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Abstract. We discuss a time-harmonic inverse scattering problem for the Navier equation with compactly5
supported penetrable and possibly inhomogeneous scattering objects in an unbounded homogeneous6
background medium, and we develop a monotonicity relation for the far field operator that maps7
superpositions of incident plane waves to the far field patterns of the corresponding scattered waves.8
Combining the monotonicity relation with the method of localized potentials, we extend the so called9
monotonicity method to characterize the support of inhomogeneities in the Lamé parameters and10
the density in terms of the far field operator.11
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1. Introduction. The wave scattering problem is an important research direction in the15

inverse problem of partial differential equations, which has been widely used in engineering16

fields such as nondestructive testing, environmental science, geophysical exploration and med-17

ical diagnosis. While the well-posedness of the direct scattering problem has been thoroughly18

investigated through the integral equation and variational methods, the inverse problem has19

also attracted a wide variety of extensive and intensive investigations [5].20

The reconstruction of the position and shape of unknown scatterers from the far field21

data is a fundamental but severely ill-posed problem in inverse scattering problems. In the22

past two decades, efficient qualitative reconstruction algorithms have received widespread23

attention, and there are two representative non-iterative methods: decomposition methods and24

sampling methods. Decomposition methods include the dual space method [5] and the point25

source method [23], and sampling methods include the singular sources method [24], the probe26

method [20], the linear sampling method [4] and the factorization method [21], whose main27

idea is to construct a certification associated with measurement data to detect the targeted28

object. Among qualitative methods for shape reconstruction, the monotonicity method has29

been recently introduced by Harrach in [18] for the electrical impedance tomography. It is30

formulated in terms of far field operators that map superpositions of incident plane waves,31

which are being scattered at the unknown scattering objects, to the far field patterns of the32

corresponding scattered waves. Comparing with the factorization method [21], the general33

theorem of the monotonicity method does not assume that the real part of the middle operator34

of the far field operator has a decomposition into a positive coercive operator and a compact35

operator, which means that the monotonicity method generates reconstruction schemes under36
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weaker a priori assumptions for unknown targets [14].37

In [22], Lakshtanov and Lechleiter have generalized the factorization method for inverse38

medium scattering using a particular factorization of the difference of two far field operators39

and obtained a monotonicity principle which yields a simple algorithm to compute upper and40

lower bounds for boundary values. Therefore, the monotonicity method is closely related41

to the factorization method. Very recently, the monotonicity analysis from [18] has been42

extended to inverse coefficient problems for the Helmholtz equation in a bounded domain for43

fixed nonresonance frequency and real-valued scattering coefficient function [16, 17], where the44

authors have shown a monotonicity relation between the scattering coefficient and the local45

Neumann-to-Dirichlet operator. Combining this with the method of localized potentials, they46

have derived a constructive monotonicity based characterization of scatterers from partial47

boundary data [16] and improved the bounds for the space dimension [17]. Then, Griesmaier48

and Harrach [15] have made a generalization of these results to the inverse medium scattering49

problem on unbounded domains with plane wave incident fields and far field observations of50

the scattered waves. Furthermore, the monotonicity method has also been extended to the51

inverse mixed obstacle scattering [1], an inverse Dirichlet crack detection [6], an open periodic52

waveguide [13], a closed cylindrical waveguide [3] and the references therein [2, 14, 19].53

Concerning the isotropic linear elasticity in the stationary case, the monotonicity result54

between the Lamé parameters and the Neumann-to-Dirichlet operator and the existence of55

localized potentials has been presented in [10], which has been applied to detect and recon-56

struct inclusions based on the standard as well as linearized monotonicity tests in [8, 9, 12]. To57

make a significant improvement over standard regularization techniques, Eberle and Harrach58

have dealed with the same problem by the monotonicity-based regularization method [7]. For59

the non-stationary or time harmonic case of the Navier equation, the paper [11] has extended60

the monotonicity method for inclusion detection and shown how to determine certain types61

of inhomogeneities in the Lamé parameters and the density. The main contribution of the62

present work is the generalization of the monotonicity method to the time-harmonic inverse63

elastic scattering problem on unbounded domains. Our approach relies on the monotonicity64

of the far field operator with respect to the Lamé parameters as well as the density and the65

techniques of localized potentials.66

The outline of this article is as follows. After briefly introducing the mathematical setting67

of the scattering problem in Section 2, we develop the monotonicity relation for the far field68

operator in Section 3. In Section 4 we discuss the existence of localized wave functions for69

the Navier equation in unbounded domains, and we use them to provide a converse of the70

monotonicity relation from Section 3. In Section 5 we establish rigorous characterizations of71

the support of scattering objects in terms of the far field operator.72

2. Problem formulation. In this paper, we consider the inverse medium scattering prob-73

lem of time-harmonic elastic waves and deal with the shape reconstruction problem, which is74

also known as the detection problem. Assume that the propagation of time-harmonic waves75

is in an isotropic non-absorbing and inhomogeneous elastic medium with the density function76

ρ and Lamé constants µ and λ satisfying µ > 0, µ + λ > 0 in R2. We are specifically in-77

terested in determining the region where the material properties λ, µ or ρ differ from some78

known constant background values λ0, µ0 or ρ0, when given a set of far field measurements79
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in the form of the far field operator. This problem corresponds physically to determining the80

inhomogeneous regions in the body Ω from far field measurements. Here we assume that λ0,81

µ0, ρ0 > 0 are some known constants, and there is a jump in the material parameters82

λ = λ0 + χD1ψ1, D1 ⊆ Ω,83

µ = µ0 + χD2ψ2, D2 ⊆ Ω,84

ρ = ρ0 − χD3ψ3, D3 ⊆ Ω,8586

where χDj (j = 1, 2, 3) are the characteristic functions of the sets Dj and ψj |Dj ∈ L∞+ (Dj) :=87

{ψ ∈ L∞(Dj), ess infDjψ > 0}, so that there is a jump in the material parameters at the88

boundaries ∂Dj of the regions where the material parameters differ from the background89

values.90

The scattering problem we are dealing with is modeled by the following Navier equation:91

