
Combining frequency-difference and ultrasound

modulated electrical impedance tomography‡

Bastian Harrach1, Eunjung Lee2, Marcel Ullrich1

1 Department of Mathematics, University of Stuttgart, Germany
2 Department of Computational Science and Engineering, Yonsei University, Seoul,

Korea

E-mail: harrach@math.uni-stuttgart.de, eunjunglee@yonsei.ac.kr,

marcel.ullrich@mathematik.uni-stuttgart.de

Abstract. Electrical impedance tomography (EIT) is highly affected by modeling

errors regarding electrode positions and the shape of the imaging domain. In this

work, we propose a new inclusion detection technique that is completely independent

of such errors. Our new approach is based on a combination of frequency-difference

and ultrasound modulated EIT measurements.
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1. Introduction

The goal of electrical impedance tomography (EIT) is to image the conductivity inside

a subject. To that end, electrodes are attached to the subject’s boundary, and one

measures the voltages that are required to drive a specified static or time-harmonic

current through different combinations of the attached electrodes. The potential

advantages of EIT compared to other imaging technique are that conductivity values

are typically of a high specificity, and that EIT devices are comparatively cheap and

easily portable.

The inverse problem of reconstructing the conductivity from boundary voltage and

current measurements is known to be highly non-linear and ill-posed. The measurements

are very insensitive to changes in the conductivity values away from the electrodes. They

do, however, strongly depend on the measurement geometry, i.e., the electrode position

and the shape of the imaging domain. In most applications, it is not feasible to precisely

measure the geometry, and electrodes are frequently placed by hand. Hence, such

modeling or geometry errors present a major challenge for practical EIT applications.

‡ This is an author-created, un-copyedited version of an article published in Inverse Problems 31(9), 095003, 2015. IOP
Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from
it. The Version of Record is available online at http://dx.doi.org/10.1088/0266-5611/31/9/095003.
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The main focus of EIT is often on the detection and localization of conductivity

inclusions or anomalies (e.g., material faults or pathological regions) inside an otherwise

more or less homogeneous medium.

In this work, we propose a new measurement setup for anomaly detection and

describe a reconstruction method that is completely unaffected by geometrical modelling

errors, as it does not require knowledge of the electrode position or the shape of the

imaging domain.

The main idea of our new technique is to combine ultrasound-modulated EIT

measurements with frequency-difference EIT measurements. We focus an ultrasound

wave on a small region inside the imaging domain to alter the conductivity in the

focusing region. The resulting effect on the EIT measurements is then compared to the

effect of a change in the electric current frequency. This comparison shows whether the

focusing region lies inside a conductivity anomaly or not.

To decide whether the focusing region lies inside an anomaly, our method utilizes

only the two sets of EIT measurements (with ultrasound-modulation and after the

frequency change) and the ratio of the background conductivity before and after the

frequency change. The latter can be estimated from comparing EIT measurements

before and after the frequency change, as it is done in weighted frequency-difference EIT

(see the references below). The method can be implemented using simple monotonicity

tests, i.e., the taken voltage measurements are arranged in the form of a matrix and then

compared in the sense of matrix definiteness (resp., in the idealized case of continuous

boundary measurements, the measurements are interpreted as Neumann-to-Dirichlet

operators and compared in the sense of definiteness of self-adjoint compact operators).

Our new method does not use any forward simulations, or explicitly known special

solutions, that would depend on the geometry of the setup. It does not require any

knowledge of the electrode position or the shape of the imaging domain, and is hence

completely unaffected by modeling errors.

We give a complete proof for our method for the case of continuous boundary

data, when the measurements are given by the Neumann-to-Dirichlet-operator. For

the case of measurements on a finite number of electrodes, we prove that the method

correctly identifies the case where the focusing region lies inside the anomaly. We also

give a physical justification (in the spirit of [36]), that regions outside the anomaly will

correctly be identified if enough electrodes are used for the measurements, cf. remark

3.3.

Let us now comment on related works and the origins of our approach. For a broad

overview on electrical impedance tomography see [39, 6, 13, 61, 16, 10, 11, 12, 60, 40,

40, 8, 1, 75, 64]. For the task of anomaly detection in EIT, let us refer to Friedmann and

Isakov [20, 21] for early works, Potthast [65] for an overview on non-iterative methods,

and [35] for the recent result that shape information is invariant under linearization.

Iterative anomaly detection methods are commonly based on level-set approaches, cf.,

e.g. [52, 72, 18, 19, 77, 66]. Prominent non-iterative anomaly detection methods are the

Factorization Method (see [54, 28, 22, 31, 43, 59, 63, 24, 27, 34, 67, 36, 68, 26, 15, 17, 7]
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and the recent overviews [55, 30, 33]), the enclosure method (see [47, 14, 48, 50, 49, 51,

45, 76, 44]), and the recently emerging monotonicity method (see the references below).

Our new method is based on a monotonicity-based comparison of weighted

frequency-difference EIT (fdEIT) and ultrasound-modulated EIT (UMEIT) measure-

ments. Monotonicity-based comparisons were first considered as heuristic inclusion-

detection methods and numerically tested by Tamburrino and Rubinacci [74, 73]. Re-

cently, the monotonicity method was rigorously justified [38] using the concept of lo-

calized potentials [23]. Weighted fdEIT has been introduced in order to improve the

reconstruction stability with respect to modeling errors in settings where no reference

(anomaly-free) data is available, see [69, 34, 36]. The hybrid tomography technique

UMEIT was introduced in [79, 2], cf. also [58, 3, 56, 57, 78, 4, 62, 5, 9] for more works

on this subject. When the measurement geometry is known, UMEIT allows to measure

the interior electrical energy of the subject by altering the conductivity with a focused

ultrasound waves (cf. the related idea of Impedance-Acoustic Tomography [25], where

interior energy data is obtained from measuring expansion effects caused by electrical

heating). Knowledge of this additional interior energy information eliminates the major

cause of ill-posedness in the reconstruction process, which could greatly increase image

resolution. Moreover, let us mention that combinations of EIT and ultrasound have

been studied that rely on data-fusion rather than on coupled physics, e.g., by using

ultrasound images as prior information for EIT reconstructions, cf., e.g., [70, 71].

At this point, it has to be noted, that (up to the knowledge of the authors) the

idea of using focused waves in ultrasound-modulated EIT (UMEIT) yet has to be

experimentally validated. The results in this work are derived under the idealistic

assumption of a perfectly focused ultrasound waves that changes the conductivity in

a well-defined circular region. Of course, in reality, such a perfect focus cannot be

realized, and the ultrasound wave will also affect the conductivity outside the focusing

region. Moreover, the location of the focusing region will not be known exactly but

depend on the measurement geometry. It is, however, widely accepted that in typical

EIT applications, conductivity contrast is much higher than ultrasound contrast, while

ultrasound resolution is much higher than EIT resolution. Therefore we believe that

techniques relying on UMEIT are worth investigating despite the current lack of practical

validation.

