $\mathbb{R}^2 \setminus \bar{D}$ is connected. These will be utilized to establish a rigorous characterization of
310 the region $\Omega = \text{supp}(\lambda - \lambda_0) \cup \text{supp}(\mu - \mu_0) \cup \text{supp}(\rho - \rho_0)$ where the material parameters
311 differ from background in terms of the far field operator using the monotonicity relations from
312 Theorem 3.6 and Corollary 3.8 in section 5 below.

313 *Lemma 4.1.* *Suppose that $\lambda, \mu, \rho \in L_+^\infty(\mathbb{R}^2)$ and assume that $D \subseteq \mathbb{R}^2$ is open and bounded.*
314 *We define*

$$315 \quad L_{c,D} : [L^2(\mathbb{S})]^2 \rightarrow [H^1(D)]^2, \quad g \mapsto u_{c,g}|_D,$$

$$317 \quad L_{c,D}^{(1)} : [L^2(\mathbb{S})]^2 \rightarrow [L^2(D)]^2, \quad g \mapsto u_{c,g}|_D,$$

$$319 \quad L_{c,D}^{(2)} : [L^2(\mathbb{S})]^2 \rightarrow L^2(D), \quad g \mapsto \nabla \cdot u_{c,g}|_D,$$

$$321 \quad L_{c,D}^{(3)} : [L^2(\mathbb{S})]^2 \rightarrow [L^2(D)]^{2 \times 2}, \quad g \mapsto \hat{\nabla} u_{c,g}|_D,$$

322 *where $u_{c,g} \in [H_{\text{loc}}^1(\mathbb{R}^2)]^2$ is given by (2.5) and $\hat{\nabla} u := \frac{1}{2}(\nabla u + (\nabla u)^\top)$. Then $L_{c,D}$, $L_{c,D}^{(1)}$, $L_{c,D}^{(2)}$
323 and $L_{c,D}^{(3)}$ are linear operators and their dual operator are given by*

$$324 \quad L_{c,D}' : [H^1(D)']^2 \rightarrow [L^2(\mathbb{S})]^2, \quad f_0 \mapsto S_c^* w_0^\infty;$$

325

326
$$L_{c,D}^{(1)'} : [L^2(D)]^2 \rightarrow [L^2(\mathbb{S})]^2, \quad f_1 \mapsto S_c^* w_1^\infty;$$
 327

328
$$L_{c,D}^{(2)'} : L^2(D) \rightarrow [L^2(\mathbb{S})]^2, \quad f_2 \mapsto S_c^* w_2^\infty;$$
 329

330
$$L_{c,D}^{(3)'} : [L^2(D)]^{2 \times 2} \rightarrow [L^2(\mathbb{S})]^2, \quad f_3 \mapsto S_c^* w_3^\infty$$

331 where S_c denotes the scattering operator, and $w_j^\infty \in [L^2(\mathbb{S})]^2$ ($j = 0, 1, 2, 3$) is the far field
332 pattern of the radiating solution $w_j \in [H_{\text{loc}}^1(\mathbb{R}^2)]^2$ to

333
$$\sqrt{8\pi\omega}(f_0, v) = \int_{B_R(O)} (E_{\lambda,\mu}(w_0, \bar{v}) - \rho\omega^2 w_0 \bar{v}) \, dx - \int_{\partial B_R(O)} \bar{v} T_{\lambda,\mu} w_0 \, ds,$$

334

335
$$\sqrt{8\pi\omega} \int_{B_R(O)} f_1 v \, dx = \int_{B_R(O)} (E_{\lambda,\mu}(w_1, \bar{v}) - \rho\omega^2 w_1 \bar{v}) \, dx - \int_{\partial B_R(O)} \bar{v} T_{\lambda,\mu} w_1 \, ds,$$

336

337
$$\sqrt{8\pi\omega} \int_{B_R(O)} f_2 \nabla \cdot v \, dx = \int_{B_R(O)} (E_{\lambda,\mu}(w_2, \bar{v}) - \rho\omega^2 w_2 \bar{v}) \, dx - \int_{\partial B_R(O)} \bar{v} T_{\lambda,\mu} w_2 \, ds,$$

338

339
$$\sqrt{8\pi\omega} \int_{B_R(O)} f_3 : \hat{\nabla} v \, dx = \int_{B_R(O)} (E_{\lambda,\mu}(w_3, \bar{v}) - \rho\omega^2 w_3 \bar{v}) \, dx - \int_{\partial B_R(O)} \bar{v} T_{\lambda,\mu} w_3 \, ds,$$

