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Abstract
We deal with the shape reconstruction of inclusions in elastic bodies. For solving this inverse problem in practice, data fitting
functionals are used. Those work better than the rigorous monotonicity methods from Eberle and Harrach (Inverse Probl
37(4):045006, 2021), but have no rigorously proven convergence theory. Therefore we show how the monotonicity methods
can be converted into a regularization method for a data-fitting functional without losing the convergence properties of the
monotonicity methods. This is a great advantage and a significant improvement over standard regularization techniques. In
more detail, we introduce constraints on the minimization problem of the residual based on the monotonicity methods and
prove the existence and uniqueness of a minimizer as well as the convergence of the method for noisy data. In addition, we
compare numerical reconstructions of inclusions based on the monotonicity-based regularization with a standard approach
(one-step linearization with Tikhonov-like regularization), which also shows the robustness of our method regarding noise in
practice.

Keywords Linear elasticity · Inverse problem · Shape reconstruction · One-step linearization method · Monotonicity-based
regularization

Mathematics Subject Classification 35R30 · 65M32

1 Introduction

The main motivation is the non-destructive testing of elastic
structures, such as is required for material examinations, in
exploration geophysics, and formedical diagnostics (elastog-
raphy). From a mathematical point of view, this constitutes
an inverse problem since we have only measurement data on
the boundary and not inside of the elastic body. This prob-
lem is highly ill-posed, since even the smallest measurement
errors can completely falsify the result.

There are several authors who deal with the theory of the
inverse problem of elasticity. For the two dimensional case,
we refer the reader to [14,15,17,21]. In three dimensions,
Nakamura and Uhlmann [22,23] and Eskin and Ralston [8]
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gave the proof for uniqueness results for both Lamé coef-
ficients under the assumption that μ is close to a positive
constant. Beretta et al. [2,3] proved the uniqueness for par-
tial data, where the Lamé parameters are piecewise constant
and some boundary determination results were shown in
[17,20,22].

Further on, solution methods applied so far for the inverse
problem, which will be solved in this paper, were presented
in the following works: In Oberai et al. [24,25], the time-
independent inverse problem of linear elasticity is solved by
means of the adjoint method and the reconstruction is sim-
ulated numerically. In addition, Seidl et al. [26] deals with
the coupling of the state and adjoint equation and added two
variants of residual-based stabilization to solve the inverse
linear elasticity problem for incompressible plane stress. A
boundary element-Landweber method for the Cauchy prob-
lem in stationary linear elasticity was investigated in Marin
and Lesnic [19]. In Hubmer et al. [13], the stationary inverse
problem was solved by means of a Landweber iteration as
well and numerical examples were presented. Reciprocity
principles for the detection of cracks in elastic bodies were
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investigated, for example, in Andrieux et al. [1] and Stein-
horst and Sändig [27] or more recently in Ferrier et al. [9].
By means of a regularization approach, a stationary elastic
inverse problem is solved in Jadamba et al. [16] and applied
in numerical examples. Marin and Lesnic [18] introduces
a regularized boundary element method. Finally, we want to
mention themonotonicitymethods for linear elasticity devel-
oped by the authors of this paper in Eberle and Harrach [5]
as well as its application for the reconstruction of inclusions
based on experimental data in Eberle and Moll [7].

We want to point out that the reconstruction of the sup-
port of the Lamé parameters, also called shape in this paper,
and not the reconstruction of their values is the topic of
this work. The key issue of the shape reconstruction of
inclusions is the monotonicity property of the corresponding
Neumann-to-Dirichlet operator (see [28,29]). These mono-
tonicity properties were also applied for the construction
of monotonicity tests for electrical impedance tomography
(EIT), e.g., in [12], as well as the monotonicity-based reg-
ularization in Harrach and Mach [11]. In practice however,
data fitting functionals provide better results than the mono-
tonicity methods but the data-fitting functionals are usually
not convex (see, e.g. [10]). Even for exact data, therefore,
it cannot generally be guaranteed that the algorithm does
not erroneously deliver a local minimum. In addition, there
is noise and ill-posedness. The local convergence theory
of Newton-like methods requires non-linearity assumptions
such as the tangential cone condition, which are still not
proven even for simpler examples such as EIT. The conver-
gence theory of Tikhonov-regularized data fitting functionals
applies to their global minima, which in general cannot be
found due to the non-convexity. Our method is based on the
minimization of a convex functional and is to the knowl-
edge of the authors the first rigorously convergent method
for this problem, but only provides the shape of the inclu-
sions.We combine the monotonicity methods (cf. [5,6]) with
data fitting functionals to obtain convergence results and an
improvement of both methods regarding stability for noisy
data. Here, we want to remark that compared to other data-
fitting methods, we use the following a-priori assumptions:
the Lamé parameters fulfill monotonicity relations, have a
common support, the lower and upper bounds of the contrasts
of the anomalies are known and we deal with a constant and
known background material. Compared with Harrach and
Mach [11], we expand the approach used there from the con-
sideration of only one parameter to two parameters.

The outline of the paper is as follows: We start with the
introduction of the problem statement. In order to detect and
reconstruct inclusions in elastic bodies, we aim to deter-
mine the difference between an unknown Lamé parameter
pair (λ, μ) and that of the known background (λ0, μ0)

and formulate a minimization problem. Similar to the lin-
earized monotonicity tests in Eberle and Harrach [5], we

also consider the Fréchet derivative, which approximates the
difference between twoNeumann-to-Dirichlet operators. For
solving the resulting minimization problem, we first take a
look at a standard approach (standard one-step linearization
method).Therefore regularizationparameters are introduced,
which can only be determined heuristically. For this pur-
pose, for example, a parameter study can be carried out. We
would like to point out that this method is only a heuristic
approach, but is commonly used in practice. Overall, this
heuristic approach leads to reconstructions of the unknown
inclusions without a rigorous theory. In Sect. 4, we focus on
the monotonicity-based regularization in order to enhance
the data fitting functionals. The idea of the regularization is
to introduce conditions for the parameters / inclusions to be
reconstructed for theminimization problem, which are based
on the monotonicity properties of the Neumann-to-Dirichlet
operator and the monotonicity tests. Further on, we prove
that there exists a unique minimizer for this problem and
that we obtain convergence even for noisy data. Finally, we
compare numerical reconstructions of inclusions based on
the monotonicity-based regularization with the one-step lin-
earization, which also shows the robustness of our method
regarding noise in practice.

2 Problem statement

We start with the introduction of the problems of interest,
e.g., the direct as well as inverse problem of stationary linear
elasticity.

Let � ⊂ R
d (d = 2 or 3) be a bounded and connected

open set with Lipschitz boundary ∂� = � = �D ∪ �N,
�D ∩ �N = ∅, where �D and �N are the corresponding
Dirichlet and Neumann boundaries. We assume that �D and
�N are relatively open and connected. For the following, we
define

L∞+ (�) := {w ∈ L∞(�) : ess inf
x∈�

w(x) > 0}.

Let u : � → R
d be the displacement vector,

μ, λ : � → L∞+ (�) the Lamé parameters, ∇̂u =
1
2

(∇u + (∇u)T
)
the symmetric gradient, n is the normal

vector pointing outside of � , g ∈ L2(�N)d the boundary
force and I the d × d-identity matrix. We define the diver-

gence of a matrix A ∈ R
d×d via∇ · A =

d∑

i, j=1

∂Ai j

∂x j
ei , where

ei is a unit vector and x j a component of a vector from R
d .

The boundary value problem of linear elasticity (direct
problem) is that u ∈ H1(�)d solves

∇ ·
(
λ(∇ · u)I + 2μ∇̂u

)
= 0 in �, (1)
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(
λ(∇ · u)I + 2μ∇̂u

)
n = g on �N, (2)

u = 0 on �D. (3)

From a physical point of view, this means that we deal with
an elastic test body � which is fixed (zero displacement) at
�D (Dirichlet condition) and apply a force g on �N (Neu-
mann condition). This results in the displacement u, which
is measured on the boundary �N.