The paper is organized as follows. In section 2, we start with describing the general

setting of complex conductivity EIT and ultrasound modulated EIT for continuous

boundary data. Then we derive a monotonicity relation for complex conductivity

EIT, and use this relation to develop an anomaly detection algorithm that is based on

comparing EIT measurements at a non-zero frequency with ultrasound-modulated DC

measurements. Section 3 contains the corresponding results for a setting with finitely

many electrodes using the shunt electrode model. In section 4, we illustrate our new

method with two- and three-dimensional numerical results. Section 5 concludes the

paper with a discussion of our results.
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2. Continuous boundary data

2.1. The setting

We start by describing the general setting of complex conductivity EIT and ultrasound

modulated EIT with continuous boundary data. We consider a bounded imaging domain

Ω ⊂ Rn, n ≥ 2 with piecewise smooth boundary. For x ∈ Ω, let

γω(x) = σω(x) + iωεω(x)

denote the body’s complex admittivity at frequency ω ≥ 0. We assume that

<(γω) = σω ∈ L∞+ (Ω;R), and =(γω) = ωεω ∈ L∞(Ω;R),

where <(·) and =(·) denote the real and imaginary part, the subscript “+” indicates

functions with positive (essential) infima, and throughout this work all function spaces

consist of complex valued functions if not stated otherwise.

Complex EIT measurements consist of applying time-harmonic currents to the

surface of the imaging domain and measuring the resulting electric surface potential.

In the so-called continuum model (see, e.g., [16]), these measurements are described by

the Neumann-to-Dirichlet-Operator

Λ(γω) : L2
�(∂Ω)→ L2

�(∂Ω), g 7→ u(g)
γω |∂Ω,

where u
(g)
γω ∈ H1

� (Ω) solves

∇ ·
(
γω∇u(g)

γω

)
= 0 in Ω and γω∂νu

(g)
γω |∂Ω = g. (1)

Here, the subspace of L2(∂Ω) and H1(Ω)-functions with vanishing integral mean on ∂Ω

is denoted by L2
�(∂Ω) and H1

� (Ω), respectively. ν is the outer normal on ∂Ω. It is well

known that Λ(γω) is a well-defined, linear and compact operator.

The idea of ultrasound-modulated EIT is to focus an ultrasound wave on a small

part B ⊆ Ω in order to change the density of the material and thus its conductivity in

B, cf. [2]. A simple, very idealistic model is that the focused ultrasound wave changes

the conductivity from γω to γω(1 + βχB), where β > 0 depends on the strength of

the ultrasound wave and χB is the characteristic function of B. Hence, ultrasound-

modulated EIT measurements can be modeled as

Λ(γω(1 + βχB)).

In this work, we will compare measurements at a non-zero frequency Λ(γω), ω > 0,

with ultrasound-modulated DC measurements Λ(γ0(1+βχB)) in order to detect whether

the ultrasound modulated part B lies inside a conductivity anomaly or not.

2.2. Monotonicity results for the continuous case

We will compare measurements in the sense of operator definiteness. Given a bounded

linear operator A : L2
�(∂Ω)→ L2

�(∂Ω), we define its self-adjoint part by setting

<(A) :=
1

2
(A+ A∗)
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where A∗ : L2
�(∂Ω) → L2

�(∂Ω) is the adjoint of A with respect to the inner product of

L2
�(∂Ω), i.e., ∫

∂Ω

g(Ah) ds =

∫
∂Ω

(A∗g)h ds for all g, h ∈ L2
�(∂Ω).

Obviously, <(A) is a self-adjoint bounded linear operator.

For two self-adjoint bounded linear operators A,B : L2
�(∂Ω) → L2

�(∂Ω), we write

A ≤ B if B − A is positive semidefinite, i.e.∫
∂Ω

gAg ds ≤
∫
∂Ω

gBg ds ∀g ∈ L2
�(∂Ω).

For compact operators, this is equivalent to the fact that all eigenvalues of B − A are

non-negative.

Note that, for all g, h ∈ L2
�(∂Ω), the Neumann-to-Dirichlet-operator Λ(γω) satisfies∫

∂Ω

gΛ(γω)h ds =

∫
∂Ω

gu(h)
γω |∂Ω ds =

∫
Ω

γω∇u(g)
γω · ∇u(h)

γω ,∫
∂Ω

gΛ(γω)h ds =

∫
Ω

γω∇u(g)
γω · ∇u

(h)
γω =

∫
∂Ω

hΛ(γω)g ds.

In that sense, Λ(γω) is symmetric but generally (for complex γω) not self-adjoint.

In simple two-point conductivity measurement setups, there exists an obvious

monotonicity relation. Given a larger conductivity we will require less voltage to

drive the same current. Remarkably, this monotonicity relation extends to the case

of continuous boundary measurements. For real-valued conductivity functions σ1, σ2 ∈
L∞+ (Ω;R) we have that, for all g ∈ L2

�(∂Ω),∫
Ω

σ2

σ1

(σ1 − σ2)
∣∣∇u(g)

σ2

∣∣2 dx

≤
∫
∂Ω

g (Λ(σ2)− Λ(σ1)) g ds ≤
∫

Ω

(σ1 − σ2)
∣∣∇u(g)

σ2

∣∣2 dx, (2)

where u
(g)
σ2 solves the EIT equation (1) with conductivity σ2 and boundary currents g.

Hence,

σ1 ≤ σ2 implies that Λ(σ1) ≥ Λ(σ2),

so that an imaging domain with larger conductivity yields to smaller measurements in

the sense of operator definiteness. The monotonicity relation (2) goes back to Ikehata,

Kang, Seo, and Sheen [53, 46]. It is the basis of many results on inclusion detection in

EIT, cf. [54, 45, 34, 35, 36, 38, 33].

The following lemma extends the relation (2) to complex-valued conductivities (see

also [54, 34, 36] for similar results).

Lemma 2.1. Let γ1, γ2 ∈ L∞+ (Ω;R) + iL∞(Ω;R), g ∈ L2
�(∂Ω), and u

(g)
γ1 , u

(g)
γ2 ∈ H1

� (Ω)

be the corresponding solutions of (1). Then∫
Ω

(
<(γ2)

<(γ1)
<(γ1 − γ2)− =(γ2)2

<(γ1)

) ∣∣∇u(g)
γ2

∣∣2 dx

≤
∫
∂Ω

g< [Λ(γ2)− Λ(γ1)] g ds ≤
∫

Ω

(
<(γ1 − γ2) +

=(γ1)2

<(γ1)

) ∣∣∇u(g)
γ2

∣∣2 dx.
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The proof of lemma 2.1 is postponed to the end of this section.

2.3. Detecting inclusions in the continuous case

We assume that the imaging domain Ω consists of a homogeneous background medium

with one or several conductivity anomalies (inclusions) D. For simplicity, we will present

our result for the case that the anomalies possess a constant admittivity and that the

conductivity σω and the permittivity εω do not change with frequency. More precisely,

we assume that D ⊂ Ω is a closed set with connected complement and that γ0 and γω
are given by

γ0(x) =

{
γ

(Ω)
0 = σΩ for x ∈ Ω \D
γ

(D)
0 = σD for x ∈ D

(3)

γω(x) =

{
γ

(Ω)
ω = σΩ + iωεΩ for x ∈ Ω \D
γ

(D)
ω = σD + iωεD for x ∈ D

(4)

with real-valued constants σΩ, σD, εΩ, εD > 0. We also assume that the anomaly fulfills

εDσΩ − εΩσD 6= 0, (5)

which is the contrast condition required to detect inclusion in weighted fdEIT, cf. [34,

Remark 2.3]. Our results can easily be extended to inclusions of spatially varying and

frequency-dependent admittivities as long as the background conductivities are constant.

The ratio of the background conductivities is denoted by

α :=
γ

(Ω)
ω

γ
(Ω)
0

= 1 + iω
εΩ
σΩ

. (6)

Obviously, αΛ(γω) = Λ(γω/α).

