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Abstract. The most accurate model for real-life electrical impedance tomog-

raphy is the complete electrode model, which takes into account electrode
shapes and (usually unknown) contact impedances at electrode-object inter-

faces. When the electrodes are small, however, it is tempting to formally

replace them by point sources. This simplifies the model considerably and
completely eliminates the effect of contact impedance.

In this work we rigorously justify such a point electrode model for the

important case of having difference measurements (“relative data”) as data
for the reconstruction problem. We do this by deriving the asymptotic limit of

the complete model for vanishing electrode size. This is supplemented by an

analogous result for the case that the distance between two adjacent electrodes
also tends to zero, thus providing a physical interpretation and justification of

the so-called backscattering data introduced by two of the authors.

1. Introduction

The aim of electrical impedance tomography is to produce images of the ad-
mittance within an electrically conducting object (such as the human body) from
boundary measurements of current and voltage, cf. the overview articles of Bar-
ber and Brown [1], Cheney, Isaacson and Newell [5], Borcea [3, 4], Lionheart [15],
Bayford [2], and the book edited by Holder [11]. To alleviate modelling errors
and measurement noise, many practical applications of impedance tomography uti-
lize difference measurements (sometimes called “relative data”): For a given set
of boundary current patterns, the measured voltages are compared with a set of
reference potentials to generate an image of the corresponding admittance change
inside the object. Common examples are time-difference and frequency-difference
measurements.

The most accurate mathematical (forward) model for impedance tomography is
known as the complete electrode model. This model takes into account both the
shunting effect on the conducting electrodes and the contact impedance between
the electrodes and the imaged object. It has been experimentally verified to be ca-
pable of predicting real-life measurements up to measurement precision, cf. Cheng,
Isaacson, Newell and Gisser [6], and Somersalo, Cheney and Isaacson [20].
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In many practical applications, the size of the electrodes seems negligibly small
compared to the total boundary area and to the inevitable modelling errors, such as
inaccurate positioning of the electrodes; of the many possible examples, consider,
e.g., the geophysical applications of impedance tomography in [17, 18, 19]. It is
therefore tempting to formally replace small electrodes by point electrodes mod-
elled by delta distributions. For difference data this has the additional effect of
eliminating the (usually unknown) contact impedances.

In this work we will give a mathematically rigorous justification for using this
kind of point electrode model by deriving it as an asymptotic limit of the complete
electrode model when the electrodes’ diameter h tends to zero. More precisely, we
will show that the relative approximation error decays like h2, if the electrodes are
replaced by point sources located at their centers. The precise formulation of this
main contribution of our paper is given in Section 2.4 below. It is supplemented
by an analogous result for the case that the diameter of the electrodes, i.e., h, is
as small as the distance between two adjacent electrodes: We prove that in the
limit h → 0 the corresponding real-world measurements converge to the so-called
backscattering data introduced by two of the authors ([8, 9]) before. For backscatter
data, however, we can only prove a convergence rate O(h) as h→ 0.

For completeness, it should be mentioned that the connection between the com-
plete electrode model and the so-called continuum model of impedance tomography
(see, e.g., [3]) has previously been studied in [12, 13, 14]. However, the philos-
ophy of these articles differs from the approach of this work: In [12, 13, 14] it
has been investigated in what sense the current-to-voltage map of the complete
electrode model approximates the Neumann-to-Dirichlet boundary operator of the
continuum model as the electrodes get smaller, their number increases, and their
coverage of the object boundary is getting better and better. In the present work,
the locations and the number of the electrodes are fixed and the only thing that is
altered is the electrode size.

The outline of this work is as follows. In Section 2 we give the precise mathe-
matical specifications of the two relevant electrode models, and comment on their
well-posedness for relative data; in a separate subsection we summarize all the ge-
ometrical assumptions on the finite size electrodes that we are going to impose
when we let their diameter h go to zero. Afterwards, in Section 2.4, we present the
main result of this work, the proof of which is postponed to Section 3. Finally, in
Section 4 we provide our asymptotic result for backscatter data.