The equivalent weak formulation of the boundary value
problem (1)–(3) is that u ∈ V fulfills

∫

�
2μ ∇̂u : ∇̂v + λ∇ · u ∇ · v dx =

∫

�N

g · v ds for all v ∈ V,

(4)

where V :=
{
v ∈ H1(�)d : v|�D = 0

}
.

We want to remark that for λ,μ ∈ L∞+ (�) the existence
and uniqueness of a solution to the variational formulation
(4) can be shown by the Lax-Milgram theorem (see e.g., in
[4]).

Measuringboundarydisplacements that result fromapply-
ing forces to�N canbemodeledby theNeumann-to-Dirichlet
operator �(λ,μ) defined by

�(λ,μ) : L2(�N)d → L2(�N)d : g 
→ u|�N ,

where u ∈ V solves (1)–(3).
This operator is self-adjoint, compact and linear (see

Corollary 1.1 from [5]). Its associated bilinear form is given
by

〈g,�(λ, μ)h〉 =
∫

�
2μ ∇̂ug

(λ,μ)
: ∇̂uh(λ,μ)

+ λ∇ · ug
(λ,μ)

∇ · uh(λ,μ) dx, (5)

where ug(λ,μ) solves the problem (1)–(3) and uh(λ,μ) the cor-

responding problem with boundary force h ∈ L2(�N)d .
Another important property of �(λ,μ) is its Fréchet dif-

ferentiability (for the corresponding proof see Lemma 2.3 in
[5]). For directions λ̂, μ̂ ∈ L∞(�), the derivative

�′(λ, μ)(λ̂, μ̂) : L2(�N)d → L2(�N)d

is the self-adjoint compact linear operator associated to the
bilinear form

〈�′(λ, μ)(λ̂, μ̂)g, h〉
= −

∫

�

2μ̂ ∇̂ug(λ,μ) : ∇̂uh(λ,μ) + λ̂∇ · ug(λ,μ) ∇ · uh(λ,μ) dx .

Note that for λ̂0, λ̂1, μ̂0, μ̂1 ∈ L∞(�) with λ̂0 ≤ λ̂1 and

μ̂0 ≤ μ̂1 we obviously have

�′(λ, μ)(λ̂0, μ̂0) ≥ �′(λ, μ)(λ̂1, μ̂1), (6)

in the sense of quadratic forms.
The inverse problem we consider here is the following

Find the support o f (λ − λ0, μ − μ0)
T knowing the

Neumann − to − Dirichlet operator�(λ,μ).

Next, we take a look at the discrete setting. Let the Neumann
boundary �N be the union of the patches �

(l)
N , l = 1, . . . , M ,

which are assumed to be relatively open and connected, such

that �N = ⋃M
l=1 �

(l)
N , �

(i)
N ∩ �

( j)
N = ∅ for i �= j and we

consider the following problem:

∇ ·
(
λ(∇ · u)I + 2μ∇̂u

)
= 0 in �, (7)

(
λ(∇ · u)I + 2μ∇̂u

)
n = gl on �

(l)
N , (8)

(
λ(∇ · u)I + 2μ∇̂u

)
n = 0 on �

(i)
N , i �= l, (9)

u = 0 on �D, (10)

where gl , l = 1, . . . , M , denote the M given boundary
forces applied to the corresponding patches �

(l)
N . In order

to discretize the Neumann-to-Dirichlet operator, we apply a
boundary force gl on the patch �

(l)
N and set

�
(k)
l (λ, μ) :=

∫

�
(l)
N

gl · u(k) ds

(cf. (4) and (5)), where u(k) solves the corresponding bound-
ary value problem (7)–(10) with boundary force gk .

In Fig. 1 a simple example of possible boundary loads gl
and patches �

(l)
N is shown.

For the Neumann boundary forces as described here, we
get an orthogonal system gl in L2(�N)d . In practice, we addi-
tionally normalize the system gl and use more patches �

(l)
N .

For the unknownLamé parameters (λ, μ), we obtain a full
matrix

�(λ, μ) =
(
�

(k)
l (λ, μ)

)

k,l=1,...,M
.

3 Standard one-step linearizationmethods

In this section we take a look at one-step linearization meth-
ods. We want to remark that these methods are only a
heuristical approach but commonly used in practice.

We compare the matrix of the discretized Neumann-
to-Dirichlet operator �(λ, μ) with �(λ0, μ0) for some
reference Lamé parameter (λ0, μ0) in order to reconstruct
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Fig. 1 Illustration of possible boundary loads gl and patches �
(l)
N . We

consider here l = 1, . . . , 5, Neumann patches and one Dirichlet patch
(bottom of the cube). The boundary forces gl are normal vectors from
the Euclidean space in each point of the patch

the difference (λ, μ) − (λ0, μ0). Thus, we apply a single
linearization step

�′(λ0, μ0) ((λ, μ) − (λ0, μ0)) ≈ �(λ, μ) − �(λ0, μ0),

where

�′(λ0, μ0) : L∞(�)2 → R
M×M

is the Fréchet derivative which maps (λ̂, μ̂) ∈ L∞(�)2 to

−
(∫

�

λ̂
(
∇ · u(k)

(λ0,μ0)

) (
∇ · u(l)

(λ0,μ0)

)

+2μ̂
(
∇̂u(k)

(λ0,μ0)

)
:
(
∇̂u(l)

(λ0,μ0)

)
dx
)

1≤k,l≤M
.

For the solution of the problem, we discretize the reference
domain � = ⋃p

j=1 B j into p disjoint pixel B j , where each
B j is assumed to be open,�\B j is connected andB j∩Bi = ∅
for j �= i . We make a piecewise constant ansatz for (κ, ν) ≈
(λ, μ) − (λ0, μ0) via

κ(x) =
p∑

j=1

κ jχB j (x) and ν(x) =
p∑

j=1

ν jχB j (x), (11)

where χB j is the characteristic function w.r.t. the pixel B j

and set

κ = (κ j )
p
j=1 ∈ R

p and ν = (ν j )
p
j=1 ∈ R

p.

This approach leads to the linear equation system

Sλκ + Sμν = V, (12)

where V and the columns of the sensitivity matrices Sλ and
Sμ contain the entries of �(λ0, μ0) − �(λ,μ) and the dis-
cretized Fréchet derivative for a given B j for j = 1, . . . , p,
respectively. Here, we have

V = (Vi )
M2

i=1 ∈ R
M2

,

V(l−1)M+k = �
(k)
l (λ0, μ0) − �

(k)
l (λ, μ), (13)

Sλ = (Sλ
i j ) ∈ R

M2,p,

Sλ
(l−1)M+k, j =

∫

B j

(
∇ · u(k)

(λ0,μ0)

) (
∇ · u(l)

(λ0,μ0)

)
dx, (14)

Sμ = (Sμ
i j ) ∈ R

M2,p,

Sμ

(l−1)M+k, j =
∫

B j

2
(
∇̂u(k)

(λ0,μ0)

)
:
(
∇̂u(l)

(λ0,μ0)

)
dx . (15)

Solving (12) results in a standard minimization problem for
the reconstruction of the unknown parameters. In order to
determine suitable parameters (κ, ν), we regularize the min-
imization problem, so that we have

∥
∥∥∥
(
Sλ | Sμ

)
(

κ

ν

)
− V

∥
∥∥∥

2

2
+ ω‖κ‖22 + σ‖ν‖22 → min! (16)

with ω and σ as regularization parameters. For solving this
minimization problem we consider the normal equation

ATA
(

κ

ν

)
= AT

⎛

⎝
V
0
0

⎞

⎠

with A =
⎛

⎝
Sλ | Sμ

ωI | 0
0 | σ I

⎞

⎠ .

Obtaining a solution for this system is memory expen-
sive and finding two suitable parameters ω and σ can be
time consuming, since we can only choose them heuristi-
cally. However, the parameter reconstruction provides good
results as shown in the next part.

Numerical realization

We present a simple test model, where we consider a cube of
a biological tissue with two inclusions (tumors) as depicted
in Fig. 2.

The Lamé parameters of the corresponding materials are
given in Table 1.