340 for all $v \in [H^1(B_R(O))]^2$ with $D \subseteq B_R(O)$ (the round brackets denote the dual pairing between
341 $H^1(D)$ and its dual space $H^1(D)'$, and $\mathbf{A} : \mathbf{B} = \sum_{i,j=1}^2 a_{ij} b_{ij}$ for matrices $\mathbf{A} = (a_{ij})$ and
342 $\mathbf{B} = (b_{ij})$).343 *Proof.* The representation formula for the total field in (2.5) shows that $L_{c,D}$ is a Fredholm
344 integral operator with square integrable kernel and therefore linear from $[L^2(\mathbb{S})]^2$ to $[H^1(D)]^2$.345 Applying Betti's formula and the representation formula for the far field pattern w_0^∞ of
346 the radiating solution w_0 , we find that, for any $g \in [L^2(\mathbb{S})]^2$ and $f_0 \in [H^1(D)]^2$,

347
$$\sqrt{8\pi\omega}(L_{c,D}g, f_0) = \int_{B_R(O)} (E_{\lambda,\mu}(\bar{w}_0, u_{c,g}) - \rho\omega^2 \bar{w}_0 u_{c,g}) \, dx - \int_{\partial B_R(O)} u_{c,g} T_{\lambda,\mu} \bar{w}_0 \, ds$$

348
$$= \int_{\partial B_R(O)} (\bar{w}_0 T_{\lambda,\mu} u_{c,g} - u_{c,g} T_{\lambda,\mu} \bar{w}_0) \, ds$$

349
$$= \int_{\partial B_R(O)} (\bar{w}_0 T_{\lambda,\mu} v_g - v_g T_{\lambda,\mu} \bar{w}_0) \, ds + \int_{\partial B_R(O)} (\bar{w}_0 T_{\lambda,\mu} u_{c,g}^{\text{sc}} - u_{c,g}^{\text{sc}} T_{\lambda,\mu} \bar{w}_0) \, ds$$

350
$$= \sqrt{8\pi\omega} \langle g, w_0^\infty \rangle + 2i\omega \langle F_c g, w_0^\infty \rangle = \sqrt{8\pi\omega} \left\langle \left(I + i\sqrt{\frac{\omega}{2\pi}} F_c \right) g, w_0^\infty \right\rangle$$

351
$$= \sqrt{8\pi\omega} \langle S_c g, w_0^\infty \rangle = \sqrt{8\pi\omega} \langle g, S_c^* w_0^\infty \rangle.$$

353 That is, $L_{c,D}' f_0 = S_c^* w_0^\infty$. The calculations for $L_{c,D}^{(1)'}$, $L_{c,D}^{(2)'}$ and $L_{c,D}^{(3)'}$ are the same, we omit it
354 here for brevity. The proof is complete. \blacksquare

355 **Lemma 4.2.** Suppose that $\lambda, \mu, \rho \in L_+^\infty(\mathbb{R}^2)$ and let $B, D \subseteq \mathbb{R}^2$ be open and bounded such
 356 that $\mathbb{R}^2 \setminus (\overline{B} \cup \overline{D})$ is connected and $\overline{B} \cap \overline{D} = \emptyset$. Then,

357 $\mathcal{R}(L_{c,B}^{(\ell)'} \cap \mathcal{R}(L_{c,D}')) = \{0\} \quad \text{and} \quad \mathcal{R}(L_{c,B}' \cap \mathcal{R}(L_{c,D}')) = \{0\} \quad (\ell = 1, 2, 3).$

358 *Proof.* For simplicity, we focus on the case $\ell = 1$ since the proof is similar. Suppose
 359 that $h \in \mathcal{R}(L_{c,B}^{(1)'}) \cap \mathcal{R}(L_{c,D}')$. Then Lemma 4.1 shows that there exist $f_B \in [L^2(B)]^2$, $f_D \in$
 360 $[H^1(D)']^2$, and $w_B, w_D \in [H_{\text{loc}}^1(\mathbb{R}^2)]^2$ such that the far field patterns w_B^∞ and w_D^∞ of the
 361 radiating solutions to

362 $\Delta_{\lambda,\mu}^* w_B + \rho \omega^2 w_B = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{B} \quad \text{and} \quad \Delta_{\lambda,\mu}^* w_D + \rho \omega^2 w_D = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D}$

363 satisfy

364 $w_B^\infty = w_D^\infty = S_c h.$

365 Rellich's lemma and unique continuation guarantee that $w_B = w_D$ in $\mathbb{R}^2 \setminus (\overline{B} \cup \overline{D})$. Hence we
 366 may define $w \in [H_{\text{loc}}^1(\mathbb{R}^2)]^2$ by

367
$$w := \begin{cases} w_B = w_D & \text{in } \mathbb{R}^2 \setminus (\overline{B} \cup \overline{D}), \\ w_B & \text{in } D, \\ w_D & \text{in } B, \end{cases}$$