We show that the anomaly D can be detected from comparing (ratio-weighted)

EIT measurements at a non-zero frequency ω > 0 with ultrasound-modulated DC

measurements, i.e. that we can detect D from knowledge of Λ(γω), Λ(γ0(1 +βχB)), and

the background ratio α. (Note that, the background ratio α could also be estimated

by additionally taking unmodulated DC measurements Λ(γ0) and comparing them with

Λ(γω) in the same way as in weighted fdEIT, cf. [69, 34, 36].)

Theorem 2.2. Let c := εDσΩ − εΩσD 6= 0.

(a) If c > 0, then for sufficiently small β > 0 and every open set B ⊆ Ω,

B ⊆ D if and only if < (αΛ(γω)) ≤ Λ((1 + βχB)γ0). (7)

(b) If c < 0, then for sufficiently small β > 0 and every open set B ⊆ Ω,

B ⊆ D if and only if < (αΛ(γω)) ≥ Λ((1− βχB)γ0). (8)

The modulation strength β > 0 is sufficiently small if

β ≤

{
ω2|c| εΩ

σD(σ2
Ω+ω2ε2Ω)

in case (a),

ω2|c| εD
σD(σDσΩ+ω2εDεΩ)

in case (b).
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Theorem 2.2 shows that, for sufficiently small modulation strengths, the ultrasound-

modulated DC measurements are larger (c > 0), resp., smaller (c < 0) than (the self-

adjoint part of ratio-weighted) measurements taken at a non-zero frequency if and only

if the focusing region lies inside the unknown inclusion D. The terms larger and smaller

are to be understood in the sense of operator definiteness.

Remark 2.3. The monotonicity tests in 2.2 are stable in the following sense (cf. [38,

remark 3.5]). Let Aδ be a (w.l.o.g. self-adjoint) approximation to the compact and self-

adjoint operator A,

‖Aδ − A‖L(L2
�(∂Ω)) < δ,

where A := Λ((1 + βχB)γ0) − < (αΛ(γω)) in case (a) of theorem 2.2 and A :=

< (αΛ(γω))− Λ((1− βχB)γ0) in case (b).

We consider the regularized definiteness test

Aδ ≥ −δI. (9)

If A ≥ 0, then Aδ ≥ −δI will be fulfilled. On the other hand, if A 6≥ 0, then A must

possess a negative eigenvalue λ < 0, so that Aδ 6≥ −δI for all δ < −λ
2
.

Hence, in order to determine whether a given focusing region lies inside the unknown

inclusion, it suffices to know the measurements up to a certain precision level δ > 0. In

that sense, also our arguably idealistic modeling of a perfectly focused ultrasound beam

only has to be approximately valid.

2.4. Proof of lemma 2.1 and theorem 2.2

Our proof of theorem 2.2 relies on the monotonicity relation for complex conductivity

EIT in lemma 2.1 and the concept of localized potentials developed by one of the authors

in [23]. To prove lemma 2.1, we will first show the following auxiliary result that will

also be useful for the case of electrode measurements.

Lemma 2.4. Let γ1, γ2 ∈ L∞+ (Ω;R) + iL∞(Ω;R), g ∈ L2
�(∂Ω), and u1, u2 ∈ H1(Ω)

fulfill ∫
Ω

γ1|∇u1|2 dx =

∫
Ω

γ2∇u2 · ∇u1 dx,∫
Ω

γ2|∇u2|2 dx =

∫
Ω

γ1∇u1 · ∇u2 dx.

Then ∫
Ω

(
<(γ2)

<(γ1)
<(γ1 − γ2)− =(γ2)2

<(γ1)

)
|∇u2|2 dx

≤
∫

Ω

<(γ2)|∇u2|2 dx−
∫

Ω

<(γ1)|∇u1|2 dx

≤
∫

Ω

(
<(γ1 − γ2) +

=(γ1)2

<(γ1)

)
|∇u2|2 dx.
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Proof. Since

0 ≤
∫

Ω

<(γ1)

∣∣∣∣∇u1 −
γ2

<(γ1)
∇u2

∣∣∣∣2
= <

(∫
Ω

γ1|∇u1|2 dx− 2

∫
Ω

γ2∇u2 · ∇u1 dx

)
+

∫
Ω

|γ2|2

<(γ1)
|∇u2|2 dx

= −
∫

Ω

<(γ1)|∇u1|2 dx+

∫
Ω

|γ2|2

<(γ1)
|∇u2|2 dx

=

∫
Ω

<(γ2)|∇u2|2 dx−
∫

Ω

<(γ1)|∇u1|2 dx+

∫
Ω

(
|γ2|2

<(γ1)
−<(γ2)

)
|∇u2|2 dx,

the first inequality follows from

|γ2|2

<(γ1)
−<(γ2) =

<(γ2)2 + =(γ2)2

<(γ1)
−<(γ2) =

<(γ2)

<(γ1)
<(γ2 − γ1) +

=(γ2)2

<(γ1)
.

Likewise we obtain

0 ≤
∫

Ω

<(γ1)

∣∣∣∣∇u1 −
γ1

<(γ1)
∇u2

∣∣∣∣2
=

∫
Ω

<(γ1)|∇u1|2 dx− 2<
(∫

Ω

γ1∇u2 · ∇u1 dx

)
+

∫
Ω

|γ1|2

<(γ1)
|∇u2|2 dx

=

∫
Ω

<(γ1)|∇u1|2 dx−
∫

Ω

<(γ2)|∇u2|2 dx+

∫
Ω

(
|γ1|2

<(γ1)
−<(γ2)

)
|∇u2|2 dx,

so that the second inequality follows from

|γ1|2

<(γ1)
−<(γ2) =

<(γ1)2 + =(γ1)2

<(γ1)
−<(γ2) = <(γ1 − γ2) +

=(γ1)2

<(γ1)
.

We also require the following elementary computation:

Lemma 2.5. Let γ0, γω : Ω → C, and α ∈ C be given by (3),(4), and (6). Then, for

all β̃ ∈ R,

<(γ0)

<(γω/α)
<(γω/α− γ0) =

{
0 in Ω \D,
εΩσD
σΩ

C in D,

<(γω/α− γ0) +
=(γω/α)2

<(γω/α)
=

{
0 in Ω \D,
εDC in D,

<(γω/α− (1 + β̃χB)γ0) =

{
−β̃σΩχB in Ω \D,
σD

(
εΩ
σΩ
C ′ − β̃χB

)
in D,

<(γω/α− (1 + β̃χB)γ0) +
=(γω/α)2

<(γω/α)
=

{
−β̃σΩχB in Ω \D,
εDC − β̃σDχB in D,

where

C := ω2 εDσΩ − εΩσD
σDσΩ + ω2εDεΩ

and C ′ := ω2 σΩ

σD
· εDσΩ − εΩσD
σ2

Ω + ω2ε2Ω
. (10)
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Proof. Let

γ0 =

{
γ

(Ω)
0 = σΩ in Ω \D,
γ

(D)
0 = σD in D,

γω =

{
γ

(Ω)
ω = σΩ + iωεΩ in Ω \D,
γ

(D)
ω = σD + iωεD in D,

with real-valued constants σΩ, σD, εΩ, εD > 0, and let α := γ
(Ω)
ω /γ

(Ω)
0 = 1 + iω εΩ

σΩ
∈ C.