(2.1) ∆∗λ,µuc + ρω2uc = 0, in R2 (c := (λ, µ, ρ)).92

The circular frequency ω > 0 and ∆∗λ,µ denotes the Lamé operator µ∆ + (µ+ λ)∇(∇·). Here,93

uc = uin + usc
c is the total displacement field, which is a superposition of the given incident94

plane wave uin and the scattered wave usc
c . By the Helmholtz decomposition theorem, the95

scattered field usc
c can be decomposed as usc

c = up + us, where up denotes the compressional96

wave and us denotes the shear wave, kp is the compressional wave number and ks is the shear97

wave number. They are given by the following forms respectively:98

up := up(λ, µ, ρ) := − 1

k2
p

∇(∇ · usc
c ), us := us(λ, µ, ρ) :=

1

k2
s

−−→
curl curlusc

c ,99

100

kp := kp(λ, µ, ρ) := ω

√
ρ

2µ+ λ
, ks := ks(λ, µ, ρ) := ω

√
ρ

µ
,101

with102

∇·u :=
∂u1

∂x1
+
∂u2

∂x2
, curlu = ∇⊥·u :=

∂u2

∂x1
−∂u1

∂x2
,
−−→
curl :=

(
∂

∂x2
,− ∂

∂x1

)>
, u = [u1, u2]>.103

And up, us satisfy ∆up + k2
pup = 0 and ∆us + k2

sus = 0. In addition, the Kupradze radiation104

condition is required to the scattered field usc
c , i.e.105

(2.2) lim
r→∞

√
r
(∂up
∂r
− ikp0up

)
= 0, lim

r→∞

√
r
(∂us
∂r
− iks0us

)
= 0, r = |x|.106

The radiation condition (2.2) is assumed to hold in all directions x̂ = x/|x| ∈ S := {x ∈107

R2, |x| = 1} and kt0 := kt(λ0, µ0, ρ0) (t = p, s). Throughout this paper, the solution to the108

Navier equation (2.1) satisfying the Kupradze radiation condition (2.2) is called the radiating109

solution. It is well known that the radiating solution to the Navier equation has the following110

asymptotic expansions:111

usc
c (x) =

eikp0r√
r
u∞p (x̂)x̂+

eiks0r√
r
u∞s (x̂)x̂⊥ +O

( 1

r3/2

)
, as r →∞,112
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and113

Tλ,µu
sc
c (x) =

iω2

kp0

eikp0r√
r
u∞p (x̂)x̂+

iω2

ks0

eiks0r√
r
u∞s (x̂)x̂⊥ +O

(1

r

)
, as r →∞.114

The stress vector Tλ,µu is defined by115

Tλ,µu := 2µ
∂u

∂ν
+ λν ∇ · u− µν⊥∇⊥ · u,116

where ν denotes the unit exterior normal vector and ν⊥ is obtained by rotating ν anticlockwise117

by π/2. The functions u∞p , u∞s are known as compressional and shear far-field patterns of usc
c ,118

respectively. We will denote the pair of far-field patterns (u∞p (x̂), u∞s (x̂)) of the corresponding119

scattered field by u∞c (x̂), i.e.120

u∞c (x̂) = (u∞p (x̂), u∞s (x̂)).121

Next we introduce the elastic Herglotz wave function with density g = (gp, gs) ∈ [L2(S)]2122

defined by123

(2.3) vg(x) = e−iπ/4
∫
S

{√
kp0
ω
eikp0d·xdgp(d) +

√
ks0
ω
eiks0d·xd⊥gs(d)

}
ds(d).124

The Hilbert space [L2(S)]2 in this paper is equipped with the inner product:125

〈g, h〉 =
ω

kp

∫
S
gphpds+

ω

ks

∫
S
gshsds, g, h ∈ [L2(S)]2.126

For the special case of a plane wave incident field uin(x, d) = deikp0x·d + d⊥eiks0x·d, we127

explicitly indicate the dependence on the incident direction d ∈ S by a second argument and128

accordingly we write usc
c (x, d), uc(x, d) and u∞c (x̂, d) for the corresponding scattered field, total129

field, and far field pattern of the problem (2.1)-(2.2), respectively. Define the elastic far-field130

operator Fcg : [L2(S)]2 −→ [L2(S)]2 (c := (λ, µ, ρ)) by131

(2.4) (Fcg)(x̂) = e−iπ/4
∫
S

{√
kp0
ω
u∞c (x̂, d)dgp(d) +

√
ks0
ω
u∞c (x̂, d)d⊥gs(d)

}
ds(d),132

By linearity, for any given function g ∈ [L2(S)]2, the solution to the direct scattering133

problem (2.1)-(2.2) with incident field of the elastic Herglotz wave function vg defined by134

(2.3) is135

(2.5) uc,g(x) =

∫
S
uc(x, d)g(d)ds(d), x ∈ R2,136

and the corresponding scattered field137

usc
c,g(x) =

∫
S
usc
c (x, d)g(d)ds(d), x ∈ R2,138
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has the far field pattern u∞c,g satisfying u∞c,g = Fcg.139

Finally, we introduce the fundamental solution of the Navier equation (2.1) in R2 space140

which is given by141

Γc(x, y) =
i

4µ
H

(1)
0 (ks|x− y|)I +

i

4ω2
∇>x∇x

(
H

(1)
0 (ks|x− y|)−H(1)

0 (kp|x− y|)
)

142

for x, y ∈ R2 and x 6= y, where H
(1)
0 (·) is the Hankel function of the first kind of order zero143

and I is the identity matrix. In addition, the subscript x is used to denote differentiation with144

respect to the corresponding variable. The far field patterns Γ∞p and Γ∞s are given by145

Γ∞p (x̂, y) =
1

λ+ 2µ

e
iπ
4√

8πkp
e−ikpx̂·yJ(x̂), Γ∞s (x̂, y) =

1

µ

e
iπ
4

√
8πks

e−iksx̂·yJ(x̂⊥),146

where J(z) = zz>

|z|2 for any z ∈ R2, z 6= 0.147

3. A monotonicity relation for the far field operator. In this section we derive some148

monotonicity relations between the parameters (λ, µ, ρ) and the far field operator F that are149

of fundamental importance in justifying monotonicity based shape reconstruction, and will be150

needed in the later sections.151

Lemma 3.1. Let λ, µ, ρ ∈ L∞+ (R2), and let BR(O) be a ball containing Ω. Then152

(3.1) 〈g, Fcg〉 =
1√
8πω

∫
∂BR(O)

(
T0vg u

sc,+
c,g − T0u

sc,+
c,g vg

)
ds.153

If λj, µj, ρj ∈ L∞+ (R2), then for any j, l ∈ {1, 2} we have154

(3.2)

∫
∂BR(O)