368 and w is the unique radiating solution to

369 $\Delta_{\lambda,\mu}^* w + \rho \omega^2 w = 0 \quad \text{in } \mathbb{R}^2.$

370 Thus $w = 0$ in \mathbb{R}^2 , and since the scattering operator is unitary, this shows that $h = S_c^* w^\infty =$
 371 0. ■

372 **Theorem 4.3.** Suppose that $\lambda, \mu, \rho \in L_+^\infty(\mathbb{R}^2)$ and let $B, D \subseteq \mathbb{R}^2$ be open and bounded such
 373 that $\mathbb{R}^2 \setminus \overline{D}$ is connected. If $B \not\subseteq D$, then for any finite dimensional subspace $V \subseteq [L^2(\mathbb{S})]^2$
 374 there exists a sequence $(g_m^{(j)})_{m \in \mathbb{N}} \subseteq V^\perp$ such that

375 $\|u_{c,g_m^{(0)}}\|_{[H^1(B)]^2} \rightarrow \infty \quad \text{and} \quad \|u_{c,g_m^{(0)}}\|_{[H^1(D)]^2} \rightarrow 0 \quad \text{as } m \rightarrow \infty;$

376

377 $\|u_{c,g_m^{(1)}}\|_{[L^2(B)]^2} \rightarrow \infty \quad \text{and} \quad \|u_{c,g_m^{(1)}}\|_{[H^1(D)]^2} \rightarrow 0 \quad \text{as } m \rightarrow \infty;$

378

379 $\|\nabla \cdot u_{c,g_m^{(2)}}\|_{L^2(B)} \rightarrow \infty \quad \text{and} \quad \|u_{c,g_m^{(2)}}\|_{[H^1(D)]^2} \rightarrow 0 \quad \text{as } m \rightarrow \infty;$

380

381 $\|\widehat{\nabla} u_{c,g_m^{(3)}}\|_{[L^2(B)]^{2 \times 2}} \rightarrow \infty \quad \text{and} \quad \|u_{c,g_m^{(3)}}\|_{[H^1(D)]^2} \rightarrow 0 \quad \text{as } m \rightarrow \infty$

382 where $u_{c,g_m^{(j)}} \in [H_{\text{loc}}^1(\mathbb{R}^2)]^2$ is given by (2.5) with $g = g_m^{(j)}$ ($j = 0, 1, 2, 3$).

383 *Proof.* Without loss of generality, we assume that $\overline{B} \cap \overline{D} = \emptyset$ and $\mathbb{R}^2 \setminus (\overline{B} \cup \overline{D})$ is connected
 384 (otherwise we replace B by a sufficiently small ball $\tilde{B} \subseteq B \setminus \overline{D_\varepsilon}$, where D_ε denotes a sufficiently
 385 small neighborhood of D).

386 We denote by $P_V : [L^2(\mathbb{S})]^2 \rightarrow [L^2(\mathbb{S})]^2$ the orthogonal projection on V . Lemma 4.2 shows
 387 that $\mathcal{R}(L'_{c,B}) \cap \mathcal{R}(L'_{c,D}) = \mathcal{R}(L'_{c,B}) \cap \mathcal{R}(L'_{c,D}) = \{0\}$ ($j = 1, 2, 3$) and that $\mathcal{R}(L'_{c,B})$, $\mathcal{R}(L'_{c,D})$ are
 388 infinite dimensional. Using a simple dimensionality argument (Lemma 4.7 in [16]) it follows
 389 that (we just show the case $j = 1$ for brevity)

$$390 \quad \mathcal{R}(L'_{c,B}) \not\subseteq \mathcal{R}(L'_{c,D}) + V = \mathcal{R}\left(\begin{pmatrix} L'_{c,D} & P'_V \end{pmatrix}\right) = \mathcal{R}\left(\begin{pmatrix} L'_{c,D} \\ P'_V \end{pmatrix}'\right).$$

391 It then follows from Lemma 4.6 in [16] that there is no constant $C > 0$ such that

$$392 \quad \left\| L'_{c,B} g \right\|_{[L^2(B)]^2}^2 \leq C^2 \left\| \begin{pmatrix} L'_{c,D} \\ P'_V \end{pmatrix} g \right\|_{[H^1(D)]^2 \times [L^2(\mathbb{S})]^2}^2 = C^2 \left(\|L'_{c,D} g\|_{[H^1(D)]^2}^2 + \|P'_V g\|_{[L^2(\mathbb{S})]^2}^2 \right)$$