Then, by definition of α,

γω/α− γ0 = 0 in Ω \D, and =(γω/α) = 0 in Ω \D,

so that

<(γ0)

<(γω/α)
<(γω/α− γ0) = 0 in Ω \D,

<(γω/α− γ0) +
=(γω/α)2

<(γω/α)
= 0 in Ω \D,

<(γω/α− (1 + β̃χB)γ0) = −β̃σΩχB in Ω \D,

<(γω/α− (1 + β̃χB)γ0) +
=(γω/α)2

<(γω/α)
= −β̃σΩχB in Ω \D.

In D, we have that

<(γ0) = σD,

<(γω/α) = <

(
γ(D)
ω

γ
(Ω)
0

γ
(Ω)
ω

)
= σΩ<

(
σD + iωεD
σΩ + iωεΩ

)
= σΩ

σDσΩ + ω2εDεΩ
σ2

Ω + ω2ε2Ω
,

=(γω/α) = =

(
γ(D)
ω

γ
(Ω)
0

γ
(Ω)
ω

)
= σΩ=

(
σD + iωεD
σΩ + iωεΩ

)
= ωσΩ

εDσΩ − εΩσD
σ2

Ω + ω2ε2Ω
.

Hence, in D,

<(γω/α− γ0) = σΩ
σDσΩ + ω2εDεΩ
σ2

Ω + ω2ε2Ω
− σD = ω2εΩ

εDσΩ − σDεΩ
σ2

Ω + ω2ε2Ω
=
εΩσD
σΩ

C ′,

which shows that

<(γ0)

<(γω/α)
<(γω/α− γ0) = ω2σDεΩ

εDσΩ − εΩσD
σΩ(σDσΩ + ω2εDεΩ)

=
εΩσD
σΩ

C,

and

<(γω/α− (1 + β̃χB)γ0) = σD

(
εΩ
σΩ

C ′ − β̃χB
)
.

The remaining two equalities follow from

<(γω/α− γ0) +
=(γω/α)2

<(γω/α)

= ω2εΩ
εDσΩ − εΩσD
σ2

Ω + ω2ε2Ω
+ ω2σΩ

(εDσΩ − εΩσD)2

(σ2
Ω + ω2ε2Ω)(σDσΩ + ω2εDεΩ)

= ω2 εDσΩ − εΩσD
σ2

Ω + ω2ε2Ω

(
εΩ + σΩ

εDσΩ − εΩσD
σDσΩ + ω2εDεΩ

)
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= ω2 εDσΩ − εΩσD
σ2

Ω + ω2ε2Ω

ω2εDε
2
Ω + εDσ

2
Ω

σDσΩ + ω2εDεΩ
= ω2εD

εDσΩ − εΩσD
σDσΩ + ω2εDεΩ

= εDC,

which also yields

<(γω/α− (1 + β̃χB)γ0) +
=(γω/α)2

<(γω/α)
= εDC − β̃σDχB.

Now we are ready to prove lemma 2.1 and theorem 2.2.

Proof of lemma 2.1. For all g ∈ L2
�(∂Ω) we have that∫

∂Ω

gΛ(γ1)g ds =

∫
∂Ω

gu(g)
γ1
|∂Ω ds =

∫
Ω

γ1

∣∣∇u(g)
γ1

∣∣2 dx =

∫
Ω

γ2∇u(g)
γ2 · ∇u(g)

γ1
dx,∫

∂Ω

gΛ(γ2)g ds =

∫
∂Ω

gu(g)
γ2
|∂Ω ds =

∫
Ω

γ2

∣∣∇u(g)
γ2

∣∣2 dx =

∫
Ω

γ1∇u(g)
γ1 · ∇u(g)

γ2
dx,

so that the assertion of lemma 2.1 immediately follows from lemma 2.4. �

Proof of theorem 2.2.

(a) (i) Let c := εDσΩ − εΩσD > 0, and B ⊆ D.

We use the first inequality in lemma 2.1 with γ2 := (1+βχB)γ0, and γ1 := γω/α

together with the third equality in lemma 2.5 with β̃ := β to obtain that, for

all g ∈ L2
�(∂Ω),∫

∂Ω

g [Λ((1 + βχB)γ0)−< (Λ(γω/α))] g ds

≥
∫

Ω

<((1 + βχB)γ0)

<(γω/α)
<(γω/α− (1 + βχB)γ0)

∣∣∇u(g)
γ2

∣∣2 dx

=

∫
D

(1 + βχB)γ0

<(γω/α)
σD

(
εΩ
σΩ

C ′ − βχB
) ∣∣∇u(g)

γ2

∣∣2 dx,

where C ′ is defined by (10) in lemma 2.5. The right hand side is non-negative

if

β ≤ εΩ
σΩ

C ′ = ω2|c| εΩ
σD(σ2

Ω + ω2ε2Ω)
,

so that, for sufficiently small β > 0,

B ⊆ D implies < (αΛ(γω)) ≤ Λ((1 + βχB)γ0).

(ii) Now let c := εDσΩ − εΩσD > 0, and B 6⊆ D.

We use the second inequality in lemma 2.1 with γ2 := γ0, and γ1 := γω/α

together with the second equality in lemma 2.5 to obtain that, for all g ∈
L2
�(∂Ω), ∫

∂Ω

g [Λ(γ0)−< (Λ(γω/α))] g ds

≤
∫

Ω

(
<(γω/α− γ0) +

=(γω/α)2

<(γω/α)

) ∣∣∇u(g)
γ0

∣∣2 dx

= εDC

∫
D

∣∣∇u(g)
γ0

∣∣2 dx,
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where C is defined by (10) in lemma 2.5. The first inequality in lemma 2.1

with γ2 := γ0 and γ1 := (1 + βχB)γ0 yields that, for all g ∈ L2
�(∂Ω),∫

B

β

1 + β
γ0

∣∣∇u(g)
γ0

∣∣2 dx ≤
∫
∂Ω

g [Λ(γ0)− Λ((1 + βχB)γ0)] g ds.

Combining both inequalities, we obtain that, for all g ∈ L2
�(∂Ω),∫

∂Ω

g [Λ((1 + βχB)γ0)−< (αΛ(γω))] g ds

≤ εDC

∫
D

∣∣∇u(g)
γ0

∣∣2 dx−
∫
B

β

1 + β
γ0

∣∣∇u(g)
γ0

∣∣2 dx.

Now we apply the technique of localized potentials [23, 38] to show that the

right hand side of this inequality attains negative values. Since B 6⊆ D we

can choose a smaller open subset B′ ⊆ B with B′ ∩ D = ∅. Since D ⊂ Ω

and Ω \D is connected, we obtain from [38, Thm. 3.6] a sequence of currents

(gk)k∈N ⊂ L2
�(∂Ω), so that the solutions (u(gk))k∈N ⊂ H1

� (Ω) of

∆u(gk) = 0, ∂νu
(gk)|∂Ω = gk

fulfill

lim
k→∞

∫
B′
|∇u(gk)|2 dx =∞ and lim

k→∞

∫
D

|∇u(gk)|2 dx = 0.

Since γ0 is constant on Ω\D, [38, Lemma 3.7] yields that also the corresponding

solutions (u
(gk)
γ0 )k∈N ⊂ H1

� (Ω) of (1) fulfill

lim
k→∞

∫
B′
|∇u(gk)

γ0
|2 dx =∞ and lim

k→∞

∫
D

|∇u(gk)
γ0
|2 dx = 0.

Hence, with this sequence of currents,∫
∂Ω

gk [Λ((1 + βχB)γ0)−< (αΛ(γω))] gk ds→ −∞,

which shows that, for all β > 0,

B 6⊆ D implies < (αΛ(γω)) 6≤ Λ((1 + βχB)γ0).