123



Computational Mechanics (2022) 69:1069–1086 1073

Fig. 2 Cube with two inclusions (red) as considered in [5]

Table 1 Lamé parameter of the test material in [Pa]

Material λi μi

i = 0: Tissue 6.6211 × 105 6.6892 × 103

i = 1: Tumor 2.3177 × 106 2.3411 × 104

For our numerical experiments, we simulate the discrete
measurements by solving

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(
λ0(∇ · u0)I + 2μ0∇̂u0

)
= 0 in �,

−∇ ·
(
((λ1 − λ0)χD)(∇ · u0)I + 2((μ1 − μ0)χD)∇̂u0

)

+∇ ·
(
λ(∇ · v)I + 2μ∇̂v

)
= 0 in �,

(
λ0(∇ · u0)I + 2μ0∇̂u0

)
n = gl on �N,

(
λ(∇ · v)I + 2μ∇̂v

)
n = 0 on �N,

u0 = 0 on �D,

v = 0 on �D,

(17)

for each of the l = 1, . . . , M , given boundary forces gl ,
where v := u0 − u are the difference measurements. The
equations regarding v in the system (17) result from sub-
stracting the boundary value problem (1) for the respective
Lamé parameters.

We want to remark that the Dirichlet boundary is set to
the bottom of the cube. The remaining five faces of the cube
constitute the Neumann boundary. Each Neumann face is
divided into 25 squares of equal size (5 × 5) resulting in
125 patches �

(l)
N . On each �

(l)
N , l = 1, . . . , 125, we apply a

boundary force gl , which is equally distributed on �
(l)
N and

pointing in the normal direction of the patch.

Exact data

First of all, we take a look at the example without noise,
which means we assume we are given exact data.

Fig. 3 Transparency function for the plots in Fig. 4 mapping the values
of |ν| to α(|ν|)

In order to obtain a suitable visualization of the 3D recon-
struction,wemanipulate the transparency parameter function
α : R → [0, 1] of Fig. 4 as exemplary depicted for the
Lamé parameter μ in Fig. 3. It should be noted that a
low transparency parameter indicates that the correspond-
ing color (here, the colors around zero) are plotted with high
transparency, while a high α indicates that the correspond-
ing color is plotted opaque. The reason for this choice is
that values of the calculated difference ν = μ − μ0 close
to zero are not an indication of an inclusion, while values
with a higher absolute value indicate an inclusion. Hence,
this choice of transparency is suitable to plot the calculated
inclusions without being covered by white tetrahedrons with
values close to zero. Further, the reader should observe that
α(|ν|) > 0 for all values of ν, so that all tetrahedrons are
plotted and that the transparency plot for κ takes the same
shape but is adjusted to the range of the calculated val-
ues.

The following results (Figs. 4 and 5) are based on a
parameter search and the regularization parameters are cho-
sen heuristically. Thus, we only present the results with the
best parameter choice (ω = 10−17 and σ = 10−13) and
reconstruct the difference in the Lamé parameters μ and
λ.

With these regularization parameters, the two inclusions
are detected and reconstructed correctly for μ (see Fig.
4 in the left hand side) and the value of μ − μ0 is in
the correct amplitude range as depicted in Fig. 5. Figure
4 shows us, that for λ − λ0, the reconstruction does not
work. The reason is that the range of the Lamé parame-
ters differs from each other around 102 Pa (λ ≈ 100 · μ),
but

‖Sμ‖2 ≈ 1.2 · 104‖Sλ‖2,

i.e. the signatures of μ are represented far stronger in the
calculation of V than those of λ.
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Fig. 4 Shape reconstruction of
two inclusions of the difference
in the Lamé parameter μ (left
hand side) and λ (right hand
side) for the regularization
parameters ω = 10−17 and
σ = 10−13 without noise and
transparency function α as
shown in Fig. 3

Fig. 5 Shape reconstruction of two inclusions of the reconstructed difference in the Lamé parameterμ for the regularization parameters ω = 10−17

and σ = 10−13 depicted as cuts without noise

Noisy data

Next, we go over to noisy data. We assume that we are given
a noise level η ≥ 0 and set

δ = η · ||�(λ, μ)||F . (18)

Further, we define �δ(λ, μ) as

�δ(λ, μ) = �(λ, μ) + δE, (19)

with E = E/||E||F , where E consists of M × M random
uniformly distributed values in [−1, 1]. We set

Vδ = �(λ0, μ0) − �δ(λ, μ).

Hence, we have

‖Vδ − V‖ ≤ δ.

In the following examples, we consider relative noise levels
of η = 1% (Fig. 6 and 7 ) and η = 10% (Fig. 8 and 9) with
respect to the Frobenius norm as given in (19), where the
regularization parameters are chosen heuristically and given
in the caption of the figure.

In Fig. 6, we observe that for a low noise level with
η = 1%, we obtain a suitable reconstruction of the inclusion
concerning the Lamé parameter μ and the reconstruction of
λ fails again.

In contrary to the low noise level (η = 1%), Figs. 8 and
9 show us that the standard one-step linearization method
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Fig. 6 Shape reconstruction of
two inclusions of the difference
in the Lamé parameter μ (left
hand side) and λ (right hand
side) for the regularization
parameters ω = 1.1 · 10−17 and
σ = 1.1 · 10−13 with relative
noise η = 1% and transparency
function α as shown in Fig. 3

Fig. 7 Shape reconstruction of two inclusions of the reconstructed difference in the Lamé parameter μ for the regularization parameters
ω = 1.1 · 10−17 and σ = 1.1 · 10−13 depicted as cuts with relative noise η = 1%

has problems in handling higher noise levels (η = 10%).
As such, in the 3D reconstruction (see Fig. 8) it is hard to
recognize the two inclusions even with respect to the Lamé
parameter μ. Further on in the plots of the cuts in Fig. 9, the
reconstructions of the inclusions are blurred out.

Remark 1 All in all, the numerical experiments of this sec-
tion motivate the consideration of a modified minimization
problem in order to obtain a stable method for noisy data as
well as a good reconstruction for the Lamé parameter λ. In
doing so, we will combine the idea of the standard one-step
linearization with the monotonicity method.

4 Enhancing the standard residual-based
minimization problem

We summarize and present the required results concern-
ing the monotonicity properties of the Neumann-to-Dirichlet
operator as well as the monotonicity methods introduced and
proven in [6] and Eberle and Harrach [5].

4.1 Summary of themonotonicity methods

First, we state the monotonicity estimates for the Neumann-
to-Dirichlet operator �(λ,μ) and denote by ug(λ,μ) the
solution of problem (1)–(3) for the boundary load g and the
Lamé parameters λ and μ.
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Fig. 8 Shape reconstruction of
two inclusions of the difference
in the Lamé parameter μ (left
hand side) and λ (right hand
side) for the regularization
parameters ω = 6 · 10−17 and
σ = 6 · 10−13 with relative
noise η = 10% and transparency
function α as shown in Fig. 3

Fig. 9 Shape reconstruction of two inclusions of the reconstructed difference in theLamé parameterμ for the regularization parametersω = 6·10−17

and σ = 6 · 10−13 depicted as cuts with relative noise η = 10%

Lemma 1 (Lemma 3.1 from [6]) Let (λ1, μ1), (λ2, μ2) ∈
L∞+ (�) × L∞+ (�), g ∈ L2(�N)d be an applied boundary
force, and let u1 := ug(λ1,μ1)

∈ V , u2 := ug(λ2,μ2)
∈ V . Then

∫

�

2(μ1 − μ2)∇̂u2 : ∇̂u2 + (λ1 − λ2)∇ · u2∇ · u2 dx
≥ 〈g,�(λ2, μ2)g〉 − 〈g,�(λ1, μ1)g〉 (20)

≥
∫

�

2(μ1 − μ2)∇̂u1 : ∇̂u1 + (λ1 − λ2)∇ · u1∇ · u1 dx .
(21)

Lemma 2 (Lemma 2.2 from [5]) Let (λ1, μ1), (λ2, μ2) ∈
L∞+ (�) × L∞+ (�), g ∈ L2(�N)d be an applied boundary
force, and let u1 := ug(λ1,μ1)

∈ V , u2 := ug(λ2,μ2)
∈ V . Then

〈g,�(λ2, μ2)g〉 − 〈g,�(λ1, μ1)g〉

≥
∫

�

2

(

μ2 − μ2
2

μ1

)

∇̂u2 : ∇̂u2 dx

+
∫

�

(

λ2 − λ22

λ1

)

∇ · u2∇ · u2 dx (22)

=
∫

�

2
μ2

μ1
(μ1 − μ2) ∇̂u2 : ∇̂u2 dx

+
∫

�

λ2

λ1
(λ1 − λ2)∇ · u2∇ · u2 dx . (23)

As in the previous section,wedenote by (λ0, μ0) themate-
rial without inclusion. Following Lemma 1, we have
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Corollary 1 (Corollary 3.2 from [6])For (λ0, μ0), (λ1, μ1) ∈
L∞+ (�) × L∞+ (�)

λ0 ≤ λ1 and μ0 ≤ μ1 implies �(λ0, μ0) ≥ �(λ1, μ1).

