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A Learning-Based Method for Solving Ill-Posed Nonlinear Inverse Problems: A
Simulation Study of Lung EIT\ast 
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Bastian Harrach\ddagger 

Abstract. This paper proposes a new approach for solving ill-posed nonlinear inverse problems. For ease of
explanation of the proposed approach, we use the example of lung electrical impedance tomography
(EIT), which is known to be a nonlinear and ill-posed inverse problem. Conventionally, penalty-
based regularization methods have been used to deal with the ill-posed problem. However, experi-
ences over the last three decades have shown methodological limitations in utilizing prior knowledge
about tracking expected imaging features for medical diagnosis. The proposed method's paradigm
is completely different from conventional approaches; the proposed reconstruction uses a variety of
training data sets to generate a low dimensional manifold of approximate solutions, which allows
conversion of the ill-posed problem to a well-posed one. Variational autoencoder was used to produce
a compact and dense representation for lung EIT images with a low dimensional latent space. Then,
we learn a robust connection between the EIT data and the low dimensional latent data. Numerical
simulations validate the effectiveness and feasibility of the proposed approach.
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1. Introduction. Electrical impedance tomography (EIT) aims to provide tomographic
images of an electrical conductivity distribution inside an electrically conducting object such as
the human body [6, 9, 5, 25, 26, 52]. In EIT, we attach an array of surface electrodes around a
chosen imaging slice of the object to inject currents and measure the induced voltages. Noting
that current-voltage relation reflects the conductivity distribution according to Ohm's law, an
accurate conductivity reconstruction by EIT is theoretically possible [4, 10, 30, 34, 46, 47, 55].

However, EIT in a clinical setting has suffered from the fundamental limitations that
current-voltage data is very sensitive to the forward modeling errors involving the boundary
geometry and the electrode configuration, whereas it is insensitive to local perturbation of the
conductivity. Since the inverse problem of EIT is highly ill-posed, the most common tech-
niques are regularized model-fitting approaches (e.g., least square minimization combined with
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regularization) [13, 40]. Unfortunately, in a clinical environment, these techniques have not
provided satisfactory results in terms of accuracy and resolution despite numerous endeavors
in the last four decades. Within conventional regularization frameworks, including Tikhonov
[56] and total variation regularization, it seems to be very difficult to enforce prior knowledge
of possible solutions effectively.

This paper suggests a new paradigm of EIT reconstruction using a specially designed
deep learning framework to leverage prior knowledge of solutions. For ease of explanation, this
paper focuses on the mathematical model of the time-difference EIT imaging of air ventilation
in the lungs. We denote by \gamma t(r) the conductivity at time t and position r. The input data for
the deep learning is the time-difference of the current-voltage data \.Vt := Vt - Vt0 in EIT (see
section 2 for \.V), and the output is the difference conductivity image \.\gamma t := \gamma t  - \gamma t0 , where t0
denotes a reference time. With fixing time t, we will use the shorter notations \.\gamma and \.V instead
of \.\gamma t and \.Vt, respectively. The goal is to learn an EIT reconstruction map f\mathrm{E}\mathrm{I}\mathrm{T} from training
data set \{ ( \.Vn, \.\gamma n) : n = 1, . . . , N\} such that f\mathrm{E}\mathrm{I}\mathrm{T}( \.V) produces a useful reconstruction for \.\gamma .

The standard deep learning paradigm is to learn a reconstruction function f\mathrm{E}\mathrm{I}\mathrm{T} : \.V \mapsto \rightarrow \.\gamma 
using many training data \{ ( \.Vn, \.\gamma n) : n = 1, . . . , N\} . The main issue is to find a suitable deep
learning network (\BbbD \BbbL ) which allows learning of a useful reconstruction map f\mathrm{E}\mathrm{I}\mathrm{T} from

(1) f\mathrm{E}\mathrm{I}\mathrm{T} = argmin
f\in \BbbD \BbbL 

1

N

N\sum 

n=1

\| f( \.Vn) - \.\gamma n\| 2.

The deep learning-based reconstruction method exploits an integrated knowledge synthesis
from the training data in order to get a direct reconstruction \.\gamma = f\mathrm{E}\mathrm{I}\mathrm{T}( \.V) from a new mea-
surement V.

The deep learning method is very different from the conventional regularized model-fitting
method, which can be expressed as

(2) \.\gamma = argmin
\.\gamma \in \scrH 

\| \.V  - \BbbS \.\gamma \| 2 + \lambda Reg( \.\gamma ),

where \BbbS \approx \partial \.\bfV 
\partial \.\gamma is the Jacobian matrix or sensitivity matrix (see section 2.1 for details), Reg( \.\gamma )

is the regularization term enforcing the regularity of \.\gamma , and \lambda is the regularization parameter
controlling the trade-off between the residual norm and regularity. Here, \scrH is a space for
representing images. In the case when the total number of pixels in the image is d, \scrH = \BbbR d.
Since the dimension of \scrH mostly is much bigger than the number of independent components
in the measurement data \.V, a large number of possible images are consistent with the mea-
surements up to the model and measurement error. Regularization is used to incorporate
a priori information in order to choose the image for which the regularization functional is
smallest. The success of this approach depends on whether the regularization term is indeed a
good indicator for realistic lung images. In order to improve image quality, it seems desirable
to go beyond standard regularization frameworks and add more specific a priori information.

In this work, we propose to use a deep learning method to find a useful constraint on EIT
solutions for the lung ventilation model. We use a variational autoencoder learning technique
(or manifold learning approach) to get a nonlinear expression of practically meaningful so-
lutions \.\gamma by variables h in a low dimensional latent space; i.e., a decoder \Psi is learned from
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training data to get the nonlinear representation \.\gamma = \Psi (h). This generates the tripled train-
ing data \{ ( \.Vn, \.\gamma n,hn) : n = 1, . . . , N\} . Next, we use the training data to learn a nonlinear
regression map f\mathrm{V}\mathrm{h} : \.V \rightarrow h, which makes a connection between the latent variables h and
the data \.V. The nonlinear regression map f\mathrm{V}\mathrm{h} is obtained by

(3) f\mathrm{V}\mathrm{h} = argmin
f\mathrm{V}\mathrm{h}\in \BbbD \BbbL h

1

N

N\sum 

n=1

\| f\mathrm{V}\mathrm{h}( \.V
n) - hn\| 2,

where \BbbD \BbbL h is a deep learning network described in section 2.3. Then, the reconstruction map
f\mathrm{E}\mathrm{I}\mathrm{T} is expressed as f\mathrm{E}\mathrm{I}\mathrm{T} = \Psi \circ f\mathrm{V}\mathrm{h}. The feasibility of the proposed method is demonstrated by
using numerical simulations. The performance can be enhanced by accumulating high quality
training data (clinically useful EIT images).