(usc,+
cj ,g T0u

sc,+
cl,g − u

sc,+
cl,g T0u

sc,+
cj ,g )ds = −2iω〈Fcjg, Fclg〉.155

Proof. The general form of Eλ,µ(u, v) is given by156

Eλ,µ(u, v) =(2µ+ λ)
(∂u1

∂x1

∂v1

∂x1
+
∂u2

∂x2

∂v2

∂x2

)
+ µ

(∂u1

∂x2

∂v1

∂x2
+
∂u2

∂x1

∂v2

∂x1

)
157

+ λ
(∂u1

∂x1

∂v2

∂x2
+
∂u2

∂x2

∂v1

∂x1

)
+ µ

(∂u1

∂x2

∂v2

∂x1
+
∂u2

∂x1

∂v1

∂x2

)
.158

159

By Betti Representation Theorem, we have160

usc,+
c,g (x) =

∫
∂BR(O)

[[
T0Γ0(x, y)

]>
usc,+
c,g (y)− Γ0(x, y)T0u

sc,+
c,g (y)

]
ds(y), x ∈ R2\Ω,161

with162

Tju := Tλj ,µju = 2µj
∂u

∂ν
+ λjν ∇ · u− µjν⊥∇⊥ · u, ∆∗j := ∆∗λj ,µj , Ej := Eλj ,µj ,163
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164

Γj(x, y) := Γcj (x, y) =
i

4µj
H

(1)
0 (ksj |x− y|)I +

i

4ω2
∇>x∇x

(
H

(1)
0 (ksj |x− y|)−H

(1)
0 (kpj |x− y|)

)
,165

166

cj := (λj , µj , ρj), kpj := kp(λj , µj , ρj) := ω

√
ρj

2µj + λj
, ksj := ks(λj , µj , ρj) := ω

√
ρj
µj
.167

From the asymptotic behavior of the Hankel function H
(1)
0 (·) and the far field patterns Γ∞p ,168

Γ∞s , it follows that the far field patterns of usc,+
c,g (x) are given by169

u∞p (d)d =
eiπ/4√
8πkp0

k2
p0

ω2

∫
∂BR(O)

{[
J(d)T0e

−ikp0d·y
]>
usc,+
c,g (y)− J(d)e−ikp0d·yT0u

sc,+
c,g (y)

}
ds,170

171

u∞s (d)d⊥ =
eiπ/4√
8πks0

k2
s0

ω2

∫
∂BR(O)

{[
J(d)⊥T0e

−iks0d·y
]>
usc,+
c,g (y)− J(d)⊥e−iks0d·yT0u

sc,+
c,g (y)

}
ds172

where J(d)⊥ = I − J(d). Thus,173

〈g, Fcg〉 =
ω

kp0

∫
S
gpu∞p ds(d) +

ω

ks0

∫
S
gsu∞s ds =

1√
8πω

∫
∂BR(O)

(
T0vg u

sc,+
c,g − T0u

sc,+
c,g vg

)
ds.174

175

Let r > R, then usc
cj ,g ∈ [H1

loc(R2)]2 solve (for cj := (λj , µj , ρj))176

µ0∆usc
c,g + (µ0 + λ0)∇(∇·)usc

c,g + ρ0ω
2usc
c,g = 0 inBr(O)\BR(O),177

and applying Betti’s formula we obtain that178

(3.3)

∫
∂Br(O)

(usc,+
cj ,g T0u

sc,+
cl,g − u

sc,+
cl,g T0u

sc,+
cj ,g )ds =

∫
∂BR(O)

(usc,+
cj ,g T0u

sc,+
cl,g − u

sc,+
cl,g T0u

sc,+
cj ,g )ds179

Using the radiation condition (2.2) and the far field expansion we find that, as r →∞,180

(3.4)

∫
∂Br(O)

(usc,+
cj ,g T0u

sc,+
cl,g − u

sc,+
cl,g T0u

sc,+
cj ,g )ds = −2iω〈Fcjg, Fclg〉.181

Substituting (3.4) into (3.3) and letting r →∞ finally gives (3.2).182

The next tool we will use to prove the monotonicity relation for the far field operator is183

the following integral identity.184

Lemma 3.2. If λj, µj, ρj ∈ L∞+ (R2) and BR(O) is a ball containing Ω. Then, for any185

g ∈ [L2(S)]2, it holds that186
√

8πω (〈Fc1g, g〉 − 〈g, Fc2g〉)− 2iω〈Fc1g, Fc2g〉(3.5)187

=

∫
∂BR(O)

(uc2,g − uc1,g)(T2uc2,g − T1uc1,g)ds188

+

∫
BR(O)

ρ2ω
2|uc2,g − uc1,g|2 − E2(uc1,g − uc2,g, uc1,g − uc2,g)dy189

+

∫
BR(O)

E2(uc1,g, uc1,g)− E1(uc1,g, uc1,g) + (ρ1 − ρ2)ω2|uc1,g|2dy.190

191
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Proof. The identity (3.1) and (3.2) (with j = 1 and l = 2 ) immediately imply that192

√
8πω (〈Fc1g, g〉 − 〈g, Fc2g〉)− 2iω〈Fc1g, Fc2g〉193

=

∫
∂BR(O)

(
T0vg u

sc,+
c1,g − T0u

sc,+
c1,g vg

)
ds−

∫
∂BR(O)

(
T0vg u

sc,+
c2,g − T0u

sc,+
c2,g vg

)
ds194

+

∫
∂BR(O)

(usc,+
c1,g T0u

sc,+
c2,g − u

sc,+
c2,g T0u

sc,+
c1,g )ds195

=

∫
∂BR(O)

(usc,+
c1,g T2u

−
c2,g − u−c2,g T0u

sc,+
c1,g )ds−

∫
∂BR(O)

(
T0vg u

sc,+
c2,g − T0u

sc,+
c2,g vg

)
ds196

=

∫
∂BR(O)

(u−c1,g T2u
−
c2,g − u−c2,g T1u

−
c1,g)ds−

∫
∂BR(O)

(vg T2u
−
c2,g − u−c2,g T0vg)ds197

−
∫
∂BR(O)

(
T0vg u

−
c2,g − T2u

−
c2,g vg

)
ds+

∫
∂BR(O)

(
T0vg vg − T0vg vg

)
ds198

=

∫
∂BR(O)

(u−c1,g T2u
−
c2,g − u−c2,g T1u

−
c1,g)ds,199

200

where we have used the transmission boundary conditions201

usc,+
cj ,g + vg = u−cj ,g, T0u

sc,+
cj ,g + T0vg = Tju

−
cj ,g on ∂BR(O).202

For notational simplicity, we omit the superscript, that is,203 ∫
∂BR(O)