(b) (i) Let c := εDσΩ − εΩσD < 0, and B ⊆ D.

We use the second inequality in lemma 2.1 with γ2 := (1 − βχB)γ0, and

γ1 := γω/α together with the fourth equality in lemma 2.5 with β̃ := −β to

obtain that, for all g ∈ L2
�(∂Ω),∫

∂Ω

g [Λ((1− βχB)γ0)−< (αΛ(γω))] g ds

≤
∫

Ω

(
<(γω/α− (1− βχB)γ0) +

=(γω/α)2

<(γω/α)

) ∣∣∇u(g)
γ2

∣∣2 dx.

=

∫
D

(εDC + βσDχB)
∣∣∇u(g)

γ2

∣∣2 dx.

The right hand side is non-positive if

β ≤ − εD
σD

C = ω2|c| εD
σD(σDσΩ + ω2εDεΩ)

,

so that, for sufficiently small β > 0,

B ⊆ D implies < (αΛ(γω)) ≥ Λ((1− βχB)γ0).
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(ii) Now let c := εDσΩ − εΩσD < 0, and B 6⊆ D.

We use the first inequality in lemma 2.1 with γ2 := γ0, and γ1 := γω/α together

with the first equality in lemma 2.5 to obtain that, for all g ∈ L2
�(∂Ω),∫

∂Ω

g [Λ(γ0)−< (Λ(γω/α))] g ds

≥
∫

Ω

<(γ0)

<(γω/α)
<(γω/α− γ0)

∣∣∇u(g)
γ0

∣∣2 dx

=
εΩσD
σΩ

C

∫
D

∣∣∇u(g)
γ0

∣∣2 dx.

The second inequality in lemma 2.1 with γ2 := γ0 and γ1 := (1−βχB)γ0 yields

that, for all g ∈ L2
�(∂Ω),∫

∂Ω

g [Λ(γ0)− Λ((1− βχB)γ0)] g ds ≤ −
∫
B

βγ0

∣∣∇u(g)
γ0

∣∣2 dx.

Combining both inequalities, we obtain that, for all g ∈ L2
�(∂Ω),∫

∂Ω

g [Λ((1− βχB)γ0)−< (αΛ(γω))] g ds

≥ εΩσD
σΩ

C

∫
D

∣∣∇u(g)
γ0

∣∣2 dx+

∫
B

βγ0

∣∣∇u(g)
γ0

∣∣2 dx.

The same localized potentials argument as in part (a)(ii) shows that there

exists a sequence of currents such that∫
∂Ω

g [Λ((1− βχB)γ0)−< (αΛ(γω))] g ds→∞.

Hence, for all β > 0,

B 6⊆ D implies < (αΛ(γω)) 6≥ Λ((1− βχB)γ0).

�

3. Electrode measurements

3.1. The setting

In a realistic setting, the currents will be applied using a finite number of electrodes

El ⊂ ∂Ω, l = 1, . . . ,m, that are attached to the imaging domain’s surface. We assume

that the electrodes are perfectly conducting and that contact impedances are negligible

(the so-called shunt model, cf., e.g., [16]). Driving a current Il ∈ C through the l-th

electrode, with
∑m

l=1 Il = 0, the electric potential is given by the solution uγω ∈ H1
E(Ω)

of

∇ · (γω∇uγω) = 0 in Ω, (11)∫
El
γω∂νuγω ds = Il for l = 1, . . . ,m, (12)

γω∂νuγω = 0 on ∂Ω \
m⋃
l=1

El, (13)

uγω |El = const. ∀j = 1, . . . ,m, (14)
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where H1
E(Ω) is the subspace of H1-functions that are locally constant on each El,

l = 1, . . . ,m and these constants sum up to zero.

We assume that the voltage-current-measurements are carried out in the following

complete dipole-dipole configuration. Let (jr, kr), r = 1, . . . , N be a set of electrode

pairs with jr 6= kr. For each of these pairs, r = 1, . . . , N , a current of Ijr = 1 and

Ikr = −1 is driven through the jr-th and the kr-th electrode, respectively. The other

electrodes are kept insulated. The resulting electric potential inside the imaging domain

is given by the solution u
〈r〉
γω ∈ H1

E(Ω) of (11)–(14) with Il = δl,jr − δl,kr , l = 1, . . . , N .

While the current is driven through the r-th pair of electrodes, we measure the

required voltage difference on all pairs of electrodes, i.e., between the js and the ks
electrode for all s = 1, . . . , N . We collect these measurements in the matrix

R(γω) =
(
u〈r〉γω |Ejs − u

〈r〉
γω |Eks

)
r,s=1,...,N

∈ CN×N .

Let us comment on our use of the shunt electrode model. It seems to be widely

accepted that the most accurate electrode model in EIT is the complete electrode model,

cf., e.g., [16], where not only the shunting effects but also contact impedances between

the electrodes and the imaging domain are taken into account. The effect of contact

impedances is often neglected in the case that voltages are not measured on current

driven electrodes, but our method requires such measurements, see below. Contact

impedances can also be neglected in the case of DC difference measurements on point

electrodes, see [29]. Since both, the effect of an ultrasound modulation and the effect

of a (weighted) frequency change on the measurements are widely analogous to using

DC difference measurements, we believe that our use of the shunt model is justified for

sufficiently small electrodes, though this has yet to be justified rigorously.

We also stress that our method relies on the matrix structure of the measurements

R, which means that the same electrode pairs have to be used for measuring voltages

and applying currents. In particular, we require voltage measurements on current driven

electrodes (for the three main diagonals in R). The simultaneous measurement of voltage

and current is usually considered problematic and these measurements are avoided in

traditional EIT approaches. Nevertheless, successful reconstructions have already been

obtained in practical phantom experiments with methods requiring the full matrix such

as the factorization method and monotonicity-based methods, cf. [36, 80]. Also, the

recent preprint [32] studies the possibility of interpolating the voltages on current-driven

electrodes from the measurements on current-free electrodes.

3.2. Monotonicity results for the shunt model

As in the continuous case, we will compare measurements in the sense of matrix

definiteness. We define the self-adjoint part of a matrix A ∈ CN×N by setting

<(A) :=
1

2
(A+ A∗)

where A∗ ∈ CN×N is the adjoint (conjugate transpose) of A, i.e.,

g∗(Ah) = (Ag)∗h for all g, h ∈ CN , and g∗ = gT .
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Obviously, <(A) is self-adjoint.

For two self-adjoint matrices A,B ∈ CN×N , we write A ≤ B if B − A is positive

semidefinite, i.e.

g∗Ag ≤ g∗Bg ∀g ∈ CN .

This is equivalent to the fact that all eigenvalues of B − A are non-negative.

Note that the entries of the measurement matrix R(γω) satisfy

u〈r〉γω |Ejs − u
〈r〉
γω |Eks = u〈r〉γω |Ejs

∫
Ejs
γω∂νu

〈s〉
γω ds+ u〈r〉γω |Eks

∫
Eks

γω∂νu
〈s〉
γω ds

=

∫
∂Ω

γω∂νu
〈s〉
γω |∂Ω u

〈r〉
γω |∂Ω ds =

∫
Ω

γω∇u(r)
ω · ∇u〈s〉γω = u〈s〉γω |Ejr − u

〈s〉
γω |Ekr .

Hence R(γω) is a symmetric, but generally (for complex γω) not self-adjoint matrix. This

also shows that the self-adjoint part of the measurement matrix <(R(γω)) is identical

to the matrix containing the real part of each voltage measurement

<(R(γω)) =
(
<(u〈r〉γω )|Ejs −<(u〈r〉γω )|Eks

)
r,s=1,...,N

∈ RN×N .