Before closing this introduction, we should mention that our method does not use ground-
truth labeled data for training because lung EIT lacks a known ground truth at present.
Although we have collected many human experiment data using a 16-channel EIT system
[39], its ground truthiness is not clear from a clinical point of view. Phantom experimental
results cannot be used for ground-truth data, which are far from realistic. The collection
of ground-truth training data may require a tough and complex process involving expensive
clinical trials. The issue of collecting training data is beyond the scope of this paper.

2. Time-difference EIT and conventional reconstruction methods.

2.1. Time-difference EIT. We briefly explain the mathematical model of an E-channel
time-difference EIT system in which E \in \BbbN electrodes are placed around the human thorax.
See Figure 1 for a sketch of a 16-channel EIT system. We assume that measurements are taken
in the following adjacent-adjacent pattern. A current of strength I is driven through the jth
pair of adjacent electrodes (\scrE j , \scrE j+1), keeping all other electrodes insulated, where we use the
convention that \scrE E+1 = \scrE 1. Then the resulting electric potential ujt satisfies approximately
the shunt model equations (ignoring the contact impedances underneath the electrodes):

(4)

\left\{ 
        
        

\nabla \cdot (\gamma t\nabla ujt )= 0 in \Omega ,\int 
\scrE j \gamma \nabla ujt \cdot n ds= I =  - 

\int 
\scrE j+1 \gamma \nabla ujt \cdot n ds,

(\gamma t\nabla ujt ) \cdot n= 0 on \partial \Omega \setminus \cup E
i \scrE i,\int 

\scrE i \gamma t\nabla ujt \cdot n= 0 for i \in \{ 1, . . . , E\} \setminus \{ j, j + 1\} ,
ujt | \scrE i = const. for i = 1, . . . , E,\sum E

i=1 u
j
t | \scrE i = 0,

where \gamma t is the conductivity distribution inside the imaging domain \Omega at time t, n is the
outward unit normal vector to \partial \Omega , and ds is the surface element.

Driving the current through the jth pair of adjacent electrodes, we measure the voltage
difference between the kth pair of adjacent electrodes

V jk
t = ujt | \scrE k  - ujt | \scrE k+1 .

We measure V jk
t for all combinations of j, k \in \{ 1, . . . , E\} excluding voltage measurements on

current-driven electrodes since they are known to be highly affected by skin-electrode contact
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impedance, which is ignored in the shunt model [21] for a possible remedy. Thus the EIT
measurements at time t are given by the E(E  - 3)-dimensional vector

Vt = (V 1,3
t , . . . , V 1,E - 1

t , V 2,4
t , . . . , V 2,E

t , . . . , V E,2
t , . . . , V E,E - 2

t )T \in \BbbR E(E - 3),

where the superscript T stands for the transpose of the vector.

Training
data

V̇n = · · ·
γ̇n = · · ·

fEIT( ) =

V̇ ∈ R208 γ̇ ∈ R16384
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Figure 1. 16-channel EIT system for monitoring regional lung ventilation. 16 electrodes are attached
around the thorax to inject currents and measure boundary voltages. The set of current-voltage data (i.e., a
discrete version of Neumann-to-Dirichlet data) is used to reconstruct time-difference conductivity images.

In time-difference EIT, we use the difference of two measurements

(5) \.V := Vt  - Vt0 \in \BbbR E(E - 3)

between sampling time t and reference time t0 in order to provide an image of the conductivity
difference

\.\gamma := \gamma t  - \gamma t0 .

From the variational formulation of (4), one obtains the following linear approximation:

(6)
\.V jk := V jk

t  - V jk
t0

= 1
I

\int 
\Omega 

\Bigl[ 
\gamma t\nabla ujt \cdot \nabla ukt  - \gamma t0\nabla ujt0 \cdot \nabla ukt0

\Bigr] 
dr

\approx 1
I

\int 
\Omega \.\gamma \nabla ujt0 \cdot \nabla ukt0dr.

For a computerized image reconstruction, we discretize \Omega into finite elements \Delta m, m =
1, 2, . . . , d, as \Omega \approx \cup d

m=1\Delta m, and assume that \.\gamma is approximately constant on each element
\Delta m. Let \.\gamma m \in \BbbR denote the value of \.\gamma on \Delta m and identify \.\gamma with the column vector

\.\gamma = ( \.\gamma 1, . . . , \.\gamma d)
T \in \BbbR d.

Then (6) can be written as

\.V jk \approx 
d\sum 

m=1

smjk \.\gamma m with smjk :=
1

I

\int 

\Delta m

\nabla ujt0 \cdot \nabla ukt0dr.
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To write this in matrix-vector form, we fix m = 1, . . . , d and write the elements of smjk as a
E(E  - 3)-dimensional vector

(7) Sm =
\bigl( 
sm1,3, . . . , s

m
1,E - 1, s

m
2,4, . . . , s

m
2,E , . . . , s

m
E,2, . . . , s

m
E,E - 2

\bigr) T \in \BbbR E(E - 3).

Using these vectors as columns, we define the sensitivity matrix \BbbS \in \BbbR E(E - 3)\times d and can thus
write (6) as

(8) \.V \approx 
d\sum 

m=1

\.\gamma mSm =

\left( 
 

| | 
S1 \cdot \cdot \cdot Sd

| | 

\right) 
 

\left( 
  

\.\gamma 1
...
\.\gamma d

\right) 
  = \BbbS \.\gamma .