(24)

Further on, we give a short overview concerning the mono-
tonicity methods, where we restrict ourselves to the case
λ1 ≥ λ0, μ1 ≥ μ0. In the following, let D be the unknown
inclusion and χD the characteristic function w.r.t.D. In addi-
tion, we deal with “noisy difference measurements”, i.e.
distance measurements between ug(λ,μ) and u

g
(λ0,μ0)

affected
by noise, which stem from system (17).

We define the outer support in correspondence to Eberle
and Harrach [5] as follows: let φ = (φ1, φ2) : � → R

2

be a measurable function, the outer support out
∂�

supp(φ) is

the complement (in �) of the union of those relatively open
U ⊆ � that are connected to ∂� and for which φ|U = 0,
respectively.

Corollary 2 Linearizedmonotonicity test (Corollary 2.7 from
[5])

Let λ0, λ1, μ0, μ1 ∈ R
+ with λ1 > λ0, μ1 > μ0 and

assume that (λ, μ) = (λ0+(λ1−λ0)χD, μ0+(μ1−μ0)χD)

with D = out∂� supp((λ − λ0, μ − μ0)
T ). Further on let

αλ, αμ ≥ 0, αλ + αμ > 0 and αλ ≤ λ0
λ1

(λ1 − λ0), αμ ≤
μ0
μ1

(μ1 − μ0). Then for every open set B

B ⊆ D if and only if

�(λ0, μ0) + �′(λ0, μ0)(α
λχB, αμχB) ≥ �(λ,μ).

Corollary 3 Linearized monotonicity test for noisy data
(Corollary 2.9 from [5])

Let λ0, λ1, μ0, μ1 ∈ R
+ with λ1 > λ0, μ1 > μ0 and

assume that (λ, μ) = (λ0+(λ1−λ0)χD, μ0+(μ1−μ0)χD)

with D = out∂� supp((λ − λ0, μ − μ0)
T ). Further on,

let αλ, αμ ≥ 0, αλ + αμ > 0 with αλ ≤ λ0
λ1

(λ1 − λ0),

αμ ≤ μ0
μ1

(μ1 − μ0). Let �δ be the Neumann-to-Dirichlet
operator for noisy difference measurements with noise level
δ > 0. Then for every open set B ⊆ � there exists a noise
level δ0 > 0, such that for all 0 < δ < δ0, B is correctly
detected as inside or not inside the inclusion D by the fol-
lowing monotonicity test

B ⊆ D if and only if

�(λ0, μ0)+�′(λ0, μ0)(α
λχB, αμχB)−�δ(λ, μ)+δ I ≥0.

Finally, we present the result (see Fig. 10) obtained from
noisy data �δ with the linearized monotonicity method as
described in Corollary 3, where we use the same pixel parti-
tion as for the one-step linearization method.

Fig. 10 Shape reconstruction of two inclusions (red) for
αλ = 0.28(λ1 − λ0) ≈ 4.6 · 105Pa, αμ = 0.28(μ1 − μ0) ≈ 4.7 · 103
Pa with relative noise η = 0.1% and δ = 1.88 · 10−10

Remark 2 The linearized monotonicity method converges
theoretically rigorously, but in practice delivers poorer recon-
structions even for small noise (see Fig. 10, where the two
inclusions are not separated) than the theoretically unproven
heuristic one-step linearization (see Fig. 6, where the two
inclusions are separated). Thus, we improve the standard
one-step linearization method by combining it with the
monotonicitymethodwithout losing the convergence results.

4.2 Monotonicity-based regularization

We assume again that the background (λ0, μ0) is homoge-
neous and that the contrasts of the anomalies (γ λ, γ μ)T ∈
L∞+ (D)2 with

(
λ(x)
μ(x)

)
=
(

λ0 + γ λ(x)χD(x)
μ0 + γ μ(x)χD(x)

)
,

are bounded for all x ∈ D (a.e.) via

cλ ≤ γ λ(x) ≤ Cλ and cμ ≤ γ μ(x) ≤ Cμ,

with cλ, Cλ, cμ, Cμ ≥ 0. D is an open set denoting the
anomalies and the parameters λ0, μ0, cλ, cμ,Cλ and Cμ are
assumed to be known.

Remark 3 It should be noted that � \D has to be connected.

In doing so,we can also handlemore general Lamé param-
eters and not only piecewise constant parameters as in the
previous section.

Here, we focus on the case λ ≥ λ0, μ ≥ μ0, while the
case λ ≤ λ0, μ ≤ μ0 can be found in the “Appendix”.

Similar as in the one-step linearization method, we make
the piecewise constant ansatz (11) in order to approximate
(γ λ, γ μ) by (κ, ν).
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The main idea of monotonicity-based regularization is to
minimize the residual of the linearized problem, i.e.,

∥∥∥∥
(
Sλ | Sμ

) (κ

ν

)
− V

∥∥∥∥

2

2
→ min! (25)

with constraints on (κ, ν) that are obtained from the mono-
tonicity properties introduced in Lemma 1 and 2. Our aim
is to rewrite the minimization problem (25) for the case
μ0 �= μ, λ0 �= λ in D in order to be able to reconstruct the
inclusions also with respect to λ. Our intention is to force that
both Lamé parameters μ(x) and λ(x) take the same shape
but different scale.

In more detail, we define the quantities amax and τ as

amax := μ0 − μ2
0

μ0 + cμ
, (26)

τ := 1

amax

(

λ0 − λ20

λ0 + cλ

)

, (27)

such that

−2

(

μ0 − μ2
0

μ

)

+ 2a ≤ 0, (28)

−
(

λ0 − λ20

λ

)

+ τa ≤ 0 (29)

for all 0 ≤ a ≤ amax.
In addition, we set the residual r(ν) as

r(ν) := �(λ,μ) − �(λ0, μ0) − �′(λ0, μ0)(τν, ν)

and the components of the corresponding matrix R(ν) are
given by

(R(ν))i, j=1,...M := (〈gi , r(ν)g j 〉
)
i, j=1,...M .

We want to remark, that we use the same boundary loads gi ,
i = 1, . . . , M, as in Sect. 2.

Finally, we introduce the set

C :=
{
ν ∈ L∞(�) : ν =

p∑

k=1

akχk , ak ∈ R, 0 ≤ ak ≤ min(amax, βk)

}

with

βk := max
{
a ≥ 0 : �(λ, μ) − �(λ0, μ0) ≤ �′(λ0, μ0)(τaχk , aχk)

}
,

(30)

where we set χk := χBk .
Note that the set on the right hand side of (30) is non-

empty since it contains the value zero by Corollary 1 and our
assumptions λ ≥ λ0, μ ≥ μ0.

Then, we modify the original minimization problem (25)
to

min
ν∈C

‖R(ν)‖F .

Remark 4 We want to remark that βk is defined via the
infinite-dimensionalNeumann-to-Dirichlet operator�(λ,μ)

and does not involve the finite dimensional matrixR. For the
numerical realization we will require a discrete version β̃k of
βk introduced later on.