(u−c1,g T2u
−
c2,g − u−c2,g T1u

−
c1,g)ds :=

∫
∂BR(O)

(uc1,g T2uc2,g − uc2,gT1uc1,g)ds204

=

∫
∂BR(O)

(uc2,g − uc1,g)(T2uc2,g − T1uc1,g)ds205

+

∫
∂BR(O)

(uc1,gT2uc2,g − uc2,gT2uc2,g + uc1,gT2uc2,g − uc1,g T1uc1,g)ds.206

207

Applying Betti’s formula yields208 ∫
∂BR(O)

(uc1,gT2uc2,g − uc2,gT2uc2,g + uc1,gT2uc2,g − uc1,g T1uc1,g)ds209

=

∫
BR(O)

E2(uc1,g − uc2,g, uc2,g) + E2(uc1,g, uc2,g − uc1,g) + E2(uc1,g, uc1,g)− E1(uc1,g, uc1,g)dy210

+ ω2

∫
BR(O)

ρ2 uc2,guc2,g − ρ2 uc1,guc2,g − ρ2 uc1,guc2,g + ρ1 uc1,guc1,gdy211

=

∫
BR(O)

ρ2ω
2|uc2,g − uc1,g|2 − E2(uc1,g − uc2,g, uc1,g − uc2,g)dy212

+

∫
BR(O)

E2(uc1,g, uc1,g)− E1(uc1,g, uc1,g) + (ρ1 − ρ2)ω2|uc1,g|2dy,213

214
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Consequently, we obtain that215
√

8πω (〈Fc1g, g〉 − 〈g, Fc2g〉)− 2iω〈Fc1g, Fc2g〉216

=

∫
∂BR(O)

(uc2,g − uc1,g)(T2uc2,g − T1uc1,g)ds217

+

∫
BR(O)

ρ2ω
2|uc2,g − uc1,g|2 − E2(uc1,g − uc2,g, uc1,g − uc2,g)dy218

+

∫
BR(O)

E2(uc1,g, uc1,g)− E1(uc1,g, uc1,g) + (ρ1 − ρ2)ω2|uc1,g|2dy.219

220

Lemma 3.3 (Theorem 2 in [25]). The scattering matrix given by Sc = I + i
√

ω
2πFc is a221

unitary operator, i.e. S∗cSc = ScS
∗
c = I.222

Remark 3.4. Since the adjoint of the scattering operator Sc1 is given by223

S∗c1 = I − i
√

ω

2π
F ∗c1 ,224

we find that225

S∗c1 (Fc2 − Fc1) = Fc2 − Fc1 − i
√

ω

2π

(
F ∗c1Fc2 − F

∗
c1Fc1

)
,226

and accordingly227

<
(
S∗c1 (Fc2 − Fc1)

)
= <

(
Fc2 − Fc1 − i

√
ω

2π
F ∗c1Fc2

)
.228

Therefore the real part of the first two terms on the left-hand side of (3.5) fulfills229

<
(√

8πω (〈Fc1g, g〉 − 〈g, Fc2g〉)− 2iω 〈Fc1g, Fc2g〉
)

230

=−
√

8πω <
(
〈g, Fc2g〉 − 〈Fc1g, g〉+ i

√
ω

2π
〈Fc1g, Fc2g〉

)
231

=−
√

8πω <
(
〈Fc2g, g〉 − 〈Fc1g, g〉 − i

√
ω

2π
〈Fc2g, Fc1g〉

)
232

=−
√

8πω <
〈
S∗c1 (Fc2 − Fc1) g, g

〉
.233234

That is,235

√
8πω <

〈
S∗c1 (Fc2 − Fc1) g, g

〉
+

∫
BR(O)

Eλ2−λ1,µ2−µ1(uc1,g, uc1,g) + (ρ1 − ρ2)ω2|uc1,g|2dy

(3.6)

236

=

∫
BR(O)

E2(uc1,g − uc2,g, uc1,g − uc2,g)− ρ2ω
2|uc2,g − uc1,g|2dy237

−<

(∫
∂BR(O)

(uc2,g − uc1,g)(T2uc2,g − T1uc1,g)ds

)
.238

239
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Next we consider the right-hand side of (3.6), and we show that it is nonnegative if240

g belongs to the complement of a certain finite dimensional subspace V ⊆ [L2(S)]2. To241

that end we denote by J : [H1(BR(O))]2 → [L2(BR(O))]2 the compact embedding for any242

ball BR(O) containing Ω, and accordingly we define, for any ρ ∈ L∞+ (R2), the operator243

K : [H1(BR(O))]2 → [H1(BR(O))]2 by244

Kv := J∗Jv,245

and Kρ : [H1(BR(O))]2 → [H1(BR(O))]2 by246

Kρv := ρJ∗Jv.247

The special identity operator Iλ,µ : [H1(BR(O))]2 → [H1(BR(O))]2 is defined by248

〈Iλ,µv, w〉[H1(BR(O))]2 =

∫
BR(O)

Eλ,µ(v, w) + v w dy.249

Then K and Kρ are compact self-adjoint linear operators, and, for any v ∈ [H1(BR(O))]2,250

〈(Iλ,µ −K − ω2Kρ)v, v〉[H1(BR(O))]2 =

∫
BR(O)

Eλ,µ(v, v)− ρω2|v|2dy.251

For 0 < ε < R we denote by Nε : [H1(BR(O))]2 → [L2(∂BR(O))]2 the bounded linear252

operator that maps v ∈ [H1(BR(O))]2 to the stress vector T0vε on ∂BR(O) of the radiating253

solution to the exterior boundary value problem254

∆∗0vε + ρ0ω
2vε = 0 in R2\BR−ε(O), vε = v on ∂BR−ε(O),255

and Λ : [L2(∂BR(O))]2 → [L2(∂BR(O))]2 denotes the compact exterior Neumann-to-Dirichlet256

operator that maps ψ ∈ [L2(∂BR(O))]2 to the trace w|∂BR(O) of the radiating solution to257

∆∗0w + ρ0ω
2w = 0 in R2\BR(O), T0w = ψ on ∂BR(O).258

Then,259

Nεv = T0v|∂BR(O) and ΛNεv = v|∂BR(O),260

and accordingly261

〈N∗εΛNεv, v〉[H1(BR(O))]2 = 〈ΛNεv,Nεv〉[L2(∂BR(O))]2 =

∫
∂BR(O)

v T0v ds262

for any v ∈ [H1(BR(O))]2 that can be extended to a radiating solution of the Navier equation263