16384 γ̇ V̇

2
0
8

S =
dV

dγ
=

ker S > d− E(E − 3)

{γ̇ : ‖Sγ̇
− V̇‖ ≤

ε}

· · ·

· · ·

Figure 2. The system \BbbS \.\gamma = \.\bfV on the left figure is a highly underdetermined problem. The set Sol\epsilon ( \.\bfV ) in
(9) can be viewed as an \epsilon -neighborhood of a space with dimension more than 16000. The image on the right
describes conventional penalty-based regularization methods that select an image from the set Sol\epsilon ( \.\bfV ).

2.2. Conventional penalty-based regularization methods. In most practical applica-
tions, d (the total number of pixels for \.\gamma ) is much bigger than E(E  - 3) (the number of
measurements), so that the linearized problem \BbbS \.\gamma = \.V is a highly underdetermined system.
When a 16-channel EIT system is used to produce images with 128 \times 128 pixels, then the
kernel dimension of \BbbS is at least 1282  - 16 \ast 13, so that a solution of \BbbS \.\gamma = \.V is only unique
up to addition of an image coming from a more than 16000-dimensional vector space.

Moreover, the linearized problem is only a rough approximation of the real situation, and
the measurements contain unavoidable noises. Hence, all conductivity distributions \.\gamma in the
wide region

(9) Sol\epsilon ( \.V) := \{ \.\gamma \in \BbbR d : \| \BbbS \.\gamma  - \.V\| fi\mathrm{d} \leq \epsilon \} 

have to be regarded as consistent with the measurements, where \epsilon is a tolerance reflecting
modeling and measurement errors, and \| \cdot \| fi\mathrm{d} is a norm measuring the data fidelity. In the
following we simply use \| \cdot \| 2 as the fidelity norm.

Conventional penalty-based regularization methods reconstruct the conductivity image by
choosing \.\gamma from all consistent candidates in Sol\epsilon ( \.V), so that it is smallest in some norm that
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penalizes unrealistic results; cf. Figure 2. Popular approaches include the simple Euclidean
norm and the total variation norm, which lead to the minimization problems

(10) \.\gamma = argmin
\.\gamma 

\| \.V  - \BbbS \.\gamma \| 22 + \lambda \| \.\gamma \| 22

and

(11) \.\gamma = argmin
\.\gamma 

\| \.V  - \BbbS \.\gamma \| 2 + \lambda \| D \.\gamma \| 1,

where \lambda > 0 is a regularization parameter and D \.\gamma is the discretized gradient of \.\gamma .
The performance of these approaches depends on whether the norm in the penalization

term is indeed a good indicator for realistic images. In order to improve image quality, it
seems desirable to add more specific a priori information.

2.3. Generic deep learning-based method. Generic deep learning methods or lung mon-
itoring in an E-channel EIT system rely on a training data set of conductivity images and
voltage measurements

\{ ( \.\gamma n, \.Vn) \in \BbbR d \times \BbbR E(E - 3) : n = 1, . . . , N\} 

and aim to learn a useful reconstruction map f\mathrm{E}\mathrm{I}\mathrm{T} from a suitable class of functions described
by a deep learning network \BbbD \BbbL through the minimization problem

(12) f\mathrm{E}\mathrm{I}\mathrm{T} = argmin
f\in \BbbD \BbbL 

1

N

N\sum 

n=1

\| f( \.Vn) - \.\gamma n\| 2.

By using a training set, these methods incorporate very problem-specific a priori information.
But they do not explicitly take into account that the EIT reconstruction problem is highly
underdetermined and ill-posed.

3. A manifold learning-based image reconstruction method.

3.1. Motivation: Adding a manifold constraint. To solve the highly underdetermined
system \BbbS \.\gamma = \.V, we follow the new paradigm that realistic lung images lie on a nonlinear
manifold that is much lower dimensional than the space of all possible images. If we can
identify a suitable set \scrM including images representing lung ventilation, then we can solve
the constrained problem

(13)

\bigm\| \bigm\| \bigm\| \bigm\| 
Solve \BbbS \.\gamma \approx \.V
subject to the constraint \.\gamma \in \scrM .

The unknown constraint \scrM is hoped to be a low dimensional manifold of images displaying
lung ventilation such that the intersection \scrM \cap Sol\epsilon ( \.V) is nonempty and of small diameter.
With this \scrM , it is hoped that the constraint problem is ``approximately well-posed"" in the
following approximate version of the Hadamard well-posedness [19]:

(a) Approximate uniqueness and stability. If two images \.\gamma , \.\gamma \prime \in \scrM satisfy \BbbS \.\gamma \approx \BbbS \.\gamma \prime , then
\.\gamma \approx \.\gamma \prime .
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(b) Approximate existence. For any lung EIT data \.V, there exist \.\gamma \in \scrM such that
\BbbS \.\gamma \approx \.V.

Many new theoretical and practical problems arise with this new paradigm. How to identify
and describe manifolds displaying lung ventilation on which the constrained inverse problem
(13) is robustly solvable is a highly challenging question. A recent step in this direction is the
result in [22] which shows that the inverse problem of EIT with sufficiently many electrodes is
uniquely solvable and Lipschitz stable on finite dimensional linear subsets of piecewise-analytic
functions.

3.2. Well-posedness of the inverse conductivity problem on compact sets. The average

image \.\gamma 1+\.\gamma 2

2 of two different images \.\gamma 1 and \.\gamma 2 displaying lung ventilation may not be a useful
representation of lung ventilation. Hence, it is desirable to work with low dimensional non-
linear manifolds for the conductivity image rather than with low dimensional vector spaces.
As a first result to show that the inverse conductivity can be approximately well-posed under
nonlinear constraints, we will now show that the inverse conductivity problem with continuous
measurements (modeled by the Neumann--Dirichlet operator) uniformly continuously deter-
mines the conductivity in compact sets of piecewise-analytic functions. We expect that the
result also holds for voltage measurements on a sufficiently high number of electrodes, though
that would require results on the approximation of the Neumann--Dirichlet operator with the
shunt electrode model that are outside the scope of this work.