The montonicity estimate from the continuous case can be extended to the case of

electrode measurements.

Lemma 3.1. Let γ1, γ2 ∈ L∞+ (Ω;R) + iL∞(Ω;R), g = (gr)
N
r=1 ∈ CN and u

[g]
γτ ∈ H1

E(Ω)

(τ = 1, 2) denote the solution of

∇ · (γτ∇u[g]
γτ ) = 0 in Ω,∫

El
γτ∂νu

[g]
γτ ds =

∑
r: jr=l

gr −
∑

r: kr=l

gr for all l = 1, . . . ,m,

γτ∂νu
[g]
γτ = 0 on ∂Ω \

m⋃
l=1

El,

u[g]
γτ |El = const. ∀l = 1, . . . ,m.

Then ∫
Ω

(
<(γ2)

<(γ1)
<(γ1 − γ2)− =(γ2)2

<(γ1)

) ∣∣∇u[g]
γ2

∣∣2 dx

≤ g∗< [R(γ2)−R(γ1)] g ≤
∫

Ω

(
<(γ1 − γ2) +

=(γ1)2

<(γ1)

) ∣∣∇u[g]
γ2

∣∣2 dx.

The proof of lemma 3.1 is postponed to the end of this section.

3.3. Detecting inclusions from electrode measurements

We make the same assumptions as for the continuous case in subsection 2.3. The

inclusion (or anomaly) D ⊂ Ω is assumed to be a closed set with connected complement.

γ0 and γω are assumed to be given by

γ0(x) =

{
γ

(Ω)
0 = σΩ for x ∈ Ω

γ
(D)
0 = σD for x ∈ D
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γω(x) =

{
γ

(Ω)
ω = σΩ + iωεΩ for x ∈ Ω

γ
(D)
ω = σD + iωεD for x ∈ D

with real-valued constants σΩ, σD, εΩ, εD > 0. The anomaly is assumed to fulfill the

contrast condition (5), i.e., εDσΩ − εΩσD 6= 0, and

α :=
γ

(Ω)
ω

γ
(Ω)
0

= 1 + iω
εΩ
σΩ

.

denotes the ratio of the background conductivities. Obviously, αR(γω) = R(γω/α).

As in section 2, the results in this section can easily be extended to inclusions

of spatially varying and frequency-dependent admittivities as long as the background

conductivities are constant.

Our results for continuous boundary data suggest to compare, for sufficiently small

modulation strengths β > 0, the matrix of ultrasound-modulated DC measurements

R((1+βχB)γ0) with the (self-adjoint part of the ratio-weighted) matrix of measurements

taken at a non-zero frequency R(γω). This comparison (in the sense of matrix

definiteness) should yield information about whether the focusing region B lies inside

the unknown inclusion D. Indeed, we can prove the following theorem.

Theorem 3.2. Let c := εDσΩ − εΩσD 6= 0.

(a) If c > 0, then for sufficiently small β > 0 and every open set B ⊆ Ω,

B ⊆ D implies that < (αR(γω)) ≤ R((1 + βχB)γ0). (15)

(b) If c < 0, then for sufficiently small β > 0 and every open set B ⊆ Ω,

B ⊆ D implies that < (αR(γω)) ≥ R((1− βχB)γ0). (16)

The modulation strength β > 0 is sufficiently small if

β ≤

{
ω2|c| εΩ

σD(σ2
Ω+ω2ε2Ω)

in case (a),

ω2|c| εD
σD(σDσΩ+ω2εDεΩ)

in case (b).

The converses of the implications (15) and (16) will generally not be true in

the case of measurements with a finite number of electrodes. However, when we

increase the number of electrodes used for the measurements, then we can expect

that the measurement matrices R(γω) and R((1 + βχB)γ0) more and more resemble

their continuous counterparts, the Neumann-to-Dirichlet operators, cf. the works of

Hakula, Hyvönen and Lechleiter [41, 59, 42]. In fact, we can give the following intuitive

justification of the converses of the implications in theorem 3.2 for sufficiently many

electrodes in the spirit of [36].

Remark 3.3. Let B 6⊆ D and β > 0. If there exists a current pattern g = (gr)
N
r=1 ∈ CN

such that the resulting DC potential

u[g]
γ0

:=
N∑
r=1

gru
〈r〉
γ0



Combining fdEIT and US-modulated EIT 16

possesses a very large energy in B \D and a very small energy in D, then

< (αR(γω)) 6≤ R((1 + βχB)γ0) if c > 0

or

< (αR(γω)) 6≥ R((1− βχB)γ0) if c < 0.

3.4. Proof of lemma 3.1, theorem 3.2 and justification of remark 3.3

Proof of lemma 3.1. Let g = (gr)
N
r=1 ∈ CN . First note that for τ = 1, 2, by linearity,

u[g]
γτ =

N∑
r=1

u〈r〉γτ gr and
N∑
r=1

gr
(
u〈r〉γτ |Ejs − u

〈r〉
γτ |Eks

)
= u[g]

γτ |Ejs − u
[g]
γτ |Eks .

We thus obtain

g∗R(γ1)g =
N∑
s=1

gs
(
u[g]
γ1
|Ejs − u

[g]
γ1
|Eks
)

=
m∑
l=1

( ∑
s: js=l

gs −
∑
s: ks=l

gs

)
u[g]
γ1
|El

=
m∑
l=1

∫
El
γ1∂νu

[g]
γ1 |El u[g]

γ1
|El ds =

∫
∂Ω

γ1∂νu
[g]
γ1 u

[g]
γ1

ds =

∫
Ω

γ1

∣∣∇u[g]
γ1

∣∣2 dx

=
m∑
l=1

∫
El
γ2∂νu

[g]
γ2 |El u[g]

γ1
|El ds =

∫
∂Ω

γ2∂νu
[g]
γ2 u

[g]
γ1

ds =

∫
Ω

γ2∇u[g]
γ2 · ∇u[g]

γ1
dx

and likewise

g∗R(γ2)g =

∫
Ω

γ2

∣∣∇u[g]
γ2

∣∣2 dx =

∫
Ω

γ1∇u[g]
γ1 · ∇u[g]

γ2
dx.

Hence, the assertion follows from lemma 2.4. �

Proof of theorem 3.2. The proof in identical to that of theorem 2.2(a)(i) and (b)(i)

with lemma 3.1 replacing lemma 2.1. �

Justification of remark 3.3. As in theorem 2.2(a)(ii) and (b)(ii) (with lemma 3.1

replacing lemma 2.1), we obtain that, for all g ∈ CN ,

g∗ [R((1 + βχB)γ0)−< (αR(γω))] g ≤ εDC

∫
D

∣∣∇u[g]
γ0

∣∣2 dx−
∫
B

β

1 + β
γ0

∣∣∇u[g]
γ0

∣∣2 dx.

and

g∗ [R((1− βχB)γ0)−< (αR(γω))] g ≥ εΩσD
σΩ

C

∫
D

∣∣∇u[g]
γ0

∣∣2 dx+

∫
B

βγ0

∣∣∇u[g]
γ0

∣∣2 dx

where C is defined by (10) in lemma 2.5.