393 for all $g \in [L^2(\mathbb{S})]^2$. Hence, there exists a sequence $(\tilde{g}_m^{(1)})_{m \in \mathbb{N}} \subseteq [L^2(\mathbb{S})]^2$ such that

$$394 \quad \left\| L'_{c,B} \tilde{g}_m^{(1)} \right\|_{[L^2(B)]^2} \rightarrow \infty \quad \text{and} \quad \left\| L'_{c,D} \tilde{g}_m^{(1)} \right\|_{[H^1(D)]^2} + \left\| P'_V \tilde{g}_m^{(1)} \right\|_{[L^2(\mathbb{S})]^2} \rightarrow 0 \quad \text{as } m \rightarrow \infty.$$

395 Setting $g_m^{(1)} := \tilde{g}_m^{(1)} - P'_V \tilde{g}_m^{(1)} \in V^\perp \subseteq [L^2(\mathbb{S})]^2$ for any $m \in \mathbb{N}$, we finally obtain

$$396 \quad \left\| L'_{c,B} g_m^{(1)} \right\|_{[L^2(B)]^2} \geq \left\| L'_{c,B} \tilde{g}_m^{(1)} \right\|_{[L^2(B)]^2} - \left\| L'_{c,B} \right\| \left\| P'_V \tilde{g}_m^{(1)} \right\|_{[L^2(\mathbb{S})]^2} \rightarrow \infty \quad \text{as } m \rightarrow \infty,$$

$$397 \quad \left\| L'_{c,D} g_m^{(1)} \right\|_{[H^1(D)]^2} \leq \left\| L'_{c,D} \tilde{g}_m^{(1)} \right\|_{[H^1(D)]^2} + \|L'_{c,D}\| \left\| P'_V \tilde{g}_m^{(1)} \right\|_{[L^2(\mathbb{S})]^2} \rightarrow 0 \quad \text{as } m \rightarrow \infty.$$

399 Substituting the definitions of operators $L'_{c,B}$ and $L'_{c,D}$, this ends the proof. ■

400 As an application of Theorem 4.3 we establish a converse of (3.8) in Theorem 3.6.

401 **Theorem 4.4.** *Suppose that $\lambda_j, \mu_j, \rho_j \in L_+^\infty(\mathbb{R}^2)$ ($j = 1, 2$) with $\Omega \subseteq B_R(O)$. If $\mathcal{D} \subseteq \mathbb{R}^2$ is
 402 an unbounded domain such that*

$$403 \quad \lambda_1 \geq \lambda_2, \mu_1 \geq \mu_2, \rho_2 \geq \rho_1 \quad \text{a.e. in } \mathcal{D},$$

404 and if $B \subseteq B_R(O) \cap \mathcal{D}$ is open with

$$405 \quad (4.1) \quad \lambda_1 - \delta_1 \geq \lambda_2, \mu_1 - \delta_2 \geq \mu_2, \rho_2 - \delta_3 \geq \rho_1 \quad \text{a.e. in } B \text{ for some } \delta_j > 0,$$

406 then

$$407 \quad \Re(S_{c_1}^* F_{c_2}) \not\leq_{fin} \Re(S_{c_1}^* F_{c_1}),$$

408 i.e., the operator $\Re(S_{c_1}^* (F_{c_2} - F_{c_1}))$ has infinitely many positive eigenvalues. In particular,
 409 this implies that $F_{c_1} \neq F_{c_2}$.

410 *Proof.* We prove the result by contradiction and assume that

411 (4.2)
$$\Re(S_{c_1}^*(F_{c_2} - F_{c_1})) \leq_{\text{fin}} 0.$$

412 Using the monotonicity relation (3.7) in Theorem 3.6, we find that there exists a finite dimensional
413 subspace $V \subseteq [L^2(\mathbb{S})]^2$ such that

414 (4.3)
$$\sqrt{8\pi\omega} \Re \langle S_{c_1}^*(F_{c_2} - F_{c_1})g, g \rangle \geq \int_{B_R(O)} E_{\lambda_1 - \lambda_2, \mu_1 - \mu_2}(\bar{u}_{c_1, g}, u_{c_1, g}) + (\rho_2 - \rho_1)\omega^2 |u_{c_1, g}|^2 dy,$$

415 for all $g \in V^\perp$. Combining (4.1), (4.2) and (4.3), we obtain that there exists a finite dimensional
416 subspace $\tilde{V} \subseteq [L^2(\mathbb{S})]^2$ such that, for any $g \in \tilde{V}^\perp$,

417
$$0 \geq \sqrt{8\pi\omega} \Re \langle S_{c_1}^*(F_{c_2} - F_{c_1})g, g \rangle \geq \int_{B_R(O)} E_{\lambda_1 - \lambda_2, \mu_1 - \mu_2}(\bar{u}_{c_1, g}, u_{c_1, g}) + (\rho_2 - \rho_1)\omega^2 |u_{c_1, g}|^2 dy$$