For the following result let us also stress that the unique solvability of the inverse con-
ductivity problem for piecewise-analytic conductivity functions and the continuum model is
a classical result from Kohn and Vogelius [34, 35]. Without further restriction, the inverse
conductivity problem is highly ill-posed, and due to the nonlinearity, stability is not a trivial
consequence of restricting the conductivity to compact subsets. Alessandrini and Vessella [3]
have proven Lipschitz stability for the continuum model when the conductivity belongs to
an a priori known bounded subset of a finite dimensional linear subspace of C2-functions,
and [22] shows Lipschitz stability for bounded subsets of finite dimensional linear subspace
of piecewise-analytic functions for the complete electrode model with sufficiently many elec-
trodes. The following result follows the ideas from [24, 22] (see also [23]) to show that stability
holds on any (possibly nonlinear) compact subset of piecewise-analytic functions. It indicates
that our new approach of constructing a low dimensional nonlinear manifold of useful lung
images may indeed convert the ill-posed problem into a well-posed one.

Theorem 1. Let C \subseteq L\infty 
+ (\Omega ) be a compact set of piecewise analytic functions (in the sense

of [35]). For \gamma \in C let \Lambda (\gamma ) denote the Neumann--Dirichlet operator, i.e.,

\Lambda (\gamma ) : L2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ), g \mapsto \rightarrow u| \partial \Omega ,

where u \in H1
\diamond (\Omega ) solves \nabla \cdot (\gamma \nabla u) = 0 in \Omega .

Then for all \epsilon > 0 there exists \delta > 0 so that for all \gamma 1, \gamma 2 \in C

\| \Lambda (\gamma 1) - \Lambda (\gamma 2)\| < \delta implies \| \gamma 1  - \gamma 2\| < \epsilon .
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Proof. Let \epsilon > 0. As in [22], we have that for all \gamma 1, \gamma 2 \in C with \| \gamma 1  - \gamma 2\| \geq \epsilon 

\| \Lambda (\gamma 1) - \Lambda (\gamma 2)\| \geq sup
g\in L2

\diamond (\partial \Omega ), \| g\| =1

f(\gamma 1, \gamma 2, \gamma 2  - \gamma 1, g)

\geq inf
\tau 1,\tau 2\in C, \kappa \in K

sup
g\in L2

\diamond (\partial \Omega ), \| g\| =1

f(\tau 1, \tau 2, \kappa , g),

where f is defined by taking the maximum of two values arising from monotonicity inequalities
in [22],

f : L\infty 
+ (\Omega )\times L\infty 

+ (\Omega )\times L\infty (\Omega )\times L2
\diamond (\partial \Omega ) \rightarrow \BbbR ,

f(\tau 1, \tau 2, \kappa , g) := max\{ \langle (\Lambda \prime (\tau 1)\kappa )g, g\rangle , - \langle (\Lambda \prime (\tau 2)\kappa )g, g\rangle \} ,

and

K := \{ \kappa = \tau 1  - \tau 2 : \tau 1, \tau 2 \in C, \| \tau 1  - \tau 2\| \geq \epsilon \} .

From the compactness of C, it easily follows that K is also compact. The function

(\tau 1, \tau 2, \kappa ) \mapsto \rightarrow sup
g\in L2

\diamond (\partial \Omega ), \| g\| =1

f(\tau 1, \tau 2, \kappa , g)

is lower semicontinuous (see [22]) and thus attains its minimum over the compact set C\times C\times K.
With the same arguments as in [22, Lemma 2.11] it follows that

sup
g\in L2

\diamond (\partial \Omega ), \| g\| =1

f(\tau 1, \tau 2, \kappa , g) > 0 for all (\tau 1, \tau 2, \kappa ) \in C \times C \times K,

so that we obtain

\delta := inf
\tau 1,\tau 2\in C, \kappa \in K

sup
g\in L2

\diamond (\partial \Omega ), \| g\| =1

f(\tau 1, \tau 2, \kappa , g) > 0.

Hence,
\| \Lambda (\gamma 1) - \Lambda (\gamma 2)\| \geq \delta for all \gamma 1, \gamma 2 \in C with \| \gamma 1  - \gamma 2\| \geq \epsilon ,

so that the assertion follows by contraposition.

3.3. Filtered data. Before we aim to find a manifold representation of lung ventilation
images, we preprocess the voltage measurements to remove geometry modeling errors. In
practical lung EIT, it is cumbersome to take account of patient-to-patient variability in terms
of the boundary geometry and electrode positions, and it requires considerable effort to accu-
rately estimate geometry information. Moreover, the voltage measurements \.V can be affected
by respiratory motion artifacts. Hence, it is desirable to filter out these boundary uncertainties
as much as possible to extract a ventilation-related signal, denoted by \.Vlung.

To this end, we preprocess the voltage measurements as in [39]. We extract the boundary
error, denoted by \.V\mathrm{e}\mathrm{r}\mathrm{r}, by using the boundary sensitive Jacobian matrix \BbbS \mathrm{b}\mathrm{d}\mathrm{r}\mathrm{y}:

\.V\mathrm{e}\mathrm{r}\mathrm{r} := \BbbS \mathrm{b}\mathrm{d}\mathrm{r}\mathrm{y}

\bigl( 
\BbbS T\mathrm{b}\mathrm{d}\mathrm{r}\mathrm{y}\BbbS \mathrm{b}\mathrm{d}\mathrm{r}\mathrm{y} + \lambda \BbbI 

\bigr)  - 1 \BbbS T\mathrm{b}\mathrm{d}\mathrm{r}\mathrm{y} \.V,
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where \lambda is a regularization parameter, \BbbI is the identity matrix, and \BbbS \mathrm{b}\mathrm{d}\mathrm{r}\mathrm{y} is a submatrix of
\BbbS consisting of all columns corresponding to the triangular elements located adjacent to the
boundary. Then, the filtered data \.Vlung = \.V  - \.V\mathrm{e}\mathrm{r}\mathrm{r} is not so sensitive to the boundary \partial \Omega 
and motion artifacts [39].

From now on, we use this filtered data \.Vlung for the reconstruction instead of \.V in order
to alleviate the boundary error and motion artifacts. For notational simplicity, we use the
same notation \.V for the filtered data \.Vlung.