4.2.1 Main results

In the following we present our main results and will show
that the choices of the quantities amax and τ will lead to
the correct reconstruction of the support of κ(x) and ν(x),
which we introduced in (26) and (27), respectively, based on
the lower bounds from the monotonicity tests as stated in
(28) and (29).

Theorem 1 Consider the minimization problem

min
ν∈C

‖R(ν)‖F . (31)

The following statements hold true:

(i) Problem (31) admits a unique minimizer ν̂.
(ii) supp(ν̂) andD agree up to the pixel partition, i.e. for any

pixel Bk

Bk ⊂ supp(ν̂) if and only if Bk ⊂ D.

Moreover,

ν̂ =
∑

Bk⊆D
amaxχk .

Now we deal with noisy data and introduce the corre-
sponding residual

rδ(ν) := �δ(λ, μ) − �(λ0, μ0) − �′(λ0, μ0)(τν, ν). (32)

Based on this, Rδ(ν) represents the matrix
(〈gi , rδ(ν)g j 〉)i, j=1,...M .

Further on, the admissible set for noisy data is defined by

Cδ :=
{
ν ∈ L∞(�) : ν =

p∑

k=1

akχk , ak ∈ R, 0 ≤ ak ≤ min(amax, βk,δ)

}

with
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βk,δ := max
{
a ≥ 0 : �δ(λ, μ) − �(λ0, μ0) − δ I

≤ �′(λ0, μ0)(τaχk, aχk)
}
. (33)

Thus, we present the following stability result.

Theorem 2 Consider the minimization problem

min
ν∈Cδ

‖Rδ(ν)‖F . (34)

The following statements hold true:

(i) Problem (34) admits a minimizer.
(ii) Let ν̂ = ∑

Bk⊆D
amaxχk be the minimizer of (31) and

ν̂δ =
p∑

k=1
ak,δχk of problem (34), respectively. Then ν̂δ

converges pointwise and uniformly to ν̂ as δ goes to 0.

Remark 5 In [5], we used monotonicity methods to solve the
inverse problem of shape reconstruction. In Theorems 1 and
2, we applied the same monotonicity methods to construct
constraints for the residual based inversion technique. Both
methods have a rigorously proven convergence theory, how-
ever the monotonicity-based regularization approach turns
out to be more stable regarding noise.

4.2.2 Theoretical background

In order to prove Theorem 1 as well as Theorem 2, we have
to take a look at the following.

Lemma 3 Let amax and τ be defined as in (26) and (27),
respectively, λ,μ ∈ L∞+ (�) and we assume that λ ≥ λ0,
μ ≥ μ0, where λ0, μ0 are constant. Then we have for any
pixel Bk , Bk ⊆ D if and only if βk > 0, where βk is defined
in (30).

Proof We adopt the proof of Lemma 3.4 from [11].
Step 1: First, we verify that from Bk ⊆ D it follows that
βk > 0.

In fact, by applying the monotonicity principle (22) mul-
tiplied by −1 for

λ1 := λ,μ1 := μ and λ2 := λ0, μ2 := μ0,

we end up with the following inequalities for all pixel Bk , all
a ∈ [0, amax] and all g ∈ L2(�N)d

〈
g,
(
�(λ, μ) − �(λ0, μ0) − �′(λ0, μ0)(τaχk , aχk)

)
g
〉

≤ −
∫

�

2

(

μ0 − μ2
0

μ

)

∇̂ug0 : ∇̂ug0 dx +
∫

�

2aχk∇̂ug0 : ∇̂ug0 dx

−
∫

�

(

λ0 − λ20

λ

)

∇ · ug0∇ · ug0 dx +
∫

�

τaχk∇ · ug0∇ · ug0 dx

≤ −
∫

D
2

(

μ0 − μ2
0

μ

)

∇̂ug0 : ∇̂ug0 dx +
∫

Bk

2amax∇̂ug0 : ∇̂ug0 dx

−
∫

D

(

λ0 − λ20

λ

)

∇ · ug0∇ · ug0 dx +
∫

Bk

τamax∇ · ug0∇ · ug0 dx

≤ 0.

In the above inequalities, we used the shorthand notation ug0
for the unique solution ug(λ0,μ0)

. The last inequality holds due
to the fact that amax and τ fulfill

−2

(

μ0 − μ2
0

μ

)

+ 2amax ≤ 0,

−
(

λ0 − λ20

λ

)

+ τamax ≤ 0

in D and that Bk lies inside D.
We want to remark, that compared with the corresponding

proof inHarrach andMach [11], this shows us that we require
conditions on amax as well as on τ (c.f. Eq. (28) and (29))
due to the fact that we deal with two unknown parameters (λ
and μ) instead of one.

Step 2: In order to prove the other direction of the statement,
let βk > 0. We will show that Bk ⊆ D by contradiction.

Assume that Bk � D and βk > 0. Applying the mono-
tonicity principle from Lemma 1,

�(λ,μ) − �(λ0, μ0) ≥ �′(λ0, μ0)((λ, μ) − (λ0, μ0)),

with the definition of βk in (30), we are led to

0 ≥ �(λ,μ) − �(λ0, μ0) − �′(λ0, μ0)(τβkχk, βkχk)

≥ �′(λ0, μ0)((λ, μ) − (λ0, μ0))

− �′(λ0, μ0)(τβkχk, βkχk).

Based on this, we conclude that for all g ∈ L2(�N)d

∫

Bk

τβk∇ · ug0∇ · ug0 dx + 2
∫

Bk

βk ∇̂ug0 : ∇̂ug0 dx

≤
∫

�

(λ − λ0)∇ · ug0∇ · ug0 dx + 2
∫

�

(μ − μ0)∇̂ug0 : ∇̂ug0 dx

≤
∫

D
Cλ∇ · ug0∇ · ug0 dx + 2

∫

D
Cμ∇̂ug0 : ∇̂ug0 dx . (35)

On the other hand, using the localized potentials in a similar
procedure as in the proof of Theorem 2.1 in [5], we can
find a sequence (gm)m∈N ⊂ L2(�N)d such that the solutions
(um0 )m∈N ⊂ H1(�)d of the forward problem (when theLamé
parameter are chosen to be λ0, μ0 and the boundary forces
g = gm) fulfill

lim
m→∞

∫

Bk

∇̂um0 : ∇̂um0 dx = ∞, lim
m→∞

∫

D
∇̂um0 : ∇̂um0 dx = 0,
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lim
m→∞

∫

Bk

∇ · um0 ∇ · um0 dx = ∞, lim
m→∞

∫

D
∇ · um0 ∇ · um0 dx = 0,

which contradicts (35). ��
Lemma 4 For all pixels Bk , denote by Sτ

k the matrix

Sτ
k := (〈gi ,−�′(λ0, μ0)(τχk, χk)g j 〉

)
i, j=1,...,M .

Then Sτ
k is a positive definite matrix.

Proof We adopt the proof of Lemma 3.5 from [11] for the
matrix Sτ

k , which directly yields the desired result. ��
Proof (Theorem 1) This proof is based on the proof of The-
orem 3.2 from [11].

to (i) Since the functional

ν 
→ ‖R(ν)‖2F :=
M∑

i, j=1

〈gi , r(ν)g j 〉2

is continuous, it admits a minimizer in the compact set C.
The uniqueness of ν̂ will follow from the proof of (ii) Step

3.
to (ii) Step 1 We shall check that for all

ν =
p∑

k=1

akχk satisfying 0 ≤ ak ≤ min(amax, βk),

it holds that r(ν) ≤ 0 in quadratic sense. We want to remark
that for amax and τ the inequalities (28) and (29) hold in D.

We proceed similar as in the proof of Lemma 3 and use
Lemma 2 for λ1 = λ,μ1 = μ, λ2 = λ0 and μ2 = μ0. In
addition, we multiply the whole expression with −1. Thus,
it holds that

〈
g, (�(λ,μ) − �(λ0, μ0) − �′(λ0, μ0)(τν, ν))g

〉

≤ −
∫

D
2amax∇̂ug0 : ∇̂ug0 dx +

p∑

k=1

∫

Bk

2ak ∇̂ug0 : ∇̂ug0 dx

−
∫

D
τamax∇ · ug0∇ · ug0 dx +

p∑

k=1

∫

Bk

τak∇ · ug0∇ · ug0 dx

for any g ∈ L2(�N)d .
If ak > 0, it follows βk ≥ ak > 0, so that Lemma 3

implies that Bk ⊆ D. Since ak ≤ amax, we end up with
〈g, r(ν)g〉 ≤ 0 for g ∈ L2(�N)d .

