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Autoencoder-based global concave optimization for electrical
impedance tomography

BASTIAN HARRACH
(joint work with Andrej Brojatsch, Johannes Wagner)

We report on some preliminary work-in-progress results that aim to derive globally
convergent reconstruction algorithms for the inverse coefficient problem of Electri-
cal Impedance Tomography (aka the famous Calderén problem) with finitely-many
measurements.

The Calderén problem with finitely-many measurements. Let (2 C ]Rk,
k > 2 be a bounded domain with smooth boundary 0. Let o € L(£2) and let

Ao) : L2(0Q) — L2(09Q), g+ ul?|sq
be the Neumann-to-Dirichlet-operator (aka current-to-voltage map) for the EIT
equation, i.e., u¥) € HL(Q) solves
V-(oVu?)=0 inQ, ¢8,u?sq=yg.
It is easily shown that A(c) € £(L2(99)) is a compact and selfadjoint operator.
The inverse problem
reconstruct o € LL(Q)  from  A(o) € L(LZ(0Q))

has become famous under the name Calderén problem. It is known to be a highly
non-linear and ill-posed problem. To introduce its variant with finitely many
measurements, we introduce a pixel partition

a-Up
j=1

where P, ..., P, C Q) are non-empty, pairwise disjoint subdomains with Lipschitz
boundaries. We assume that the coductivity coeflicient o € L5°(€) is piecewise
constant with respect to this partition, i.e. 0 = Z?:l ojxp;, withoy,...,on € Ry,
and x p, denoting the characteristic function on the j-th pixel. With a slight abuse
of notation, we identify a piecewise constant function o € L3°(€2) with the vector
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o= (o1,...,00)" € R’ . As a model for finitely-many measurements, we assume
that we can measure the symmetric matrix

F(o) = ( / mA(a)gjds) c gm c g
o0 i,j=1,...,m

for m given boundary currents g1, ..., gm € L2(09). This corresponds to measur-
ing the Galerkin projection of A(o) to the span of g1,...,gm. The gap electrode
model in EIT can be written in this form by choosing g; to be the characteristic
function of the j-th electrode, and more sophisticated electrode models such as
the shunt model or the complete electrode model lead to similar properties of F'.
We can thus state the Calderdn problem with finitely many measurements

reconstruct o € R}, from F(o) € $™ Cc R™ ™.

Concave data fitting formulation for EIT. Standard data-fitting formulations
for EIT lead to non-convex minimization problems in high dimensions for which
globally convergent algorithms may seem completely out-of-reach. However, the
recent result [2] shows that it is possible to reformulate the Calderén problem (with
sufficiently many measurements and known a-priori bounds on o) as a convex
semidefinite optimization problem. The reformulation involves an unknown linear
cost functional so that its practical implementation is not immediate. We herein
use a different (and simpler) approach to formulate the problem as a concave
minimization problem over a convex set.

Lemma 1. The following holds:
(a) If o € R fulfills F(o) =Y then o minimizes

trace(Y — F(0)) —» min! st F(o) XY.

(b) The functional o — trace(Y — F (o)) is concave.
(¢) The constraint set {o € R", : F(o) XY} is convex.

Proof. This follows from the fact that F' : R’} — $™ is monotonically non-
increasing and convex with respect to the componentwise ordering “<” on R" and
the Loewner ordering “<” on $™, cf. [2, Lemma 4.7]. O

In practical applications one usually also knows a-priori upper and lower bounds
of o so that the constraint set becomes convex and bounded.

Globally convergent concave programming. Concave optimization problems
over convex bounded sets can be solved with globally convergent algorithms in
moderately low dimensions, cf. [3], and [5, Chp. 7.2]. The key idea is that global
minima of concave functionals on a polyhedra are attained in a corner. Thus, for
a bounded convex set, one starts with a polyhedron containing the constraint set,
finds the best corner, i.e. the global minimizer on this superset, and then cuts out
the best corner with a hyperplane to shrink the polyhedron. This approach should
also yields global convergence for our concave minimization problem in Lemma 1.
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F1GURE 1. Concave minimization in the latent space.
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Concavity preserving autoencoder parametrization. As concave global
minimization is numerically feasible in moderately low dimensions, we now aim to
describe our unknown conductivies by moderately many parameters. In the work
[4], autoencoder techniques were used to find a 16-dimensional latent parametriza-
tion of lung images. The key idea is to train neural networks ® and ¥ so that

Uod~~id on training set of lung images,

where ® : R" — R encodes n-pixel images with d latent parameters, and ¥ :
R — R™ decodes n-pixel images from d latent parameters. To solve the inverse
problem F'(o) =Y for a lung image o, one then solves F(¥(p)) =Y for p € RY,
and obtains o = ¥(p).

Combining this idea with our concave optimization approach in Lemma 1 we
would thus minimize

trace(Y — F(¥(p))) — min! s.t. F(¥(p)) Y.

It is easily shown that this a concave minimization problem on a convex set,
if the decoder W is concave. Since the decoder is a neural network that is a
concatenation of linear functions and activator functions, it can be ensured to be
convex by enforcing these linear functions and activator functions to be convex
and non-decreasing. Training the autoencoder with shifted negated images one
can thus construct a concave decoder V.

Hence, we can reconstruct the conductivity by concave minimization in the
low-dimensional latent parameter space. Figure 1 shows a preliminary numerical
result for this approach using a 9-dimensional latent variable space and a FEM-
implemenation of the EIT forward problem with m = 31 electrodes following [1].
The first image shows the true lung image, and the second image the error of
the iterations (black line), and the (appropriately scaled) value of the objective
functional (blue line). The third image shows the reconstructed latent variable
p € RY as a 3 x 3-image, and the last image shows the reconstructed lung image
o = U(p). Note that the objective functional converges monotonically to zero from
below as the iterates are the global minimizers of the concave objective functional
on a polygonal superset of the constraint set.
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Learned iterative reconstructions in photoacoustic tomography for the
acoustic and optical problem

ANDREAS HAUPTMANN

(joint work with Simon Arridge, Anssi Manninen, Ozan Oktem,
Carola-Bibiane Schonlieb)

1. LEARNED RECONSTRUCTIONS

We consider the general form of the underlying operator equation

(1) A(f) =g,

for the inverse problem with f € X and ¢ € Y. Here, the forward operator
A: X — Y can be either linear, for the acoustic problem, or the nonlinear for
the optical problem. For the modelling of the forward problem in photoacoustic
tomograpgy we refer to [3].

In the following we concentrate on the inverse problem, which can be understood
as formulating a reconstruction operator R : ¥ — X. Such a reconstruction
operator should be ideally stable and provide a good estimate of the original signal
f for given data g, i.e., R(g) = f. Classically, such a reconstruction operator
would be handcrafted based on the analytical knowledge of the forward operator,
or formulated in the variational framework as optimisation problem.

In recent years, the paradigm of data-driven reconstructions has gathered con-
siderable attention, due to its success in improving reconstruction quality, but
also computational speed-up. Nevertheless, the majority of such data-driven ap-
proaches still comes without a thorough mathematical understanding. While we
can not solve this shortcoming, we will provide a conceptual overview of data-
driven approaches in the following. For that, let first us define the concept of a
learned reconstruction operator.

Definition 1 (Learned reconstruction operator). A family of mappings Re: Y —
X parametrised by 8 € O is called a learned reconstruction operator for the inverse
problem in (1) if the parameters 0 are determined (learned) from example data
(training data) that is generated in a way that is consistent with (1).