418
$$= \left(\int_{\mathcal{D} \cap B_R(O)} + \int_{B_R(O) \setminus \bar{\mathcal{D}}} \right) (E_{\lambda_1 - \lambda_2, \mu_1 - \mu_2}(\bar{u}_{c_1, g}, u_{c_1, g}) + (\rho_2 - \rho_1)\omega^2 |u_{c_1, g}|^2) dy$$

419
$$\geq \int_B E_{\delta_1, \delta_2}(\bar{u}_{c_1, g}, u_{c_1, g}) + \delta_3 \omega^2 |u_{c_1, g}|^2 dx$$

420
$$+ \int_{B_R(O) \setminus \bar{\mathcal{D}}} E_{\lambda_1 - \lambda_2, \mu_1 - \mu_2}(\bar{u}_{c_1, g}, u_{c_1, g}) + (\rho_2 - \rho_1)\omega^2 |u_{c_1, g}|^2 dy$$

421
$$\geq \delta_{\min} C_1 \|u_{c_1, g}\|_{[H^1(B)]^2}^2 - \int_{B_R(O) \setminus \bar{\mathcal{D}}} E_{\hat{\lambda}, \hat{\mu}}(\bar{u}_{c_1, g}, u_{c_1, g}) + \hat{\rho} \omega^2 |u_{c_1, g}|^2 dy$$

422
$$\geq \delta_{\min} C_1 \|u_{c_1, g}\|_{[H^1(B)]^2}^2 - C_2 \|u_{c_1, g}\|_{[H^1(B_R(O) \setminus \bar{\mathcal{D}})]^2}^2$$

424 where C_1, C_2 are positive constants, $\delta_{\min} := \min\{\delta_1, \delta_2, \delta_3 \omega^2\}$, $\hat{\lambda} = \|\lambda_1\|_{L_+^\infty(\mathbb{R}^2)} + \|\lambda_2\|_{L_+^\infty(\mathbb{R}^2)}$,
425 $\hat{\mu} = \|\mu_1\|_{L_+^\infty(\mathbb{R}^2)} + \|\mu_2\|_{L_+^\infty(\mathbb{R}^2)}$, $\hat{\rho} = \|\rho_2\|_{L_+^\infty(\mathbb{R}^2)} + \|\rho_1\|_{L_+^\infty(\mathbb{R}^2)}$. However, this contradicts Theorem 4.3 with $D = B_R(O) \setminus \bar{\mathcal{D}}$ and $c = c_1$, which guarantees the existence of $(g_m)_{m \in \mathbb{N}} \subseteq \tilde{V}^\perp$
427 with

428
$$\|u_{c_1, g_m}\|_{[H^1(B)]^2} \rightarrow \infty \quad \text{and} \quad \|u_{c_1, g_m}\|_{[H^1(B_R(O) \setminus \bar{\mathcal{D}})]^2} \rightarrow 0 \quad \text{as } m \rightarrow \infty.$$

429 Consequently, $\Re(S_{c_1}^*(F_{c_2} - F_{c_1})) \not\leq_{\text{fin}} 0$. ■

430 **5. Monotonicity based shape reconstruction.** We will consider inhomogeneities in the
431 material parameters of the following type. Let $D_1, D_2, D_3 \subseteq \Omega$ and $D := D_1 \cup D_2 \cup D_3$. We
432 will now assume that $\lambda, \mu, \rho \in L_+^\infty(\mathbb{R}^2)$ are such that

433
$$\lambda(x) = \lambda_0 + \chi_{D_1}(x)\psi_\lambda(x), \quad \psi_\lambda \in L^\infty(\Omega), \quad \psi_\lambda(x) > m_1,$$

434 (5.1)
$$\mu(x) = \mu_0 + \chi_{D_2}(x)\psi_\mu(x), \quad \psi_\mu \in L^\infty(\Omega), \quad \psi_\mu(x) > m_2,$$

435
$$\rho(x) = \rho_0 - \chi_{D_3}(x)\psi_\rho(x), \quad \psi_\rho \in L^\infty(\Omega), \quad m_3 < \psi_\rho(x) < M_3,$$

437 where the constants $\lambda_0, \mu_0, \rho_0 > 0$ and the bounds $m_1, m_2, m_3 > 0$ and $\rho_0 > M_3$. The coefficients λ, μ and ρ model inhomogeneities in an otherwise homogeneous background medium

439 given by the coefficients λ_0 , μ_0 and ρ_0 . In this section, we will give a method to recover
440 $\text{osupp}(D) := \text{osupp}(\chi_D)$ (see Section 6 in [11]) from the far field operator, and thus the shape
441 of the region where the coefficients differ from the background coefficients λ_0 , μ_0 and ρ_0 .