Step 2: Let ν̂ = ∑p
k=1 âkχk be a minimizer of problem

(31). We show that supp(ν̂) ⊆ D.
Per definition of βk , it holds that βk ≥ âk . This implies

βk > 0. With Lemma 3 we have Bk ⊆ D.
Step 3: We will prove that, if ν̂ = ∑p

k=1 âkχk is a mini-
mizer of problem (31), then the representation of âk is given

by

âk =
{
0 for Bk � D,

amax for Bk ⊆ D.

In fact, it holds that âk < amax. If there exists a pixel Bk such
that ν̂(x) < min(amax, βk) in Bk , we can choose hν > 0,
such that ν̂ + hνχk = amax in Bk . We will show that then,

‖R(ν̂ + hνχk)‖F < ‖R(ν̂)‖F ,

which contradicts the minimality of ν̂. Thus, it follows that
âk = min (amax, βk).

To show the contradiction, let θ1(ν̂) ≥ θ2(ν̂) ≥ · · · ≥
θM (ν̂) be M eigenvalues of R(ν̂) and θ1(ν̂ + hνχk) ≥
θ2(ν̂ + hνχk) ≥ · · · ≥ θM (ν̂ + hνχk) M eigenvalues of
R(ν̂ + hνχk).

Since R(ν̂) and R(ν̂ + hνχk) are both symmetric, all of
their eigenvalues are real. By the definition of the Frobenius
norm, we obtain

‖R(ν̂ + hνχk)‖2F − ‖R(ν̂)‖2F

=
M∑

i=1

|θi (ν̂ + hνχk)|2 −
M∑

i=1

|θi (ν̂)|2

=
M∑

i=1

(
θi
(
ν̂ + hνχk) + θi (ν̂

)) · (θi (ν̂ + hνχk) − θi (ν̂)
)
.

Due to Step 1, r(ν̂) ≤ 0 and r(ν̂+hνχk) ≤ 0 in the quadratic
sense. Thus, for all x = (x1, . . . , xM )T ∈ R

M , we have

xTR(ν̂)x =
M∑

i, j=1

xi x j 〈gi , r(ν̂)g j 〉 = 〈g, r(ν̂)g〉 ≤ 0,

where g = ∑M
i=1 xi gi . This means that −R(ν̂) is a posi-

tive semi-definite symmetric matrix in R
M×M . Due to the

fact, that all eigenvalues of a positive semi-definite symmet-
ric matrix are non-negative, it follow that θi (ν̂) ≤ 0 for all
i ∈ {1, . . . , M}. By the same considerations, −R(ν̂ + hνχk)

is also a positive semi-definite matrix. We want to remark,
that Sτ

k is positive definite as proven in Lemma 4 and hence,
all M eigenvalues of θ1(Sτ

k ) ≥ · · · ≥ θM (Sτ
k ) are positive.

Since

R(ν̂ + hνχk) = R(ν̂) + hνSτ
k

and the matrices R(ν̂ + hνχk), R(ν̂) + hν and Sτ
k are sym-

metric, we can apply Weyl’s Inequalities to get

θi (ν̂ + hνχk) ≥ θi (ν̂) + θM (hνSτ
k ) > θi (ν̂)

for all i ∈ {1, . . . , M}.
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In summary we end up with

‖R(ν̂ + hνχk)‖F < ‖R(ν̂)‖F ,

which contradicts theminimality of ν̂ and thus, ends the proof
of Step 3.

Step 4: We show that, if Bk ⊆ D, then Bk ⊆ supp(ν̂).
Indeed, since ν̂ is aminimizer of problem (31), Step 3 implies
that

ν̂ =
p∑

k=1

min(amax, βk)χk .

Since Bk ⊆ D, it follows from Lemma 3 that min(amax, βk)

> 0. Thus, Bk ⊆ supp(ν̂).
In conclusion, problem (31) admits a unique minimizer ν̂

with

ν̂ =
p∑

k=1

min(amax, βk)χk .

This minimizer fulfills

ν̂ =
{
amax in Bk, if Bk lies inside D,

0 in Bk, if Bk does not lie inside D,

so that

ν̂ =
∑

Bk⊆D
amaxχk .

��
Next, we go over to noisy data and take a look at the

following lemma, where we set V δ := 1
2 (V

δ + (V δ)∗), since
we always can redefine the data V δ in this way without loss
of generality. Thus, we can assume that V δ is self-adjoint.

Lemma 5 Assume that ‖�δ(λ, μ)−�(λ,μ)‖ ≤ δ. Then for
every pixel Bk , it holds that βk ≤ βk,δ for all δ > 0.

Proof The proof follows the lines of Lemma 3.7 in [11] with
the following modifications. We have to check that βk as
given in (30) fulfills the relation

|V δ| + �′(λ0, μ0)(τaχk, aχk) ≥ −δ I for all a ∈ [0, βk],

where |V δ| = √(V δ)∗V δ .
As proven in [11], V − V δ ≥ −δ I in quadratic sense.

Further on Lemma 3.6 from [11] implies |V δ| ≥ V δ , since
V δ is self-adjoint. Hence,

|V δ| + �′(λ0, μ0)(τβkχk, βkχk)

≥ V δ + �′(λ0, μ0)(τβkχk, βkχk)

= V + �′(λ0, μ0)(τβkχk, βkχk) + V δ − V

≥ −δ I .

��

Remark 6 As a consequence, it holds that

1. If Bk lies inside D, then βk,δ ≥ amax.
2. If βk,δ = 0, then Bk does not lie inside D.

Proof (Theorem 2) This proof is based on the proof of The-
orem 3.8 in [11].

to (i) For the proof of the existence of a minimizer of (34),
we argue as in the proof of Theorem 1 (i). First, we take a
look at the functional

ν 
→ ‖Rδ(ν)‖2F , (36)

which is defined by (Rδ(ν))i, j=1,...M :=(〈gi , rδ(ν)g j 〉
)
i, j=1,...M via the residual (32). Since the func-

tional (36) is continuous, it follows that there exists at least
one minimizer in the compact set Cδ .

to (ii) Step 1: Convergence of a subsequence of ν̂δ

For any fixed k, the sequence {âk,δ}δ>0 is bounded from
below by 0 and from above by amax, respectively. By Weier-
strass’Theorem, there exists a subsequence (â1,δn , . . . , âp,δn )
converging to some limit (a1, . . . , ap). Of course, 0 ≤ ak ≤
amax for all k = 1, . . . , p.

Step 2: Upper bound and limit
We shall check that ak ≤ βk for all k = 1, . . . , p. As

shown in the proof of Theorem 3.8 in [11], |V δ| converges
to |V | in the operator norm as δ goes to 0, and hence, for any
fixed k,

|V | + �′(λ0, μ0)(τakχk, akχk)

= lim
δn→0

(|V δn | + �′(λ0, μ0)(τ âk,δnχk, âk,δnχk))

in the operator norm. As in [11], we obtain that for all g ∈
L2(�N)d ,

〈g, (|V | + �′(λ0, μ0)(τakχk, akχk))g〉 ≥ 0.

Step 3: Minimality of the limit
Due to Lemma 5, we know that min(amax, βk) ≤

min(amax, βk,δ) for all k = 1, . . . , p. Thus, ν̂ belongs to
the admissible set Cδ of the minimization problem (34) for
all δ > 0. By minimality of ν̂δ , we obtain

‖Rδ(ν̂δ)‖F ≤ ‖Rδ(ν̂)‖F .
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Denote by ν = ∑p
k=1 akχk , where ak are the limits derived

in Step 1. We have that

‖Rδn (ν̂δn )‖2F =
M∑

i, j=1

〈

gi ,

(

−V δn −
p∑

k=1

�′(λ0, μ0)(τ âk,δnχk , âk,δnχk)

)

g j

〉2
,

‖R(ν)‖2F =
M∑

i, j=1

〈

gi ,

(

−V −
p∑

k=1

�′(λ0, μ0)(τakχk , akχk)

)

g j

〉2
.