∆∗0v + ρ0ω
2v = 0 in R2\BR−ε(O).264
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Lemma 3.5. Let λj, µj, ρj ∈ L∞+ (R2) and let BR(O) be a ball containing Ω. Then there265

exists a finite dimensional subspace V ⊆ [L2(S)]2 such that266 ∫
BR(O)

E2(uc1,g − uc2,g, uc1,g − uc2,g)− ρ2ω
2|uc2,g − uc1,g|2dy267

−<

(∫
∂BR(O)

(uc2,g − uc1,g)(T2uc2,g − T1uc1,g)ds

)
≥ 0, for all g ∈ V ⊥.268

269

Proof. Let ε > 0 be sufficiently small, so that Ω ⊆ BR−ε(O). Then270 ∫
BR(O)

E2(uc1,g − uc2,g, uc1,g − uc2,g)− ρ2ω
2|uc2,g − uc1,g|2dy271

−<

(∫
∂BR(O)

(uc2,g − uc1,g)(T2uc2,g − T1uc1,g)ds

)
272

=

∫
BR(O)

E2(w,w)− ρ2ω
2|w|2dy −<

(∫
∂BR(O)

w T0w ds

)
273

=〈(Iλ2,µ2 −K − ω2Kρ2 −<(N∗εΛNε))w,w〉[H1(BR(O))]2274275

where w|BR(O) := usc,−
c2,g − u

sc,−
c1,g and w|∂BR(O) := usc,+

c2,g − u
sc,+
c1,g .276

Let W be the sum of eigenspaces of the compact self-adjoint operator K + ω2Kρ2 +277

Re(N∗εΛNε) associated to eigenvalues larger than 1. Then W is finite dimensional and278

〈(Iλ2,µ2 −K − ω2Kρ2 −<(N∗εΛNε))w,w〉[H1(BR(O))]2 ≥ 0 for all w ∈W⊥.279

For j = 1, 2 we denote by Sj : [L2(S)]2 → [H1(BR(O))]2 the bounded linear operator that maps280

g ∈ [L2(S)]2 to the restriction of the scattered field usc,−
cj ,g onBR(O). Then w|BR(O) = (S2−S1)g.281

Since, for any g ∈ [L2(S)]2,282

(S2 − S1)g ∈W⊥ if and only if g ∈ ((S2 − S1)∗W )⊥,283

and of course dim((S2−S1)∗W ) ≤ dim(W ) <∞, choosing V := (S2−S1)∗W ends the proof.284

Applying the above Lemma 3.5 in the equality (3.6) yields the main monotonicity inequal-285

ities (3.7)-(3.8) we will be using.286

Theorem 3.6. Let λj, µj, ρj ∈ L∞+ (R2). Then there exists a finite dimensional subspace287

V ⊆ [L2(S)]2 such that288

(3.7)
√

8πω <〈S∗c1(Fc2 − Fc1)g, g〉 ≥
∫
R2

Eλ1−λ2,µ1−µ2(uc1,g, uc1,g) + (ρ2 − ρ1)ω2|uc1,g|2dy,289

for all g ∈ V ⊥. In particular,290

(3.8) λ1 ≥ λ2, µ1 ≥ µ2, ρ2 ≥ ρ1 implies <(S∗c1Fc2) ≥fin <(S∗c1Fc1).291
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Remark 3.7. Since the scattering operators Sc1 and Sc2 are unitary, we find that292

S∗c1(Fc2 − Fc1) = i

√
2π

ω
S∗c1(Sc1 − Sc2) = i

√
2π

ω
(I − S∗c1Sc2)293

=

(
i

√
2π

ω
(S∗c2Sc1 − I)

)∗
=

(
i

√
2π

ω
S∗c2(Sc1 − Sc2)

)∗
=
(
S∗c2(Fc2 − Fc1)

)∗
.294

295

Recalling that the eigenvalues of a compact linear operator and of its adjoint are complex296

conjugates of each other, we conclude that the spectra of <(S∗c1(Fc2 − Fc1)) and <(S∗c2(Fc2 −297

Fc1)) coincide. Consequently, the monotonicity relations (3.7)-(3.8) remain true if we replace298

S∗c1 by S∗c2 in these formulas.299

Note that by interchanging λ1, µ1, ρ1 and λ2, µ2, ρ2, except for S∗c1 (see Remark 3.7), we300

may restate Theorem 3.6 as follows.301

Corollary 3.8. Let λj, µj, ρj ∈ L∞+ (R2). Then there exists a finite dimensional subspace302

V ⊆ [L2(S)]2 such that303

(3.9)
√

8πω <〈S∗c1(Fc2 − Fc1)g, g〉 ≤
∫
R2

Eλ1−λ2,µ1−µ2(uc2,g, uc2,g) + (ρ2 − ρ1)ω2|uc2,g|2dy,304

for all g ∈ V ⊥.305

4. Localized potentials for the Navier equation. In this section we establish the existence306

of localized wave functions that have arbitrarily large norm on some prescribed region B ⊆ R2307

while at the same time having arbitrarily small norm in a different region D ⊆ R2, assuming308

that R2\D is connected. These will be utilized to establish a rigorous characterization of309

the region Ω = supp(λ − λ0) ∪ supp(µ − µ0) ∪ supp(ρ − ρ0) where the material parameters310

differ from background in terms of the far field operator using the monotonicity relations from311

Theorem 3.6 and Corollary 3.8 in section 5 below.312

Lemma 4.1. Suppose that λ, µ, ρ ∈ L∞+ (R2) and assume that D ⊆ R2 is open and bounded.313

We define314

Lc,D : [L2(S)]2 → [H1(D)]2, g 7→ uc,g|D,315
316

L
(1)
c,D : [L2(S)]2 → [L2(D)]2, g 7→ uc,g|D,317

318

L
(2)
c,D : [L2(S)]2 → L2(D), g 7→ ∇ · uc,g|D,319

320

L
(3)
c,D : [L2(S)]2 → [L2(D)]2×2, g 7→ ∇̂uc,g|D,321

where uc,g ∈ [H1
loc(R2)]2 is given by (2.5) and ∇̂u := 1

2

(
∇u+ (∇u)>

)
. Then Lc,D, L

(1)
c,D, L

(2)
c,D322

and L
(3)
c,D are linear operators and their dual operator are given by323

L
′
c,D : [H1(D)′ ]2 → [L2(S)]2, f0 7→ S∗cw

∞
0 ;324
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325

L
(1)′

c,D : [L2(D)]2 → [L2(S)]2, f1 7→ S∗cw
∞
1 ;326

327

L
(2)′

c,D : L2(D)→ [L2(S)]2, f2 7→ S∗cw
∞
2 ;328

329

L
(3)′

c,D : [L2(D)]2×2 → [L2(S)]2, f3 7→ S∗cw
∞
3330

where Sc denotes the scattering operator, and w∞j ∈ [L2(S)]2 (j = 0, 1, 2, 3) is the far field331

pattern of the radiating solution wj ∈ [H1
loc(R2)]2 to332

√
8πω(f0, v) =

∫
BR(O)