Hence, if there exists a current pattern g = (gr)
N
r=1 ∈ CN such that the resulting

DC potential u
[g]
γ0 possesses a very large energy in B \D and a very small energy in D,

then for this g, we can expect that

g∗ [R((1 + βχB)γ0)−< (αR(γω))] g < 0,
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Figure 1. Measurement setting of example 4.1.

resp.,

g∗ [R((1− βχB)γ0)−< (αR(γω))] g > 0,

so that

< (αR(γω)) 6≤ R((1 + βχB)γ0), resp., < (αR(γω)) 6≥ R((1− βχB)γ0).

�

4. Numerical results

In this section, we numerically demonstrate our new method for the practically relevant

electrode setting of Section 3.1. In all of the following settings, m electrodes E1, E2, ..., Em
are numbered as shown in the corresponding figures, and adjacent-adjacent dipole

driving patterns are used according to this numbering, i.e., in the notation of section

3.1,

(jr, kr) := (r, r + 1) for r = 1, . . . ,m− 1, and (jm, km) := (m, 1).

The EIT measurements at zero and non-zero frequency, and with and without ultra-

sound-modulation, are simulated by solving the equations (11)-(14) using MATLAB R©

and the commercial FEM-software COMSOL R©.

At this point, let us stress again, that in a practical application of our new method,

all required quantities are measured and no numerical simulations have to be carried

out.

Example 4.1. Consider the setting illustrated in figure 1. The imaging domain Ω is

a two-dimensional circle with radius 10 centered at (0, 0) and a circular anomaly D

(sketched in red in figure 1) with radius 1.5 is located at (5, 0). On the boundary ∂Ω,

there are 16 electrodes E1, E2, . . . , E16 attached.
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B1 B2 B3 B4 B5

-0.0024 ± 0.0005 0.0000 ± 0.0005 -0.0098 ± 0.0005 -0.0105 ± 0.0005 -0.0098 ± 0.0005

-0.0024 ± 0.0005 0.0000 ± 0.0005 -0.0097 ± 0.0005 -0.0104 ± 0.0005 -0.0097 ± 0.0005

-0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0003 ± 0.0005 -0.0004 ± 0.0005 -0.0003 ± 0.0005

-0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0002 ± 0.0005 -0.0003 ± 0.0005 -0.0002 ± 0.0005

-0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005

-0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005

-0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005

-0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005

-0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005 -0.0000 ± 0.0005

-0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0000 ± 0.0005 0.0000 ± 0.0005 -0.0000 ± 0.0005

0.0000 ± 0.0005 0.0000 ± 0.0005 0.0000 ± 0.0005 0.0000 ± 0.0005 0.0000 ± 0.0005

0.0000 ± 0.0005 0.0000 ± 0.0005 0.0000 ± 0.0005 0.0000 ± 0.0005 0.0000 ± 0.0005

0.0003 ± 0.0005 0.0004 ± 0.0005 0.0005 ± 0.0005 0.0007 ± 0.0005 0.0005 ± 0.0005

0.0006 ± 0.0005 0.0005 ± 0.0005 0.0007 ± 0.0005 0.0009 ± 0.0005 0.0007 ± 0.0005

0.0142 ± 0.0005 0.0048 ± 0.0005 0.0146 ± 0.0005 0.0153 ± 0.0005 0.0146 ± 0.0005

0.0145 ± 0.0005 0.0049 ± 0.0005 0.0148 ± 0.0005 0.0155 ± 0.0005 0.0148 ± 0.0005

Table 1. Eigenvalues of R((1 + βχBj )γ0)−< (αR(γω)), j = 1, . . . , 5, for example 4.1.

The DC and AC admittivities γ0 and γω are chosen as

γ0 := 1, and γω :=

{
1 + iω in Ω \D,
1 + 2iω in D,

with ω = 200π, i.e. σΩ = σD = 1, εΩ = 1, and εD = 2. Hence, the ratio of the

background conductivities is α = 1 + iω, and the contrast assumption in theorem 3.2 is

fulfilled with c = εDσΩ − εΩσD = 1.

Theorem 3.2 guarantees that

B ⊆ D implies that < (αR(γω)) ≤ R((1 + βχB)γ0), (17)

i.e., that the ultrasound modulated DC measurements R((1 + βχB)γ0) are larger (in the

sense of matrix definiteness) than (the real part of ratio-weighted) AC measurements

< (αR(γω)) if the ultrasound-modulated focusing region B lies inside the inclusion D,

and the modulation strenth β > 0 is small enough. Remark 3.3 suggests that the converse

of (17) is true if enough electrodes are used. To test this numerically, we choose 5

circular focusing regions B1, . . . , B5 (sketched in blue in figure 1) with radius 1.25. The

modulation strength is chosen to be (cf. theorem 3.2)

β = ω2|c| εΩ
σD(σ2

Ω + ω2ε2Ω)
≈ 0.9999.

Table 1 shows the eigenvalues of R((1 + βχBj)γ0)−< (αR(γω)) for j ∈ {1, · · · , 5}.
The numerical error (δ ≈ 0.0005) in table 1 was estimated by repeating the calculations

on a finer FEM grid. Taking into account this estimated numerical error, the

monotonicity test R((1 + βχBj)γ0) ≥ < (αR(γω)) is only fulfilled for the focusing region

B2, which lies inside the inclusion.
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Figure 2. Measurement setting of example 4.2.

Example 4.2. Now we consider the three-dimensional setting illustrated in Figure 2.

The imaging domain Ω is a cylindrical domain with

Ω =
{

(x1, x2, x3) ∈ R3 : ‖(x1, x2, 0)‖ < 10, 0 < x3 < 5
}
.

and a ball-shaped anomaly D with radius 1.5 is located at (5, 0, 2.5). On the boundary

∂Ω, there are 16 electrodes E1, E2, . . . , E16 attached.

The DC and AC admittivities γ0 and γω are chosen as

γ0 :=

{
1, in Ω \D,
2, in D,

and γω :=

{
1 + iω, in Ω \D,
2 + iω, in D,

with ω = 200π, so that α = 1 + iω and c = −1. As in example 4.1 we check the

monotonicity relation for five focusing regions B1, B2, B3, B4 and B5. The regions are

ball-shaped with radius 1.25 and centered at (0, 0, 2.5), (5, 0, 2.5), (0, 5, 2.5), (−5, 0, 2.5)

and (0,−5, 2.5), respectively. We choose β according to theorem 3.2 as

β = ω2|c| εD
σD(σDσΩ + ω2εDεΩ)

≈ 0.4999.

Table 2 shows the eigenvalues of R((1− βχBj)γ0)−< (αR(γω)) for j = {1, · · · , 5}.
The numerical error (δ ≈ 0.14) in table 2 was estimated by repeating the calculations on

a finer FEM grid. Taking into account this estimated numerical error, the monotonicity

test R((1−βχBj)γ0) ≤ < (αR(γω)) is only fulfilled for the second focussing region, which

lies inside the inclusion.