3.4. Low dimensional manifold representation. Assume that we are given a training
data set of conductivity images and voltage measurements from an E-channel EIT system

\{ ( \.\gamma n, \.Vn) \in \BbbR d \times \BbbR E(E - 3) : n = 1, . . . , N\} .
Instead of directly applying a generic deep learning approach as described in subsection 2.3,
we follow the new paradigm described in subsection 3.1 that images of lung ventilation lie on
a low dimensional manifold \scrM on which the inverse problem is approximately well-posed.

We therefore first use the conductivity images in the training data set

\{ \.\gamma n \in \BbbR d : n = 1, . . . , N\} 
to generate the low dimensional manifold \scrM . In an E-channel EIT system, the number of
independent information in the measured current-voltage data is at most E(E  - 3)/2 due
to the reciprocity \.V ji = \.V ij . Hence, in order to make the inverse problem approximately
well-posed, we aim to generate \scrM with dimension less than E(E  - 3)/2.

γ̇i

hi

γ̇j

hj

(1− t)hi + thj for 0 < t < 1

︷ ︸︸ ︷

Figure 3. Interpolation between two points \bfh i and \bfh j in the latent space. Given two images \.\gamma i = \Psi (\bfh i)
and \.\gamma j = \Psi (\bfh j), VAE allows one to generate the interpolated image \Psi ((1 - t)\bfh i + t\bfh j) for 0 < t < 1.

3.4.1. Autoencoder. Given a data set of lung EIT images, a variational autoencoder
(VAE) [32] technique is used to learn the distribution of lung EIT images with the assumption
that lung EIT image data (high dimensional) actually lies on a low dimensional manifold \scrM .
For ease of explanation of our idea, we start by first explaining the proposed method with
the well-known standard autoencoder instead of VAE. Autoencoder uses the training data set
\{ \.\gamma n \in \BbbR d : n = 1, . . . , N\} to learn two functions (called encoder and decoder)

\Phi : \BbbR d \rightarrow \BbbR k and \Psi : \BbbR k \rightarrow \BbbR d
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Image γ̇ = Ψ(h)

︸ ︷︷ ︸
Tangents

Figure 4. Tangent vector of \scrM . Assuming that \.\gamma = \Psi (\bfh ) is the image on the top left, its gradient \nabla \Psi (\bfh )
can be expressed as the images on the right side.

from a class of functions \BbbA \BbbE described by a deep learning network by minimizing

(14) (\Psi ,\Phi ) = argmin
(\Psi ,\Phi )\in \BbbA \BbbE 

1

N

N\sum 

n=1

\| \Psi \circ \Phi ( \.\gamma n) - \.\gamma n\| 2.

Choosing k << d, one can interpret the encoder's output h = \Phi ( \.\gamma ) as a compressed latent
representation, whose dimensionality is much less than the original size of the image \.\gamma . The
decoder \Psi converts h to an image similar to the original input

(15) \Psi \circ \Phi ( \.\gamma ) \approx \.\gamma .

For our application of lung imaging using an E-channel EIT system, we choose the class of
functions \BbbA \BbbE to contain encoder functions \Phi of the form

(16) \Phi ( \.\gamma ) := W \ell  - 1 \circledast 
\Bigl( 
\eta 
\Bigl( 
W \ell  - 2 \circledast \eta 

\bigl( 
\cdot \cdot \cdot \eta 

\bigl( 
W 1 \circledast \.\gamma 

\bigr) 
\cdot \cdot \cdot 

\bigr) \Bigr) \Bigr) 

and decoder functions \Psi of the form

(17) \Psi (h) = tanh
\Bigl( 
W 2\ell \circledast \dagger 

\Bigl( 
\eta 
\Bigl( 
W 2\ell  - 1 \circledast \dagger \eta 

\Bigl( 
\cdot \cdot \cdot \eta 

\Bigl( 
W \ell +1 \circledast \dagger h

\Bigr) 
\cdot \cdot \cdot 

\Bigr) \Bigr) \Bigr) \Bigr) 
.

Here, W \circledast x and W \circledast \dagger x, respectively, are the convolution and transposed convolution [58]
of x with weight W ; tanh is the hyperbolic tangent function; \eta is the rectified linear unit
activation function ReLU . The dimension k (the number of the latent variables) is chosen to
be smaller than E(E  - 3)/2 as motivated in subsection 3.4. We hope that \Phi and \Psi satisfy
the following.
(P1) \Psi (\Phi ( \.\gamma n)) \approx \.\gamma n, i.e., the lung ventilation conductivity images in the training data set

approximately lie on the low dimensional manifold

\scrM = \{ \Psi (h) : h \in \BbbR k\} .

(P2) \scrM is a manifold of useful lung EIT images. In particular, this means that for two
images \.\gamma i = \Psi (hi) and \.\gamma j = \Psi (hj) in \scrM , the interpolated image \Psi ((1  - t)hi + thj)
should represent a lung EIT image between \.\gamma i and \.\gamma j .
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Assuredly, the autoencoder approach aims to fulfill (P1) by minimizing the reconstruction loss
of (14). However, the second property (P2), as shown in Figures 3 and 4, may not be satisfied
by the classical deterministic autoencoder approach (14). There may be holes in the latent
space on which the decoder is never trained [49]. Hence, \Psi ((1  - t)hi + thj) for some t may
be an unrealistic lung ventilation image. This is the reason we use variational autoencoder,
which can be viewed as a regularized autoencoder or nonlinear principal component analysis
[8, 32].

Let us also stress that the mappings \Psi and \Phi will only be approximately inverse to each
other, so that \scrM might not be a manifold in the strict mathematical sense. However, the
set \scrM constructed with this approach (also including the VAE approach described in the
next subsection) will always be an image of the low dimensional latent space \BbbR k under the
continuous mapping \Psi . For the sake of readability, we keep the somewhat sloppy terminology
and refer to \scrM as a low dimensional manifold. Moreover, note that the image of \Psi of a closed
bounded subset of the latent space \BbbR k will be compact.