2. The Setting and Main Result

In what follows, we assume that Ω ⊂ Rn, n = 2 or n = 3, is a bounded domain
(i.e., an open and connected set) with C∞-boundary and connected complement.
The outer unit normal of ∂Ω is denoted by ν. Throughout, let σ0 ∈ C∞(Ω;Cn×n)
be a smooth and (real) symmetric background admittance. We assume that the
true admittance inside Ω is a compactly supported perturbation of σ0, i.e.,

(1) σ = σ0 + κ,

where κ ∈ L∞(Ω;Cn×n) is (real) symmetric and supported away from the boundary
∂Ω. Furthermore, both σ and σ0 are assumed to satisfy (see, e.g., [3])

(2) Re(σξ · ξ) ≥ c‖ξ‖2Cn , |σξ · ξ| ≤ C‖ξ‖2Cn , c, C > 0,
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for all ξ ∈ Cn. Here, and throughout this work, 0 < c < C denote generic constants
(c a small one, C a large one) that are independent of h and that may change from
one occasion to the next.

2.1. Complete electrode model. To begin with, let us recapitulate the complete
electrode model, where we employ superscripts h to serve as a measure for the size
of the diameter of the electrodes. Later we will drive h to zero in the asymptotic
analysis.

Within the complete electrode model the boundary of Ω is assumed to be partly
covered by M electrodes, which are taken to be ideal conductors, and which are
identified with the open, simply connected, and mutually disjoint parts ehm ⊂ ∂Ω,
m = 1, . . . ,M , of the surface that they cover. The union of these electrodes is
denoted by Eh. All electrodes may be used both for current injection and volt-
age measurement, and the corresponding electrode net currents and voltages are
denoted by {Im}, {Uh

m} ⊂ C, respectively. Due to the principle of charge conserva-
tion, the total current vector I = [Im]Mm=1 belongs to the space

CM
� :=

{
Z = [Zm]Mm=1 ∈ CM

∣∣∣ M∑
j=1

Zj = 0
}
.

During electrode measurements, a thin and highly resistive layer is formed at the
electrode-object interface [6]. It is characterized by the contact impedances {zm}
that in our analysis are assumed to be complex numbers with positive real parts.

The corresponding forward problem is as follows: Given a current pattern I ∈
CM
� , find (uh, Uh) ∈ (H1(Ω)⊕ CM )/C =: H that satisfies

(3)

∇ · σ∇uh = 0 in Ω,

ν · σ∇uh = 0 on ∂Ω \ Eh,

uh + zm ν · σ∇uh = Uh
m on ehm, m = 1, . . . ,M,∫

ehm

ν · σ∇uh dS = Im, m = 1, . . . ,M,

in an appropriate weak sense (cf. [20]). Note that in the factor space H the quotient
is taken with respect to constant shifts of both, uh and Uh, simultaneously. This
reflects the freedom in the choice of the ground level of potential. By slight abuse
of notation, we will subsequently identify complex numbers with the corresponding
constant functions (over an appropriate domain), and refer to equivalence classes
of factor spaces with respect to C to identify elements (be it functions, numbers,
or tuples of both of them) that only differ by additive shifts. Unless there is a
possibility of confusion, we also do not distinguish between equivalence classes and
representative elements of them.

With this understanding the equations in (3) uniquely determine the electro-
magnetic potential uh within Ω, and the potentials {Uh

m} on the electrodes, and
there holds

(4)

‖(uh, Uh)‖2H = inf
c∈C

(
‖uh − c‖2H1(Ω) +

M∑
m=1

‖Uh
m − c‖2L2(ehm)

)
≤ C

M∑
m=1

|Im|2/|ehm|.
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Furthermore, we have a similar inequality for the flux of the component uh of the
solution across the boundary, i.e.,

(5) ‖ν · σ∇uh‖2L2(∂Ω) ≤ C
M∑

m=1

|Im|2/|ehm|.

Both in (4) and (5), the constant C = C(Ω, σ, {zm}) > 0 is independent of the
electrode configuration. We refer to the material in [20], [12, Theorem 2.3], and
[13, Lemma 2.1] for a proof of these results.

Real-life electrode measurements of impedance tomography provide a noisy ver-
sion of the current-to-voltage map

(6) Rh : I 7→ Uh, CM
� → CM/C.

Accordingly, we denote by (uh0 , U
h
0 ) ∈ H the reference potential for the background

admittance σ0, i.e., the solution of (3) with σ replaced by σ0. Rh
0 : I 7→ Uh

0 is the
corresponding reference measurement operator.