(
Eλ,µ(w0, v)− ρω2w0v

)
dx−

∫
∂BR(O)

v Tλ,µw0 ds,333

334
√

8πω

∫
BR(O)

f1 v dx =

∫
BR(O)

(
Eλ,µ(w1, v)− ρω2w1v

)
dx−

∫
∂BR(O)

v Tλ,µw1 ds,335

336
√

8πω

∫
BR(O)

f2∇ · v dx =

∫
BR(O)

(
Eλ,µ(w2, v)− ρω2w2v

)
dx−

∫
∂BR(O)

v Tλ,µw2 ds,337

338
√

8πω

∫
BR(O)

f3 : ∇̂v dx =

∫
BR(O)

(
Eλ,µ(w3, v)− ρω2w3v

)
dx−

∫
∂BR(O)

v Tλ,µw3 ds,339

for all v ∈ [H1(BR(O))]2 with D ⊆ BR(O) (the round brackets denote the dual pairing between340

H1(D) and its dual space H1(D)′, and A : B =
2∑

i,j=1
aijbij for matrices A = (aij) and341

B = (bij)).342

Proof. The representation formula for the total field in (2.5) shows that Lc,D is a Fredholm343

integral operator with square integrable kernel and therefore linear from [L2(S)]2 to [H1(D)]2.344

Applying Betti’s formula and the representation formula for the far field pattern w∞0 of345

the radiating solution w0, we find that, for any g ∈ [L2(S)]2 and f0 ∈ [H1(D)′]2,346

√
8πω(Lc,Dg, f0) =

∫
BR(O)

(
Eλ,µ(w0, uc,g)− ρω2w0uc,g

)
dx−

∫
∂BR(O)

uc,g Tλ,µw0 ds347

=

∫
∂BR(O)

(w0 Tλ,µuc,g − uc,g Tλ,µw0) ds348

=

∫
∂BR(O)

(w0 Tλ,µvg − vg Tλ,µw0) ds+

∫
∂BR(O)

(
w0 Tλ,µu

sc
c,g − usc

c,g Tλ,µw0

)
ds349

=
√

8πω〈g, w∞0 〉+ 2iω〈Fcg, w∞0 〉 =
√

8πω

〈(
I + i

√
ω

2π
Fc

)
g, w∞0

〉
350

=
√

8πω 〈Sc g, w∞0 〉 =
√

8πω 〈g, S∗c w∞0 〉 .351352

That is, L
′
c,Df0 = S∗c w

∞
0 . The calculations for L

(1)′

c,D , L
(2)′

c,D and L
(3)′

c,D are the same, we omit it353

here for brevity. The proof is complete.354
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Lemma 4.2. Suppose that λ, µ, ρ ∈ L∞+ (R2) and let B, D ⊆ R2 be open and bounded such355

that R2\(B ∪D) is connected and B ∩D = ∅. Then,356

R(L
(`)′

c,B) ∩R(L
′
c,D) = {0} and R(L

′
c,B) ∩R(L

′
c,D) = {0} (` = 1, 2, 3).357

Proof. For simplicity, we focus on the case ` = 1 since the proof is similar. Suppose358

that h ∈ R(L
(1)′

c,B ) ∩ R(L
′
c,D). Then Lemma 4.1 shows that there exist fB ∈ [L2(B)]2, fD ∈359

[H1(D)′]2, and wB, wD ∈ [H1
loc(R2)]2 such that the far field patterns w∞B and w∞D of the360

radiating solutions to361

∆∗λ,µwB + ρω2wB = 0 in R2\B and ∆∗λ,µwD + ρω2wD = 0 in R2\D362

satisfy363

w∞B = w∞D = Sch.364

Rellich’s lemma and unique continuation guarantee that wB = wD in R2\(B ∪D). Hence we365

may define w ∈ [H1
loc(R2)]2 by366

w :=


wB = wD in R2\(B ∪D),

wB in D,

wD in B,

367

and w is the unique radiating solution to368

∆∗λ,µw + ρω2w = 0 in R2.369

Thus w = 0 in R2, and since the scattering operator is unitary, this shows that h = S∗cw
∞ =370

0.371

Theorem 4.3. Suppose that λ, µ, ρ ∈ L∞+ (R2) and let B, D ⊆ R2 be open and bounded such372

that R2\D is connected. If B 6⊆ D, then for any finite dimensional subspace V ⊆ [L2(S)]2373

there exists a sequence (g
(j)
m )m∈N ⊆ V ⊥ such that374

‖u
c,g

(0)
m
‖[H1(B)]2 →∞ and ‖u

c,g
(0)
m
‖[H1(D)]2 → 0 as m→∞;375

376

‖u
c,g

(1)
m
‖[L2(B)]2 →∞ and ‖u

c,g
(1)
m
‖[H1(D)]2 → 0 as m→∞;377

378

‖∇ · u
c,g

(2)
m
‖L2(B) →∞ and ‖u

c,g
(2)
m
‖[H1(D)]2 → 0 as m→∞;379

380

‖∇̂u
c,g

(3)
m
‖[L2(B)]2×2 →∞ and ‖u

c,g
(3)
m
‖[H1(D)]2 → 0 as m→∞381

where u
c,g

(j)
m
∈ [H1

loc(R2)]2 is given by (2.5) with g = g
(j)
m (j = 0, 1, 2, 3).382
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Proof. Without loss of generality, we assume that B∩D = ∅ and R2\(B∪D) is connected383