3.4.2. Variational autoencoder (VAE). The idea of VAE is to add variations in the latent
space to the minimization problem (14) in order to achieve (P2). More precisely, in VAE, the
encoder \Phi is of the following nondeterministic form:

(18) \Phi ( \.\gamma ) = \Phi \mathrm{m}\mathrm{e}( \.\gamma ) + \Phi \mathrm{s}\mathrm{t}\mathrm{d}( \.\gamma )\odot h\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e},

where \Phi \mathrm{m}\mathrm{e} outputs a vector of means \mu = (\mu (1), . . . , \mu (k)) \in \BbbR k; \Phi \mathrm{s}\mathrm{t}\mathrm{d} outputs a vector of
standard deviation \sigma = (\sigma (1), . . . , \sigma (k)) \in \BbbR k; h\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} is an auxiliary noise variable sampled
from standard normal distribution \scrN (0, I); and \odot is the elementwise product (Hadamard
product). Here, \Phi \mathrm{m}\mathrm{e} and \Phi \mathrm{s}\mathrm{t}\mathrm{d} are of the form (16) and describe the mean vector \mu = \Phi \mathrm{m}\mathrm{e}( \.\gamma )
and the standard variation vector \sigma = \Phi \mathrm{s}\mathrm{t}\mathrm{d}( \.\gamma ) of the nondeterministic encoder function.

According to (18),
\Phi ( \.\gamma ) = h \sim \scrN (\mu ,\Sigma ),

where \Sigma is a diagonal covariance matrix \Sigma = diag(\sigma (1)2, . . . , \sigma (k)2). With this nondetermin-
istic approach, we can fulfill the property (P2) since the same input \.\gamma can now be encoded as
a whole range of perturbations of h in the latent space, and thus we can determine a decoder
function \Psi that maps a whole range of perturbations of h to useful lung images. To find
\Psi , note that for all images \.\gamma , the concatenation \Psi (\Phi ( \.\gamma )) is now a random vector. Since we
can also interpret \.\gamma as a random vector which always takes the same value, we could ensure
the desired property (P1) by simply minimizing (14) with \| \cdot \| now denoting the energy dis-
tance between two random vectors. But this trivial approach would obviously still prefer a
deterministic encoder, i.e., \Phi \mathrm{m}\mathrm{e} will be the encoder function from the standard autoencoder
approach, and \Phi \mathrm{s}\mathrm{t}\mathrm{d} \equiv 0.

Hence, in order to ensure variations in the latent space to achieve (P2), we additionally
enforce that the distribution of the encoder output is close to a normal distribution. We thus
minimize (14) with an additional term that penalizes the Kullback--Leibler (KL) divergence
loss between \scrN (\mu n,\Sigma n) and \scrN (0, I) for all n = 1, . . . , N :

(19) DKL(\scrN (\mu n,\Sigma n) \| \scrN (0, I)) =
1

2

k\sum 

j=1

\bigl[ 
\mu n(j)

2 + \sigma n(j)
2  - log \sigma n(j) - 1

\bigr] 
.
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We thus obtain the VAE method

(20) (\Psi ,\Phi ) = argmin
(\Psi ,\Phi )\in \BbbV \BbbA \BbbE 

1

N

N\sum 

n=1

\bigl[ 
\| \Psi \circ \Phi ( \.\gamma n) - \.\gamma n\| 2 +DKL(\scrN (\mu n,\Sigma n) \| \scrN (0, I))

\bigr] 
,

where \mu n = \Phi \mathrm{m}\mathrm{e}( \.\gamma n) and \sigma n = \Phi \mathrm{s}\mathrm{t}\mathrm{d}( \.\gamma n). We should note that the covariance \Sigma n and the term
DKL(\scrN (\mu n,\Sigma n) \| \scrN (0, I)) allow smooth interpolation and compact encoding, resulting in
the generation of a compact smooth manifold.

3.5. The image reconstruction algorithm. Now we are ready to explain the reconstruc-
tion algorithm f\mathrm{E}\mathrm{I}\mathrm{T}. Given a set of training data, the key idea is that we do not aim to learn
a nonlinear regression map that directly reconstructs the conductivity \.\gamma from the voltage
measurements \.V as this will be a highly underdetermined and ill-posed problem. Instead we
first use the variational autoencoder method as explained in the last subsection to identify a
low dimensional latent space encoding the manifold of useful lung images and then learn the
nonlinear regression map that reconstructs the low dimensional latent variable as this problem
can be expected to be considerably better posed.

To explain this in more detail, let \{ ( \.Vn, \.\gamma n) : n = 1, . . . , N\} be a set of training data.
Using the learned encoder \Phi \mathrm{m}\mathrm{e} in (18), we obtain a set of training data for the latent variable
\{ ( \.Vn,hn) : n = 1, . . . , N\} with

(21) hn := \Phi \mathrm{m}\mathrm{e}( \.\gamma n).

In order to learn a nonlinear reconstruction map that reconstructs the latent variable from
the voltage measurements, i.e.,

(22) f\mathrm{V}\mathrm{h}( \.V) \approx h,

we minimize

(23) f\mathrm{V}\mathrm{h} = argmin
f\mathrm{V}\mathrm{h}\in \BbbD \BbbL h

1

N

N\sum 

n=1

\| f\mathrm{V}\mathrm{h}( \.Vn) - hn\| 2,

where \BbbD \BbbL h is the multilayer perceptrons with their mathematical representation given by

(24) f\ast 
\mathrm{V}\mathrm{h}(

\.V) = W \ell  - 1
\sharp 

\Bigl( 
\eta 
\Bigl( 
W \ell  - 2

\sharp 

\Bigl( 
\cdot \cdot \cdot \eta 

\Bigl( 
W 1

\sharp 
\.V
\Bigr) 
\cdot \cdot \cdot 

\Bigr) \Bigr) \Bigr) 
,

where W\sharp x is the matrix multiplication of x with weight W\sharp , and \eta is ReLU . See Figure 5 for
details.