442 Let $B \subseteq \Omega$ be a ball, the test coefficients λ^\flat , μ^\flat and ρ^\flat are defined by

$$\begin{aligned} 443 \quad \lambda^\flat(x) &= \lambda_0 + \chi_B(x)\alpha_1, \\ 444 \quad (5.2) \quad \mu^\flat(x) &= \mu_0 + \chi_B(x)\alpha_2, \\ 445 \quad \rho^\flat(x) &= \rho_0 - \chi_B(x)\alpha_3, \end{aligned}$$

447 where $\alpha_j \geq 0$ ($j = 1, 2, 3$) are constants.

448 **Theorem 5.1.** *Let $B \subseteq \Omega$ and $\alpha_j \geq 0$ be as in (5.2), and set $\alpha := (\alpha_1, \alpha_2, \alpha_3)$. The
449 following holds:*

450 (i) *Assume that $B \subseteq D_j$, for $j \in \mathbb{I}$ for some $\mathbb{I} \subset \{1, 2, 3\}$. Then for all α_j with $\alpha_j \leq m_j$,
451 $j \in \mathbb{I}$, and $\alpha_j = 0$, $j \notin \mathbb{I}$, the operator $\Re(S_c^*(F_{c^\flat} - F_c))$ has finitely many negative eigenvalues.*

452 (ii) *If $B \not\subseteq \text{osupp}(D)$, then for all α , $|\alpha| \neq 0$, the operator $\Re(S_c^*(F_{c^\flat} - F_c))$ has infinitely
453 many negative eigenvalues.*

454 Where F_c is the far field operator for the coefficients in (5.1) and F_{c^\flat} is the far field
455 operator for the coefficients in (5.2).

456 **Proof.** Notice firstly that $\Re(S_c^*(F_{c^\flat} - F_c))$ is a compact self-adjoint operator.

457 (i) Assume that $B \subseteq D_j$ for $j \in \mathbb{I}$. Choose $0 \leq \alpha_j \leq m_j$ for $j \in \mathbb{I}$ and $\alpha_j = 0$ for $j \notin \mathbb{I}$.
458 Moreover choose $F_{c_1} = F_c$ and $F_{c_2} = F_{c^\flat}$ in Theorem 3.6. According to Theorem 3.6 there
459 exists a finite dimensional subspace $V \subseteq [L^2(\mathbb{S})]^2$, such that if $g \in V^\perp$, then

$$\begin{aligned} 460 \quad \sqrt{8\pi\omega} \Re\langle S_c^*(F_{c^\flat} - F_c)g, g \rangle &\geq \int_{\mathbb{R}^2} E_{\lambda-\lambda^\flat, \mu-\mu^\flat}(\bar{u}_{c,g}, u_{c,g}) + (\rho^\flat - \rho)\omega^2 |u_{c,g}|^2 dy \\ 461 \quad &= \int_{\mathbb{R}^2} 2(\mu - \mu^\flat)|\hat{\nabla}u_{c,g}|^2 + (\lambda - \lambda^\flat)|\nabla \cdot u_{c,g}|^2 + (\rho^\flat - \rho)\omega^2 |u_{c,g}|^2 dy \\ 462 \quad &\geq \int_{D_2} 2(m_2 - \alpha_2\chi_B)|\hat{\nabla}u_{c,g}|^2 dy + \int_{D_1} (m_1 - \alpha_1\chi_B)|\nabla \cdot u_{c,g}|^2 dy \\ 463 \quad &\quad + \int_{D_3} \omega^2(m_3 - \alpha_3\chi_B)|u_{c,g}|^2 dy \geq 0 \end{aligned}$$

465 where we use the properties in (5.1) and

$$466 \quad E_{\lambda, \mu}(u, v) = 2\mu\hat{\nabla}u : \hat{\nabla}v + \lambda\nabla \cdot u \nabla \cdot v \quad \text{with} \quad \hat{\nabla}u := \frac{1}{2} \left(\nabla u + (\nabla u)^\top \right).$$

467 That is,

$$468 \quad \Re\langle S_c^*(F_{c^\flat} - F_c)g, g \rangle \geq 0, \quad \forall g \in V^\perp.$$

469 Hence, we have that $\Re(S_c^*(F_{c^\flat} - F_c))$ has finitely many negative eigenvalues.

470 (ii) We assumed on the contrary that $\Re(S_c^*(F_{c^\flat} - F_c))$ has finitely many negative eigen-
471 values, then there is a finite dimensional subspace $\tilde{V} \subseteq [L^2(\mathbb{S})]^2$, such that

$$472 \quad (5.3) \quad \Re\langle S_c^*(F_{c^\flat} - F_c)g, g \rangle \geq 0, \quad \forall g \in \tilde{V}^\perp.$$