(otherwise we replace B by a sufficiently small ball B̃ ⊆ B\Dε, where Dε denotes a sufficiently384

small neighborhood of D).385

We denote by PV : [L2(S)]2 → [L2(S)]2 the orthogonal projection on V . Lemma 4.2 shows386

thatR(L
′
c,B)∩R(L′c,D) = R(L

(j)′

c,B)∩R(L′c,D) = {0} (j = 1, 2, 3) and thatR(L
′
c,B), R(L

(j)′

c,B) are387

infinite dimensional. Using a simple dimensionality argument (Lemma 4.7 in [16]) it follows388

that (we just show the case j = 1 for brevity)389

R(L
(1)′

c,B ) * R(L′c,D) + V = R
((

L′c,D P ′V
))

= R
((

Lc,D
PV

)′)
.390

It then follows from Lemma 4.6 in [16] that there is no constant C > 0 such that391 ∥∥∥L(1)
c,Bg

∥∥∥2

[L2(B)]2
≤ C2

∥∥∥∥(Lc,DPV
)
g

∥∥∥∥2

[H1(D)]2×[L2(S)]2
= C2

(
‖Lc,Dg‖2[H1(D)]2 + ‖PV g‖2[L2(S)]2

)
392

for all g ∈ [L2(S)]2. Hence, there exists a sequence (g̃
(1)
m )m∈N ⊆ [L2(S)]2 such that393 ∥∥∥L(1)

c,B g̃
(1)
m

∥∥∥
[L2(B)]2

→∞ and
∥∥∥Lc,Dg̃(1)

m

∥∥∥
[H1(D)]2

+
∥∥∥PV g̃(1)

m

∥∥∥
[L2(S)]2

→ 0 as m→∞.394

Setting g
(1)
m := g̃

(1)
m − PV g̃(1)

m ∈ V ⊥ ⊆ [L2(S)]2 for any m ∈ N, we finally obtain395 ∥∥∥L(1)
c,Bg

(1)
m

∥∥∥
[L2(B)]2

≥
∥∥∥L(1)

c,B g̃
(1)
m

∥∥∥
[L2(B)]2

−
∥∥∥L(j)

c,B

∥∥∥∥∥∥PV g̃(1)
m

∥∥∥
[L2(S)]2

→∞ as m→∞,396 ∥∥∥Lc,Dg(1)
m

∥∥∥
[H1(D)]2

≤
∥∥∥Lc,Dg̃(1)

m

∥∥∥
[H1(D)]2

+ ‖Lc,D‖
∥∥∥PV g̃(1)

m

∥∥∥
[L2(S)]2

→ 0 as m→∞.397
398

Substituting the definitions of operators L
(1)
c,B and Lc,D, this ends the proof.399

As an application of Theorem 4.3 we establish a converse of (3.8) in Theorem 3.6.400

Theorem 4.4. Suppose that λj, µj, ρj ∈ L∞+ (R2) (j = 1, 2) with Ω ⊆ BR(O). If D ⊆ R2 is401

an unbounded domain such that402

λ1 ≥ λ2, µ1 ≥ µ2, ρ2 ≥ ρ1 a.e. in D,403

and if B ⊆ BR(O) ∩ D is open with404

(4.1) λ1 − δ1 ≥ λ2, µ1 − δ2 ≥ µ2, ρ2 − δ3 ≥ ρ1 a.e. in B for some δj > 0,405

then406

<
(
S∗c1Fc2

)
6≤fin <

(
S∗c1Fc1

)
,407

i.e., the operator <
(
S∗c1 (Fc2 − Fc1)

)
has infinitely many positive eigenvalues. In particular,408

this implies that Fc1 6= Fc2.409
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Proof. We prove the result by contradiction and assume that410

(4.2) <
(
S∗c1 (Fc2 − Fc1)

)
≤fin 0.411

Using the monotonicity relation (3.7) in Theorem 3.6, we find that there exists a finite dimen-412

sional subspace V ⊆ [L2(S)]2 such that413

(4.3)
√

8πω <〈S∗c1(Fc2 −Fc1)g, g〉 ≥
∫
BR(O)

Eλ1−λ2,µ1−µ2(uc1,g, uc1,g) + (ρ2 − ρ1)ω2|uc1,g|2dy,414

for all g ∈ V ⊥. Combining (4.1), (4.2) and (4.3), we obtain that there exists a finite dimen-415

sional subspace Ṽ ⊆ [L2(S)]2 such that, for any g ∈ Ṽ ⊥,416

0 ≥
√

8πω <〈S∗c1(Fc2 − Fc1)g, g〉 ≥
∫
BR(O)

Eλ1−λ2,µ1−µ2(uc1,g, uc1,g) + (ρ2 − ρ1)ω2|uc1,g|2dy417

=

(∫
D∩BR(O)

+

∫
BR(O)\D

)(
Eλ1−λ2,µ1−µ2(uc1,g, uc1,g) + (ρ2 − ρ1)ω2|uc1,g|2

)
dy418

≥
∫
B
Eδ1,δ2(uc1,g, uc1,g) + δ3 ω

2|uc1,g|2 dx419

+

∫
BR(O)\D

Eλ1−λ2,µ1−µ2(uc1,g, uc1,g) + (ρ2 − ρ1)ω2|uc1,g|2dy420

≥ δminC1 ‖uc1,g‖2[H1(B)]2 −
∫
BR(O)\D

Eλ̂,µ̂(uc1,g, uc1,g) + ρ̂ ω2 |uc1,g|2dy421

≥ δminC1 ‖uc1,g‖2[H1(B)]2 − C2 ‖uc1,g‖2[H1(BR(O)\D)]2
422
423

where C1, C2 are positive constants, δmin := min{δ1, δ2, δ3ω
2}, λ̂ = ‖λ1‖L∞+ (R2) + ‖λ2‖L∞+ (R2),424

µ̂ = ‖µ1‖L∞+ (R2) + ‖µ2‖L∞+ (R2), ρ̂ = ‖ρ2‖L∞+ (R2) + ‖ρ1‖L∞+ (R2). However, this contradicts The-425

orem 4.3 with D = BR(O)\D and c = c1, which guarantees the existence of (gm)m∈N ⊆ Ṽ ⊥426

with427

‖uc1,gm‖[H1(B)]2 →∞ and ‖uc1,gm‖[H1(BR(O)\D)]2 → 0 as m→∞.428

Consequently, <
(
S∗c1 (Fc2 − Fc1)