After finding f\mathrm{V}\mathrm{h} by solving the minimization problem (23), we can reconstruct the conduc-
tivity from the latent variable by applying the decoder \Psi in (17). In summary, the proposed
lung EIT reconstruction map is

(25) f\mathrm{E}\mathrm{I}\mathrm{T} := \Psi \circ f\mathrm{V}\mathrm{h} : \.V  - \rightarrow h  - \rightarrow \.\gamma .
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Figure 5. Architecture of the proposed image reconstruction method. In the first stage, variational au-
toencoder is used to learn a 16-dimensional manifold representation for getting prior knowledge of lung EIT
images. In the second stage, a map fVh : \.\bfV \rightarrow \bfh is trained with \{ ( \.\bfV n,\bfh n)\} Nn=1. Here \bfh n were given by encoder;
\Phi me( \.\gamma n). In the third stage, fEIT := \Psi \circ f\ast 

Vh works with trained f\ast 
Vh and \Psi .

4. Experiments and results.

4.1. Generating labeled data. We numerically generate a set of labeled data \{ ( \.Vn, \.\gamma n) :
n = 1, . . . , N\} using the forward model (4) with a 16-channel EIT system and the filtering
process in section 3.3. To mimic practical situations, we use some human experiment results by
the fidelity-embedded reconstruction method [39] to collect a set of labeled data \{ ( \.Vm, \.\gamma m) :
m = 1, . . . , k\} . We also interpolate these data to generate additional data by computing the
forward problem (4) and (5). The number of training data \{ ( \.Vn, \.\gamma n) : n = 1, . . . , N\} was
21360. For data augmentation purposes, we added 10 different 5\% Gaussian random noises
to \.V. The size of the images \.\gamma n is 128 \times 128. All training was performed using an NVIDIA
GeForce GTX 1080ti GPU.
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4.2. Training procedure and reconstruction result. The proposed method consists of
three stages: (i) training variational autoencoder to find a low dimensional representation;
(ii) training the nonlinear regression map f\mathrm{V}\mathrm{h} from EIT data to latent variables; (iii) EIT
image reconstruction.

Algorithm 1. The proposed training and reconstruction algorithm.

Stage 1. Training variational autoencoder to find a low dimensional representa-
tion

for number of training step do
\bullet Sample the minibatch of m image \{ \.\gamma 1, . . . , \.\gamma m\} from training data.
\bullet Sample the minibatch of m auxiliary noise \{ h\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e},1, . . . ,h\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e},m\} from standard
normal \scrN (0, I).
\bullet Update the parameters of VAE using the gradient of the loss \scrL 1 in (20) with
respect to the parameters of VAEs for the minibatch:

\scrL 1 =
1

m

m\sum 

n=1

\bigl[ 
\| \Psi \circ \Phi ( \.\gamma n) - \.\gamma n\| 2 +DKL(\scrN (\mu n,\Sigma n) \| \scrN (0, I))

\bigr] 

end for

Stage 2. Training the nonlinear regression map \bfitf \bfV \bfh 

for number of training step do
\bullet Sample the minibatch of m image \{ \.\gamma 1, . . . , \.\gamma m\} from training data and encode
the sampled images to generate \{ \Phi \mathrm{m}\mathrm{e}( \.\gamma 1), . . . ,\Phi \mathrm{m}\mathrm{e}( \.\gamma m)\} .
\bullet Sample the minibatch of m paired voltage data \{ \.V1, . . . , \.Vm\} from training
data set.
\bullet Update the parameters of f\mathrm{V}\mathrm{h} using gradient of loss \scrL 2 in (23) with respect to
the parameters of f\mathrm{V}\mathrm{h} for the minibatch:

\scrL 2 =
1

m

m\sum 

n=1

\| f\mathrm{V}\mathrm{h}( \.Vn) - hn\| 2

end for

Stage 3. EIT image reconstruction
Using the trained nonlinear regression map f\mathrm{V}\mathrm{h} and decoder \Psi , an EIT reconstruction
map f\mathrm{E}\mathrm{I}\mathrm{T} is achieved by

f\mathrm{E}\mathrm{I}\mathrm{T}( \.V) = \Psi \circ f\mathrm{V}\mathrm{h}( \.V).

We used the AdamOptimizer [31] to minimize loss. The batch normalization [28] was also
applied. After finishing the training process (stages 1 and 2), EIT reconstruction images were
given by f\mathrm{E}\mathrm{I}\mathrm{T}( \.V) = \Psi \circ f\mathrm{V}\mathrm{h}( \.V). The reconstruction result is shown in Figure 6.

4.3. Visualizations of learned manifold. Our experimental result shows that lung EIT
images lie on the low dimensional smooth compact manifold. For easy visualization purposes,
we visualized the lung EIT manifold with two-dimensional latent space to project the high
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Reconstruction by proposed deep learning-based method

Figure 6. Reconstruction result of deep learning-based method from real experimental data. The recon-
structions were given by fEIT( \.\bfV ) = \Psi \circ fVh( \.\bfV ).

Figure 7. Visualization of learned lung EIT manifold with two-dimensional latent space.

dimensional image to the low dimensional manifold. Here we chose the equally spaced latent
variables h \in [ - 3, 3]2, and we decoded them to generate the images as shown in Figure 7.

We also visualized a manifold with 16-dimensional latent space. Since we cannot directly
visualize a 16-dimensional manifold, we visualized the manifold along each axis of the 16-
dimensional latent space as shown in Figure 8(a). Here, each ith row in Figure 7(a) shows
a lung EIT image \Psi (hi,j) with hi,j = \delta jei, where ei is a unit vector whose ith component is
one and otherwise zero with \delta j \in \{  - 6, . . . , 0, . . . , 6\} for i \in \{ 1, . . . , 16\} and j \in \{ 1, . . . , 13\} .
Each (i, j) image in Figure 8(b) shows the tangent which denotes the direction from the (i, j)
image to the (i, j + 1) image in Figure 8(a) for i \in \{ 1, . . . , 16\} and j \in \{ 1, . . . , 12\} . From the
manifold visualization, we can verify that change of lung images (e.g., lung ventilations) are
observed when we walk in the latent space.
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(a) (b)

Figure 8. Visualization of learned manifold with 16-dimensional latent space. (a) shows \Psi (\bfh i,j) where \bfh i,j

have value \delta j \in \{  - 6, . . . , 6\} in the ith component and otherwise zero. (b) shows its tangents. We expected that
small changes in latent space would produce small changes in image space. Here the blue and red colors denote
the positive and negative values.