Example 4.3. In our last example we test a large number or small balls in order to

demonstrate up to which extend the method is capable of determining the shape of an

inclusion. We consider the two- and three-dimensional example shown in figure 3, and

4, respectively. In both settings,

γ0 := 1, and γω :=

{
1 + 2iω in Ω\D,
1 + iω in D,

with ω = 200π, so that α = 1 + 2iω and c = −1. In accordance with theorem 3.2, we

choose

β = ω2|c| εD
σD(σDσΩ + ω2εDεΩ)

≈ 0.4999.
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B1 B2 B3 B4 B5

-0.1639 ± 0.0136 -0.0800 ± 0.0136 -0.1667 ± 0.0136 -0.1723 ± 0.0136 -0.1668 ± 0.0136

-0.1621 ± 0.0136 -0.0785 ± 0.0136 -0.1642 ± 0.0136 -0.1696 ± 0.0136 -0.1642 ± 0.0136

-0.0052 ± 0.0136 -0.0054 ± 0.0136 -0.0065 ± 0.0136 -0.0079 ± 0.0136 -0.0065 ± 0.0136

-0.0034 ± 0.0136 -0.0041 ± 0.0136 -0.0045 ± 0.0136 -0.0060 ± 0.0136 -0.0045 ± 0.0136

-0.0001 ± 0.0136 -0.0003 ± 0.0136 -0.0002 ± 0.0136 -0.0003 ± 0.0136 -0.0002 ± 0.0136

-0.0000 ± 0.0136 -0.0001 ± 0.0136 -0.0000 ± 0.0136 -0.0001 ± 0.0136 -0.0000 ± 0.0136

-0.0000 ± 0.0136 -0.0000 ± 0.0136 -0.0000 ± 0.0136 -0.0000 ± 0.0136 -0.0000 ± 0.0136

-0.0000 ± 0.0136 -0.0000 ± 0.0136 -0.0000 ± 0.0136 -0.0000 ± 0.0136 -0.0000 ± 0.0136

-0.0000 ± 0.0136 -0.0000 ± 0.0136 -0.0000 ± 0.0136 0.0000 ± 0.0136 -0.0000 ± 0.0136

0.0000 ± 0.0136 -0.0000 ± 0.0136 0.0000 ± 0.0136 0.0000 ± 0.0136 0.0000 ± 0.0136

0.0000 ± 0.0136 -0.0000 ± 0.0136 0.0000 ± 0.0136 0.0000 ± 0.0136 0.0000 ± 0.0136

0.0000 ± 0.0136 -0.0000 ± 0.0136 0.0000 ± 0.0136 0.0001 ± 0.0136 0.0000 ± 0.0136

0.0001 ± 0.0136 -0.0000 ± 0.0136 0.0011 ± 0.0136 0.0019 ± 0.0136 0.0011 ± 0.0136

0.0001 ± 0.0136 0.0000 ± 0.0136 0.0017 ± 0.0136 0.0025 ± 0.0136 0.0017 ± 0.0136

0.0169 ± 0.0136 0.0000 ± 0.0136 0.0728 ± 0.0136 0.0788 ± 0.0136 0.0717 ± 0.0136

0.0173 ± 0.0136 0.0000 ± 0.0136 0.0749 ± 0.0136 0.0822 ± 0.0136 0.0753 ± 0.0136

Table 2. Eigenvalues of R((1− βχBj )γ0)−< (αR(γω)), j = 1, . . . , 5, for example 4.2.

D : anomaly
- red area

E1

E2

E3

E4· · ·

20cm

Figure 3. Two-dimensional measurement setting of example 4.3.

We now consider a large number of test balls Bj, j ∈ {1, 2, . . . , N}, and mark all

balls for which

R((1− βχBj)γ0)−< (αR(γω)) ≤ δI, (18)

where I is the identity matrix and δ > 0 is a regularization parameter. In both examples,

we used the heuristically chosen value δ = 0.5 · 10−7. Figure 5 and figure 6 show the

test balls (in blue), the true inclusion (in red) and the balls for which (18) is fulfilled (in

grey).
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Figure 4. Three-dimensional measurement setting of example 4.3.

Figure 5. Results for the two-dimensional setting in example 4.3.

5. Conclusion and discussion

We have developed a new method to detect and localize conductivity anomalies by

combining frequency-difference electrical impedance tomography (EIT) with ultrasound-

modulated EIT. Our method is based on comparing (in terms of matrix definiteness)

ultrasound-modulated EIT measurements with (the real part of ratio-weighted) EIT

measurements at a non-zero frequency. We showed that this comparison determines

whether the focusing region of the ultrasound wave lies inside a conductivity anomaly

or not.

Remarkably, our new method merely utilizes the two sets of EIT measurements,

and the background conductivity ratio which in turn can be estimated from EIT

measurements. The method does not require any numerical simulations, forward

calculations or geometry-dependent special solutions. It can be implemented without

knowing the imaging domain shape or the electrode position, and is thus completely

unaffected by modeling errors.

We gave a rigorous mathematical proof for our new method for the case of

continuous boundary data, and we justified why the method can be expected to work

also for realistic electrode measurements, provided that the number of electrodes is large

enough.
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Figure 6. Results for the three-dimensional setting in example 4.3.

The method is based on the assumption that the background conductivity is

spatially constant, and that the anomalies fulfill the contrast condition that is required

in frequency-difference EIT. Also, our method relies on the idealistic assumption of

ultrasound modulated EIT, that it is possible to perfectly focus an ultrasound wave

so that the conductivity changes only in a small test region. In real applications,

background conductivities can be expected to be at least slightly inhomogeneous, and

the ultrasound wave will also have some effect on the conductivity outside the focusing

region. The performance of our new method in such a setting has yet to be evaluated.

Let us however note that the matrix definiteness comparisons, that are used by our

method, are principally stable (cf. remark 2.3) so that our arguably idealistic modeling

assumptions only have to be approximately valid. Moreover, monotonicity arguments

also allow for worst-case testing and resolution guarantees (cf. [37]) which might be

helpful in relaxing the idealistic assumptions in future studies.



Combining fdEIT and US-modulated EIT 23

Acknowledgments

BH and MU would like to thank the German Research Foundation (DFG) for financial

support of the project within the Cluster of Excellence in Simulation Technology (EXC

310/1) at the University of Stuttgart.

References

[1] A. Adler, R. Gaburro, and W. Lionheart. Electrical impedance tomography. In Handbook of

Mathematical Methods in Imaging, pages 599–654. Springer, 2011.

[2] H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, M. Fink, et al. Electrical impedance

tomography by elastic deformation. SIAM Journal on Applied Mathematics, 68(6):1557–1573,

2008.

[3] H. Ammari, J. Garnier, and W. Jing. Resolution and stability analysis in acousto-electric imaging.

Inverse Problems, 28(8):084005, 2012.

[4] G. Bal. Cauchy problem for ultrasound-modulated eit. Analysis & PDE, 6(4):751–775, 2013.

[5] G. Bal, W. Naetar, O. Scherzer, and J. Schotland. The levenberg-marquardt iteration for numerical

inversion of the power density operator. Journal of Inverse and Ill-Posed Problems, 21(2):265–

280, 2013.

[6] D. Barber and B. Brown. Applied potential tomography. J. Phys. E: Sci. Instrum., 17(9):723–733,

1984.

[7] A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen. Detecting stochastic in-

clusions in electrical impedance tomography. Preprint, available online at

www.mathematik.uni-stuttgart.de/oip.

[8] R. Bayford. Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed.

Eng., 8:63–91, 2006.

[9] E. Bonnetier and F. Triki. A note on reconstructing the conductivity in impedance tomography by

elastic perturbation. In The Impact of Applications on Mathematics, pages 275–282. Springer,

2014.

[10] L. Borcea. Electrical impedance tomography. Inverse Problems, 18(6):99–136, 2002.

[11] L. Borcea. Addendum to ‘Electrical impedance tomography’. Inverse Problems, 19(4):997–998,

2003.

[12] B. Brown. Electrical impedance tomography (EIT): a review. J Med Eng Technol., 27(3):97–108,

2003.

[13] B. Brown and A. Seagar. The sheffield data collection system. Clinical Physics and Physiological

Measurement, 8(4A):91, 1987.
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