With the same arguments as in the proof of Theorem 3.8 in
[11], i.e. that V converges to V δ as well as âk,δ goes to ak ,
we are led to

‖R(ν)‖F ≤ ‖R(ν̂)‖F .

Further on, by the uniqueness of the minimizer we obtain
ν = ν̂ that is

ak = âk =
{
0 for Bk � D,

amax for Bk ⊆ D.

Step 4: Convergence of the whole sequence ν̂δ

Again this is obtained in the same way as in [11]
and is based on the knowledge that every subsequence of
(â1,δ, . . . , âp,δ) possesses a convergent subsubsequence, that
goes to the limit (min(a, β1), . . . , min(a, βp)). ��

Remark 7 All in all, we are led to the discrete formulation of
the minimization problem for noisy data:

min
ν∈Cδ

‖Rδ(ν)‖F , (37)

under the constraint

0 ≤ νk ≤ min
(
amax, β̃k,δ

)
, (38)

where

amax = μ0 − μ2
0

μ0 + cμ
, (39)

τ = 1

amax

(

λ0 − λ20

λ0 + cλ

)

, (40)

β̃k,δ = max{a ≥ 0 : −aSτ
k ≥ −δI − |Vδ|} (41)

with |Vδ| := √(Vδ)∗Vδ .
We want to mention, that V is positive definite, however,

Vδ is not in general, which leads to problems in the proofs.
Hence, we use |Vδ| instead.

Next, we take a closer look at the determination of β̃k,δ

(see [11]), where β̃k,0 = β̃k :

Table 2 Lower and upper bounds cλ, cμ,Cλ,Cμ in [Pa]

γ λ γ μ

Lower bounds cλ = 1.2 × 106 cμ = 1.2 × 104

Upper bounds Cλ = 1.7 × 106 Cμ = 1.7 × 104

First, we replace the infinite-dimensional operators |V δ|
and �′(λ0, μ0) in (33) by the M × M matrices Vδ , Sτ

k such
that we need to find β̃k,δ with

−aSτ
k ≥ −δI − |Vδ|

for all a ∈ [0, β̃k,δ]. Due to the fact that δI + |Vδ| is a Her-
mitian positive-definite matrix, the Cholesky decomposition
allows us to decompose it into the product of a lower trian-
gular matrix and its conjugate transpose, i.e.

δI + |Vδ| = LL∗.

Wewant to remark that this decomposition is unique. In addi-
tion, L is invertible, since

0 < det(δI + Vδ) = det(L) det(L∗) = det(L)det(L).

For each a > 0, it follows that

− aSτ
k + δI + |Vδ| = −aSτ

k + LL∗

= L(−aL−1Sτ
k (L

∗)−1 + I)L∗.

Based on this, we go over to the consideration of the
eigenvalues and apply Weyl’s Inequality. Since the positive
semi-definiteness of −aSτ

k + δI + |Vδ| is equivalent to the
positive semi-definiteness of−aL−1Sτ

k (L
∗)−1+I, we obtain

θ j (−aL−1Sτ
k (L

∗)−1 + I) = aθ j (−L−1Sτ
k (L

∗)−1) + 1,

j = 1, . . . , M,

Fig. 11 Transparency function for the plots in Fig. 12 mapping the
values of ν to α(ν)
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where θ1(A) ≥ · · · ≥ θM (A) denote the M-eigenvalues of
some matrix A.

Further, let θM (−L−1Sτ
k (L

∗)−1) be the smallest eigen-
value of the matrix −L−1Sτ

k (L
∗)−1. Since Sτ

k is positive
definite, so is L−1Sτ

k (L
∗)−1. Thus, θM (−L−1Sτ

k (L
∗)−1) <

0. Following the lines of [11], we obtain

β̃k,δ = − 1

θM (−L−1Sτ
k (L

∗)−1)
≥ 0. (42)

4.2.3 Numerical realization

We close this section with a numerical example, where we
again consider two inclusions (tumors) in a biological tissue
as shown in Fig. 2 (for the values of the Lamé parameter
see Table 1). In addition to the Lamé parameters, we use the
estimated lower and upper bounds cλ, cμ,Cλ,Cμ given in
Table 2.

For the implementation, we again consider difference
measurements and apply quadprog from Matlab in order to
solve the minimization problem. In more detail, we perform
the following steps:

(1) Calculate

〈(�(λ0, μ0) − �δ(λ, μ))gi , g j 〉i, j=1,··· ,M

with COMSOL to obtain V via (17).
(2) Evaluate ∇̂ugi(λ0,μ0)

and ∇ · ugi(λ0,μ0)
for i = 1, · · · , M , in

Gaussian nodes for each tetrahedron.
(3) Calculate Sλ,Sμ (cf. Eqs. (14) and (15)) via Gaussian

quadrature.
Note that Sλ, Sμ can also be calculated from the stiffness
matrix of the FEM implementation without additional
quadrature errors by the approach given in [10].

(4) Calculate Sτ = Sμ + τSλ with τ as in (27).
(5) Calculate β̃k,δ , k = 1, . . . , p, as in (42).
(6) Solve the minimization problem (34) with Rδ(ν) =

Sτ ν − Vδ with quadprog in Matlab to obtain

ν̃δ =
p∑

k=1

ak,δχk .

(7) Set μ = μ0 + ν̃δ , λ = λ0 + τ ν̃δ .

Exact data

We start with exact data, i.e. data without noise and due to
the definition of δ given in (18), with δ = 0.

Remark 8 Performing the single implementation steps on a
laptop with 2 × 2.5 GHz and 8 GB RAM, we obtained the
following computation times: Step (1), i.e., the determination

of thematrixV, was done in 9min 1 s. The Fréchet derivative
is computed in 53 s in steps (2)–(4). The solution of the min-
imization problem (steps (5)–(7)) is calculated in6min27s.

Figure 12 presents the results as 3D plots, while Fig. 13
shows the corresponding cuts for μ. For the same reasons
as discussed in Sect. 3, we change the transparency of the
plots of the 3D reconstruction of Fig. 12 as indicated in Fig.
11. Thus, tetrahedrons with low values have a higher trans-
parency, whereas tetrahedrons with large values are plotted
opaque.

Figures 12 and 13 show that solving the minimization
problem (37) indeed yields a detection and reconstruction
with respect to both Lamé parameters μ and λ.

Remark 9 Compared with the results obtained with the one-
step linearization method as depicted in Fig. 4 (right hand
side), Fig. 12 shows an improvement because we are now
able to also obtain information concerning λ which is not
possible with the heuristic approach considered in (16).

Noisy data

Finally, we take a look at noisy data with a relative noise level
η = 10%, where the δ is determined as given in (18).

Figures 14 and 15 document that we can even reconstruct
the inclusions for noisy data which is a huge advantage com-
pared with the results of the one-step linearization (see Fig.
8- 9). This shows us, that the numerical simulations based on
the monotonicity-based regularization are only marginally
affected by noise as we have proven in theory, e.g., in Theo-
rem 2.