473 To obtain a contradiction we consider Theorem 3.6, where $F_{c_1} = F_{c^\flat}$ and $F_{c_2} = F_c$ and which
474 is rearranged to give

$$\begin{aligned}
475 \quad & \sqrt{8\pi\omega} \Re \langle S_{c^\flat}^*(F_{c^\flat} - F_c)g, g \rangle \leq \int_{\mathbb{R}^2} E_{\lambda-\lambda^\flat, \mu-\mu^\flat}(\bar{u}_{c^\flat, g}, u_{c^\flat, g}) + (\rho^\flat - \rho)\omega^2 |u_{c^\flat, g}|^2 dy \\
476 \quad & = \int_{\mathbb{R}^2} 2(\mu - \mu^\flat) |\widehat{\nabla} u_{c^\flat, g}|^2 + (\lambda - \lambda^\flat) |\nabla \cdot u_{c^\flat, g}|^2 + \omega^2 (\rho^\flat - \rho) |u_{c^\flat, g}|^2 dy \\
477 \quad & = \int_{\Omega} 2(\psi_\mu \chi_{D_2} - \alpha_2 \chi_B) |\widehat{\nabla} u_{c^\flat, g}|^2 + (\psi_\lambda \chi_{D_1} - \alpha_1 \chi_B) |\nabla \cdot u_{c^\flat, g}|^2 \\
478 \quad & \quad + \omega^2 (\psi_\rho \chi_{D_3} - \alpha_3 \chi_B) |u_{c^\flat, g}|^2 dy.
\end{aligned}$$

480 By Theorem 4.3 we can choose some sequences $(g_m^{(j)})_{m \in \mathbb{N}} \subseteq V^\perp$ ($j = 1, 2, 3$) such that

$$\begin{aligned}
481 \quad & \|u_{c^\flat, g_m^{(1)}}\|_{[L^2(B)]^2} \rightarrow \infty \quad \text{and} \quad \|u_{c^\flat, g_m^{(1)}}\|_{[H^1(D)]^2} \rightarrow 0 \quad \text{as} \quad m \rightarrow \infty; \\
482 \quad & \\
483 \quad & \|\nabla \cdot u_{c^\flat, g_m^{(2)}}\|_{L^2(B)} \rightarrow \infty \quad \text{and} \quad \|u_{c^\flat, g_m^{(2)}}\|_{[H^1(D)]^2} \rightarrow 0 \quad \text{as} \quad m \rightarrow \infty; \\
484 \quad & \\
485 \quad & \|\widehat{\nabla} u_{c^\flat, g_m^{(3)}}\|_{[L^2(B)]^{2 \times 2}} \rightarrow \infty \quad \text{and} \quad \|u_{c^\flat, g_m^{(3)}}\|_{[H^1(D)]^2} \rightarrow 0 \quad \text{as} \quad m \rightarrow \infty.
\end{aligned}$$

486 Inserting these solutions to the previous inequality yields

$$\begin{aligned}
487 \quad & \sqrt{8\pi\omega} \Re \langle S_{c^\flat}^*(F_{c^\flat} - F_c)g_m^{(j)}, g_m^{(j)} \rangle \leq C \int_D |\widehat{\nabla} u_{c^\flat, g_m^{(j)}}|^2 + |\nabla \cdot u_{c^\flat, g_m^{(j)}}|^2 + |u_{c^\flat, g_m^{(j)}}|^2 dy \\
488 \quad & \quad - \int_B \alpha_1 |\nabla \cdot u_{c^\flat, g_m^{(j)}}|^2 + 2\alpha_2 |\widehat{\nabla} u_{c^\flat, g_m^{(j)}}|^2 + \alpha_3 |u_{c^\flat, g_m^{(j)}}|^2 dy.
\end{aligned}$$

490 Since $|\alpha| \neq 0$ and $\alpha_j \geq 0$, we see that the last integral becomes large and increasingly negative
491 while the first integral vanishes as m grows, and thus

$$492 \quad \Re \langle S_c^*(F_{c^\flat} - F_c)g_m^{(j)}, g_m^{(j)} \rangle = \Re \langle S_{c^\flat}^*(F_{c^\flat} - F_c)g_m^{(j)}, g_m^{(j)} \rangle < 0,$$

493 for large enough m . This is in contradiction with (5.3) which complete the proof. ■

494 Acknowledgments.

495 The work of J.L. Xiang is supported by the Natural Science Foundation of China (No.
496 12301542), the Open Research Fund of Hubei Key Laboratory of Mathematical Sciences (Cen-
497 tral China Normal University, MPL2025ORG017) and the China Scholarship Council.