4.4. Advantages on VAE-based manifold constraint. The proposed method is more
advantageous than conventional regularization methods due to the low dimensional manifold
constraint in reconstructing lung images fitting EIT data. The conventional methods do not
work for obese people, which is the case in which the lung is placed away from the surface
electrodes. The conventional regularization methods may produce merged images due to their
fundamental nature, penalizing image perturbation, as shown in Figure 9. On the other hand,
the proposed method always generates lung-like images due to the learning constraint of lung
images.

In this experiment, we use a simulated image \.\gamma and compute the corresponding simulated
data \.V using the forward model (4) with \gamma = 1 + \.\gamma and a 16-channel EIT system. Here, we
added 5\% Gaussian random noise to \.V. For each image of \.\gamma , 10 different data are computed
by adding the noise. In total 21360 (= 2136\times 10) data pairs are used for the training process.
The images in Figure 9 compare the proposed method with regularized data fitting methods
argmin \.\gamma \| \.V - \BbbS \.\gamma \| 2+\lambda \| \.\gamma \| 22 by using simulated EIT data. In case 2, as shown in Figure 9, two
lungs are merged in the reconstructed images by the regularized data fitting methods, but
not in the reconstructed image by the proposed method. This is because the measured data
are highly sensitive to conductivity changes near the current-injection electrodes, whereas the
sensitivity drops rapidly as the distance increases [7].
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Ground truth

Regularized least square method

Case1:

Normal

Person Proposed deep learning based method

Ground truth

Regularized least square method

Case2:

Obese

Person Proposed deep learning based method

Figure 9. Comparison of reconstruction methods with simulated data. We compare the proposed deep learn-
ing method in section 3 with the standard regularized least square method (10) for two cases: a normal person
and an obese person. In case 1 (normal person), both methods produce reasonably accurate reconstructions. In
case 2 (obese person), however, the standard method gives a merged image because the electrodes' positions are
distant from the support of \.\gamma . On the other hand, the proposed method provides useful reconstruction. Here,
we resized our result of deep learning to the same ratio of reconstruction of the conventional method for the
comparison.

5. Discussion and conclusion. This paper addresses the problem of handling ill-posed
nonlinear inverse problems by suggesting a low dimensional representation of target images.
ElT is a typical example of ill-posed nonlinear inverse problems where the dimension of mea-
sured data is much lower than the number of unknowns (pixels of the image). Moreover, there
exist complicated nonlinear interrelations among inputs (a practical version of Dirichlet-to-
Neuman data), outputs (impedance imaging), and system parameters. Finding a robust
reconstruction map f\mathrm{E}\mathrm{I}\mathrm{T} for clinical practice requires using prior knowledge on image expres-
sion. Regularization techniques have been used widely to deal with ill-posedness, but the
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conventional Lp-norm-based regularization may not provide a proper prior of target images
in practice. See Figure 2.

The deep learning framework may provide a nonlinear regression on training data which
acts as learning complex prior knowledge on the output. VAE allows the achievement of
compact representation (or low dimensional manifold learning) for prior information of lung
EIT images, as shown in Figures 3 and 4. Dai et al. [15] viewed VAE as the natural evolution of
robust PCA models, capable of learning nonlinear manifolds of unknown dimension obscured
by gross corruptions. Given data \{ \.\gamma n \in \BbbR d : n = 1, . . . , N\} , the encoder \Phi ( \.\gamma ) in (18) can
be viewed as a conditional distribution q(h| \.\gamma ) that satisfies q(h| \.\gamma ) = \scrN (\mu ,\Sigma ). The decoder
\Psi can be represented by a conditional distribution p( \.\gamma | h) with p(h) = \scrN (0, I). VAE tries to
match p(h| \.\gamma ) and q(h| \.\gamma ). VAE encoder covariance can help smooth out undesirable minima
in the energy landscape of what would otherwise resemble a more traditional deterministic
autoencoder [15].

Given the training data \{ ( \.Vn, \.\gamma n) : n = 1, . . . , N\} , the encoding-decoding pair (\Phi ,\Psi ) and
the nonlinear regression map f\mathrm{V}\mathrm{h} in (23) satisfy the following properties as in the sense of
Hadamard [19]:

\bullet Approximate existence. Given \.V, there exist h such that f\mathrm{V}\mathrm{h}( \.V) \approx h.
\bullet Approximate uniqueness. For any two different EIT data \.V, \.V\prime , we have \| \Phi ( \.V)  - 
\Phi ( \.V\prime )\| \gtrsim \| f\mathrm{V}\mathrm{h}( \.V) - f\mathrm{V}\mathrm{h}( \.V

\prime )\| .
\bullet Stability. \.V \thickapprox \.V\prime implies \Phi ( \.V) \thickapprox \Phi ( \.V\prime ).

The proposed deep learning approach is a completely different paradigm from regularized
data-fitting approaches that use a ``single"" data fidelity with regularization. The deep learning
approach instead uses a ``group"" data fidelity to learn an inverse map from the training data.
The deep learning framework can provide a nonlinear regression for the training data, which
acts as learning complex prior knowledge of the output. Let us explain this using the well-
known example of sub-Nyquist sampling (compressive sensing) MRI, which is an ill-posed
inverse problem with fewer equations than unknowns. The well-known compressed sensing
(CS) method with random sampling is based on the regularized data-fitting approach (single
data fidelity), where total variation regularization is used to enforce the image sparsity to
compensate for undersampled data [11, 41]. The CS method requires nonuniform random
subsampling, since it is effective to reduce noise. On the other hand, the deep learning-based
method [27] provides a low dimensional latent representation of MR images, which can be
learned from the training set (group data fidelity). The learned reconstruction function from
the group data fidelity appears to have highly expressive representation capturing anatomical
geometry as well as small anomalies [27].

Deep learning techniques have expanded our ability by sophisticated ``disentangled repre-
sentation learning"" though training data. Deep learning methods appear to overcome limita-
tions of existing mathematical methods in handling various ill-posed problems. Deep learning
methods will improve their performance as training data and experience accumulate over time.
However, we do not have rigorous mathematical evidence for why deep learning methods work
so well. We need to develop mathematical theories to ascertain their reliability.
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