)
6≤fin 0.429

5. Monotonicity based shape reconstruction. We will consider inhomogeneities in the430

material parameters of the following type. Let D1, D2, D3 ⊆ Ω and D := D1 ∪D2 ∪D3. We431

will now assume that λ, µ, ρ ∈ L∞+ (R2) are such that432

λ(x) = λ0 + χD1(x)ψλ(x), ψλ ∈ L∞(Ω), ψλ(x) > m1,433

µ(x) = µ0 + χD2(x)ψµ(x), ψµ ∈ L∞(Ω), ψµ(x) > m2,(5.1)434

ρ(x) = ρ0 − χD3(x)ψρ(x), ψρ ∈ L∞(Ω), m3 < ψρ(x) < M3,435436

where the constants λ0, µ0, ρ0 > 0 and the bounds m1,m2,m3 > 0 and ρ0 > M3. The coef-437

ficients λ, µ and ρ model inhomogeneities in an otherwise homogeneous background medium438
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given by the coefficients λ0, µ0 and ρ0. In this section, we will give a method to recover439

osupp(D) := osupp(χD) (see Section 6 in [11]) from the far field operator, and thus the shape440

of the region where the coefficients differ from the background coefficients λ0, µ0 and ρ0.441

Let B ⊆ Ω be a ball, the test coefficients λ[, µ[ and ρ[ are defined by442

λ[(x) = λ0 + χB(x)α1,443

µ[(x) = µ0 + χB(x)α2,(5.2)444

ρ[(x) = ρ0 − χB(x)α3,445446

where αj ≥ 0 (j = 1, 2, 3) are constants.447

Theorem 5.1. Let B ⊆ Ω and αj ≥ 0 be as in (5.2), and set α := (α1, α2, α3). The448

following holds:449

(i) Assume that B ⊆ Dj, for j ∈ I for some I ⊂ {1, 2, 3}. Then for all αj with αj 6 mj,450

j ∈ I, and αj = 0, j /∈ I, the operator < (S∗c (Fc[ − Fc)) has finitely many negative eigenvalues.451

(ii) If B 6⊆ osupp(D), then for all α, |α| 6= 0, the operator < (S∗c (Fc[ − Fc)) has infinitely452

many negative eigenvalues.453

Where Fc is the far field operator for the coefficients in (5.1) and Fc[ is the far field454

operator for the coefficients in (5.2).455

Proof. Notice firstly that < (S∗c (Fc[ − Fc)) is a compact self-adjoint operator.456

(i) Assume that B ⊆ Dj for j ∈ I. Choose 0 6 αj 6 mj for j ∈ I and αj = 0 for j /∈ I.457

Moreover choose Fc1 = Fc and Fc2 = Fc[ in Theorem 3.6. According to Theorem 3.6 there458

exists a finite dimensional subspace V ⊆ [L2(S)]2, such that if g ∈ V ⊥, then459

√
8πω <〈S∗c (Fc[ − Fc)g, g〉 ≥

∫
R2

Eλ−λ[,µ−µ[(uc,g, uc,g) + (ρ[ − ρ)ω2|uc,g|2dy460

=

∫
R2

2(µ− µ[)|∇̂uc,g|2 + (λ− λ[)|∇ · uc,g|2 + (ρ[ − ρ)ω2|uc,g|2dy461

≥
∫
D2

2(m2 − α2χB)|∇̂uc,g|2 dy +

∫
D1

(m1 − α1χB)|∇ · uc,g|2 dy462

+

∫
D3

ω2(m3 − α3χB)|uc,g|2 dy ≥ 0463
464

where we use the properties in (5.1) and465

Eλ,µ(u, v) = 2µ∇̂u : ∇̂v + λ∇ · u∇ · v with ∇̂u :=
1

2

(
∇u+ (∇u)>

)
.466

That is,467

<〈S∗c (Fc[ − Fc)g, g〉 ≥ 0, ∀g ∈ V ⊥.468

Hence, we have that < (S∗c (Fc[ − Fc)) has finitely many negative eigenvalues.469

(ii) We assumed on the contrary that < (S∗c (Fc[ − Fc)) has finitely many negative eigen-470

values, then there is a finite dimensional subspace Ṽ ⊆ [L2(S)]2, such that471

(5.3) <〈S∗c (Fc[ − Fc)g, g〉 ≥ 0, ∀g ∈ Ṽ ⊥.472
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To obtain a contradiction we consider Theorem 3.6, where Fc1 = Fc[ and Fc2 = Fc and which473

is rearranged to give474

√
8πω <〈S∗

c[
(Fc[ − Fc)g, g〉 ≤

∫
R2

Eλ−λ[,µ−µ[(uc[,g, uc[,g) + (ρ[ − ρ)ω2|uc[,g|
2dy475

=

∫
R2

2(µ− µ[)|∇̂uc[,g|
2 + (λ− λ[)|∇ · uc[,g|

2 + ω2(ρ[ − ρ)|uc[,g|
2 dy476

=

∫
Ω

2(ψµχD2 − α2χB)|∇̂uc[,g|
2 + (ψλχD1 − α1χB)|∇ · uc[,g|

2
477

+ ω2(ψρχD3 − α3χB)|uc[,g|
2 dy.478

479

By Theorem 4.3 we can choose some sequences (g
(j)
m )m∈N ⊆ V ⊥ (j = 1, 2, 3) such that480

‖u
c[,g

(1)
m
‖[L2(B)]2 →∞ and ‖u

c[,g
(1)
m
‖[H1(D)]2 → 0 as m→∞;481

482

‖∇ · u
c[,g

(2)
m
‖L2(B) →∞ and ‖u

c[,g
(2)
m
‖[H1(D)]2 → 0 as m→∞;483

484

‖∇̂u
c[,g

(3)
m
‖[L2(B)]2×2 →∞ and ‖u

c[,g
(3)
m
‖[H1(D)]2 → 0 as m→∞.485

Inserting these solutions to the previous inequality yields486

√
8πω <〈S∗

c[
(Fc[ − Fc)g

(j)
m , g(j)

m 〉 ≤C
∫
D
|∇̂u

c[,g
(j)
m
|2 + |∇ · u

c[,g
(j)
m
|2 + |u

c[,g
(j)
m
|2 dy487

−
∫
B
α1|∇ · uc[,g(j)m |

2 + 2α2|∇̂uc[,g(j)m |
2 + α3|uc[,g(j)m |

2 dy.488
489

Since |α| 6= 0 and αj > 0, we see that the last integral becomes large and increasingly negative490

while the first integral vanishes as m grows, and thus491

<〈S∗c (Fc[ − Fc)g
(j)
m , g(j)

m 〉 = <〈S∗
c[

(Fc[ − Fc)g
(j)
m , g(j)

m 〉 < 0,492

for large enough m. This is in contradiction with (5.3) which complete the proof.493
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