498

REFERENCES

- 499 [1] Albicker A, Griesmaier R. Monotonicity in inverse obstacle scattering on unbounded domains. Inverse
500 Probl., 2020, 36(8): 085014
- 501 [2] Albicker A, Griesmaier R. Monotonicity in inverse scattering for Maxwell's equations. Inverse Probl.
502 Imag., 2023, 17: 68-105

503 [3] Arens T, Griesmaier R, Zhang R. Monotonicity-based shape reconstruction for an inverse scattering
504 problem in a waveguide. *Inverse Probl.*, 2023, 39(7): 075009

505 [4] Colton D, Kirsch A. A simple method for solving inverse scattering problems in the resonance region.
506 *Inverse Probl.*, 1996, 12: 383-393

507 [5] Colton D, Kress R. *Inverse Acoustic and Electromagnetic Scattering Theory*. 4th ed. Springer Nature
508 Switzerland AG, 2019

509 [6] Daimon T, Furuya T, Saiin R. The monotonicity method for the inverse crack scattering problem. *Inverse
510 Probl. Sc. En.*, 2020, 28(11): 1570-1581

511 [7] Eberle S, Harrach B. Monotonicity-based regularization for shape reconstruction in linear elasticity. *Com-
512 putational Mechanics*, 2022, 69: 1069-1086

513 [8] Eberle S, Harrach, B. Shape reconstruction in linear elasticity: standard and linearized monotonicity
514 method. *Inverse Probl.*, 2021, 37(4): 045006

515 [9] Eberle S, Harrach, B. Resolution guarantees for the reconstruction of inclusions in linear elasticity based
516 on monotonicity methods. *Inverse Probl.*, 2023, 39(7): 075006

517 [10] Eberle S, Harrach B, Meftahi H, Rezgui T. Lipschitz stability estimate and reconstruction of lamé pa-
518 rameters in linear elasticity. *Inverse Prob. Sci. Eng.*, 2020, 29(2): 1-22

519 [11] Eberle S, Pohjola V. The monotonicity method for inclusion detection and the time harmonic elastic wave
520 equation. *Inverse Probl.*, 2024, 40(4): 045018

521 [12] Eberle S, Moll J. Experimental detection and shape reconstruction of inclusions in elastic bodies via a
522 monotonicity method. *Int. J. Solids Struct.*, 2021, 233: 111169

523 [13] Furuya T. The factorization and monotonicity method for the defect in an open periodic waveguide. *J.
524 Inve. Ill-posed Prob.*, 2020, 28(6): 783-796

525 [14] Furuya T. Remarks on the factorization and monotonicity method for inverse acoustic scatterings. *Inverse
526 Probl.*, 2021, 37(6): 065006

527 [15] Griesmaier R, Harrach B. Monotonicity in inverse medium scattering on unbounded domains. *SIAM J.
528 Appl. Math.*, 2018, 78(5): 2533-2557

529 [16] Harrach B, Pohjola V, Salo M. Monotonicity and local uniqueness for the Helmholtz equation. *Anal.
530 PDE*, 2019, 12(7): 1741-1771

531 [17] Harrach B, Pohjola V, Salo M. Dimension bounds in monotonicity methods for the Helmholtz equation.
532 *SIAM J. Math. Anal.*, 2019, 51(4): 2995-3019

533 [18] Harrach B, Ullrich M. Monotonicity based shape reconstruction in electrical impedance tomography.
534 *SIAM J. Math. Anal.*, 2013, 45(6): 3382-3403

535 [19] Harrach B, Lin Y H. Simultaneous recovery of piecewise analytic coefficients in a semilinear elliptic
536 equation. *Nonlinear Analysis*, 2023, 228: 113188

537 [20] Ikehata M. Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. *Inverse
538 Probl.*, 1998, 14: 949-954

539 [21] Kirsch A, Grinberg N. *The Factorization Method for Inverse Problems*. Oxford: Oxford University Press,
540 2008

541 [22] Lakshtanov E, Lechleiter A. Difference factorizations and monotonicity in inverse medium scattering for
542 contrasts with fixed sign on the boundary. *SIAM J. Math. Anal.*, 2016, 48: 3688-3707

543 [23] Potthast R. *Point Sources and Multipoles in Inverse Scattering Theory*. Boca Raton, FL: Chapman,
544 Hall/CRC, 2001

545 [24] Potthast R. Stability estimates and reconstructions in inverse acoustic scattering using singular sources.
546 *J. Comput. Appl. Math.* 2000, 114: 247-274

547 [25] Sevroglou V. The far-field operator for penetrable and absorbing obstacles in 2D inverse elastic scattering.
548 *Inverse Probl.*, 2005, 21(2): 717-738