5 Summary

In this paper we introduced a standard one-step lineariza-
tion method applied to the Neumann-to-Dirichlet operator
as a heuristical approach and a monotonicity-based regu-
larization for solving the resulting minimization problem.
In addition, we proved the existence of such a minimizer.
Finally, we presented numerical examples.
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Fig. 12 Shape reconstruction of
two inclusions (red) of the
reconstructed difference in the
Lamé parameter μ (left hand
side) and λ (right hand side)
without noise, δ = 0 and
transparency function α as
shown in Fig. 11. (Color figure
online)

Fig. 13 Shape reconstruction of two inclusions (red) of the reconstructed difference in the Lamé parameter μ depicted as cuts without noise and
δ = 0. (Color figure online)

Fig. 14 Shape reconstruction of
two inclusions (red) of the
reconstructed difference in the
Lamé parameter μ (left hand
side) and λ (right hand side)
with relative noise η = 10%,
δ = 8.3944 · 10−8 and
transparency function α as
shown in Fig. 11. (Color figure
online)
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Fig. 15 Shape reconstruction of two inclusions (red) of the reconstructed difference in the Lamé parameter μ depicted as cuts with relative noise
η = 10% and δ = 8.3944 · 10−8. (Color figure online)

permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

For the monotonicity-based regularization we focused on the
case λ ≥ λ0,μ ≥ μ0 (see Sect. 5). For sake of completeness,
we formulate the corresponding results for the case that λ ≤
λ0, μ ≤ μ0. Thus, we summarize the corresponding main
results and define the set

C :=
{
ν ∈ L∞(�) : ν =

p∑

k=1

akχk, ak ∈ R,

0 ≥ ak ≥ −min(amax, βk)

}

where the quantities amax and τ are defined as

amax := cμ and τ := cλ

cμ
, (43)

such that

−2 (μ − μ0) + 2a ≥ 0, (44)

− (λ − λ0) + τa ≥ 0 (45)

for all 0 ≥ a ≥ −amax.

Remark 10 The value amax is obtained from the estimates in
Lemma 1 which results in a different upper bound a com-
pared with the case λ ≥ λ0, μ ≥ μ0.

Thus, the theorem for exact data is given by

Theorem 3 Consider the minimization problem

min
ν∈C

‖R(ν)‖F . (46)

The following statements hold true:

(i) Problem (46) admits a unique minimizer ν̂.
(ii) supp(ν̂) andD agree up to the pixel partition, i.e. for any

pixel Bk

Bk ⊂ supp(ν̂) if and only if Bk ⊂ D.

Moreover,

ν̂ =
∑

Bk⊆D
−amaxχk .

The corresponding results for noisy data is formulated in
the following theorem, where Rδ(ν) represents the matrix
(〈gi , rδ(ν)g j 〉)i, j=1,...,M and the admissible set for noisy data
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is defined by

Cδ :=
{
ν ∈ L∞(�) : ν =

p∑

k=1

akχk, ak ∈ R,

0 ≥ ak ≥ −min(amax, βk,δ)

}
.

Theorem 4 Consider the minimization problem

min
ν∈Cδ

‖Rδ(ν)‖F . (47)

The following statements hold true:

(i) Problem (47) admits a minimizer.
(ii) Let ν̂ = ∑

Bk⊆D
−amaxχk be the minimizer of (46) and

ν̂δ =
p∑

k=1
ak,δχk of problem (47), respectively. Then ν̂δ

converges pointwise and uniformly to ν̂ as δ goes to 0.

References

1. Andrieux S, Abda AB, Bui HD (1999) Reciprocity principle and
crack identification. Inverse Probl 15:59–65

2. Beretta E, Francini E, Morassi A, Rosset E, Vessella S (2014)
Lipschitz continuous dependence of piecewise constant Lamé coef-
ficients from boundary data: the case of non-flat interfaces. Inverse
Probl 30(12):125005

3. Beretta E, Francini E, Vessella S (2014) Uniqueness and Lipschitz
stability for the identification of Lamé parameters from boundary
measurements. Inverse Probl Imaging 8(3):611–644

4. Ciarlet PG (1978) The finite element method for elliptic problems.
North Holland Publishing Co., Amsterdam

5. Eberle S, Harrach B (2021) Shape reconstruction in linear elas-
ticity: standard and linearized monotonicity method. Inverse Probl
37(4):045006

6. Eberle S,HarrachB,MeftahiH,Rezgui T (2021) Lipschitz stability
estimate and reconstruction of Lamé parameters in linear elasticity.
Inverse Probl Sci Eng 29(3):396–417

7. Eberle S, Moll J (2021) Experimental detection and shape recon-
struction of inclusions in elastic bodies via a monotonicity method.
Int J Solids Struct. 233:111169

8. Eskin G, Ralston J (2002) On the inverse boundary value problem
for linear isotropic elasticity. Inverse Probl 18(3):907

9. Ferrier R, Kadri ML, Gosselet P (2019) Planar crack identifica-
tion in 3D linear elasticity by the reciprocity gap method. Comput
Methods Appl Mech Eng 355:193–215

10. Harrach B (2021) An introduction to finite element methods for
inverse coefficient problems in elliptic PDEs. JahresberDtschMath
Ver 123:183–210

11. Harrach B,MachNM (2016) Enhancing residual-based techniques
with shape reconstruction features in electrical impedance tomog-
raphy. Inverse Probl 32(12):125002

12. Harrach B, Ullrich M (2013) Monotonicity-based shape recon-
struction in electrical impedance tomography. SIAM J Math Anal
45(6):3382–3403

13. HubmerS, SherinaE,NeubauerA, ScherzerO (2018)Laméparam-
eter estimation from static displacement field measurements in the
framework of nonlinear inverse problems. SIAM J Imaging Sci
11(2):1268–1293

14. IkehataM (1990) Inversion formulas for the linearized problem for
an inverse boundary value problem in elastic prospection. SIAM J
Appl Math 50(6):1635–1644

15. Imanuvilov OY, Yamamoto M (2011) On reconstruction of Lamé
coefficients from partial Cauchy data. J Inverse Ill-Posed Probl
19(6):881–891

16. Jadamba B, Khan AA, Raciti F (2008) On the inverse problem
of identifying Lamé coefficients inlinear elasticity. Comput Math
Appl 56:431–443

17. Lin YH, Nakamura G (2017) Boundary determination of the
Lamé moduli for the isotropic elasticity system. Inverse Probl
33(12):125004

18. Marin L, Lesnic D (2002) Regularized boundary element solution
for an inverse boundary value problem in linear elasticity. Commun
Numer Methods Eng 18:817–825

19. Marin L, Lesnic D (2005) Boundary element-Landweber method
for the Cauchy problem in linear elasticity. IMA J Appl Math
70(2):323–340

20. Nakamura G, Tanuma K, Uhlmann G (1999) Layer stripping
for a transversely isotropic elastic medium. SIAM J Appl Math
59(5):1879–1891

21. NakamuraG,UhlmannG (1993) Identification ofLaméparameters
by boundary measurements. Am J Math 115:1161–1187

22. Nakamura G, Uhlmann G (1995) Inverse problems at the boundary
for an elastic medium. SIAM J Math Anal 26(2):263–279

23. Nakamura G, Uhlmann G (2003) Global uniqueness for an
inverse boundary value problem arising in elasticity. Invent Math
152(1):205–207

24. Oberai AA, Gokhale NH, Doyley MM, Bamber JC (2004) Evalua-
tion of the adjoint equation based algorithm for elasticity imaging.
Phys Med Biol 49(13):2955–2974

25. Oberai AA, Gokhale NH, Feijoo GR (2003) Solution of inverse
problems in elasticity imaging using the adjoint method. Inverse
Probl 19:297–313

26. SeidlDT,OberaiAA,Barbone PE (2019) The coupled adjoint-state
equation in forward and inverse linear elasticity: incompressible
plane stress. Comput Methods Appl Mech Eng 357:112588

27. Steinhorst P, SändigAM(2012)Reciprocity principle for the detec-
tion of planar cracks in anisotropic elastic material. Inverse Probl
29:085010

28. Tamburrino A (2006) Monotonicity based imaging methods for
elliptic and parabolic inverse problems. J Inverse Ill-Posed Probl
14(6):633–642

29. Tamburrino A, Rubinacci G (2002) A new non-iterative inver-
sion method for electrical resistance tomography. Inverse Probl
18(6):1809

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Monotonicity-based regularization for shape reconstruction in linear elasticity
	Abstract
	1 Introduction
	2 Problem statement
	3 Standard one-step linearization methods
	Numerical realization
	Exact data
	Noisy data


	4 Enhancing the standard residual-based minimization problem
	4.1 Summary of the monotonicity methods
	4.2 Monotonicity-based regularization
	4.2.1 Main results
	4.2.2 Theoretical background
	4.2.3 Numerical realization
	Exact data
	Noisy data


	5 Summary
	Appendix
	References