2.2. Point electrode model. Alternatively, we consider a very simplistic elec-
trode model with electrodes of infinitesimal size at the points xm ∈ ∂Ω, m =
1, . . . ,M , where boundary currents are treated as isolated delta distributions. In
other words, the corresponding forward problem reads

(7) ∇ · σ∇u = 0 in Ω, ν · σ∇u = f on ∂Ω,

where

(8) f =
M∑

m=1

Im δxm
∈ H(1−n)/2−ε(∂Ω), for any ε > 0,

with I = [Im]Mm=1 ∈ CM
� being the same as in Subsection 2.1, and δxm being the

Dirac delta distribution on ∂Ω supported in xm. It follows from the standard
theory of elliptic boundary value problems that (7)–(8) has a unique solution u ∈
H(4−n)/2−ε(Ω)/C satisfying

(9) ‖u‖H(4−n)/2−ε(Ω)/C ≤ C‖f‖H(1−n)/2−ε(∂Ω) ≤ C‖I‖CM ,

for any ε > 0 and some C = Cε > 0; see, e.g., [16] and [9, (A.5)].
Since the Dirichlet boundary value of u is (only) in H(3−n)/2−ε(∂Ω)/C (cf. the

trace theorems in [16, Chapter 2]), the boundary potential is not well defined at
the discrete point xm — unless Im equals zero —, and thus there is no natural
way of defining counterparts of the voltages Uh and the measurement operator
Rh of the complete electrode model within this point electrode setting. However,
there does exist a counterpart for difference measurements, i.e., for the relative
voltages Uh − Uh

0 , and the relative current-to-voltage map Rh − Rh
0 . To this end,

consider the reference potential u0 ∈ H(4−n)/2−ε(Ω)/C that solves (7)–(8) for the
background admittance σ0 and set w := u−u0. Then the vector of point evaluations

W :=
[
w(xm)

]M
m=1

∈ CM/C is well-defined; see Lemma 2.1 below. In our main
result we prove that W provides an approximation of the corresponding relative
voltages Uh−Uh

0 of the complete electrode model, if the diameter of the finite size
electrodes is small. An immediate corollary is that the measurement operator

(10) A : I 7→W, CM
� → CM/C,
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approximates the corresponding relative measurement map Rh−Rh
0 of the complete

electrode model.

Lemma 2.1. The relative potential w = u− u0 satisfies the estimate

‖w‖Hr(∂Ω)/C ≤ C‖I‖CM

for any r ∈ R and C = C(r) > 0. In particular, w|∂Ω belongs to C∞(∂Ω)/C.

Proof. Let us fix ε > 0 and r ≥ 3/2; obviously, the latter choice can be made
without loss of generality. Let Ω0 and Ω1 be auxiliary C∞-domains with connected
complements, such that suppκ ⊂ Ω0, Ω0 ⊂ Ω1 and Ω1 ⊂ Ω. In addition, let D be
a smooth neighborhood of ∂Ω1 with the property D ⊂ Ω \Ω0. Since ∇ · σ0∇w = 0
in Ω \Ω0, it follows from (9) and a slight modification of [9, Lemma A.1], i.e., from
interior regularity for elliptic equations, that

‖w‖Hr+1/2(D)/C ≤ C‖w‖H(4−n)/2−ε(Ω\Ω0)/C ≤ C‖I‖CM .

In particular, using the trace theorem, we see that w satisfies

∇ · σ0∇w = 0 in Ω \ Ω1, ν · σ0∇w = 0 on ∂Ω, ν · σ0∇w = g on ∂Ω1

for some mean-free g with ‖g‖Hr−1(∂Ω1) ≤ C‖I‖CM . Hence, the claim follows from
the combination of [16, Chapter 2, Remark 7.2] and the trace theorem. �

2.3. Geometrical assumptions. We now list our assumptions on the interplay
between the two electrode models introduced in Subsections 2.1 and 2.2 above. As
before, we denote by ehm, m = 1, . . . ,M , the finite size electrodes, and by xm the
positions of the corresponding point electrodes. As already mentioned, we associate
with h the size of the electrodes from the complete electrode model, and we let h
float within some interval 0 < h < h0, where h0 > 0 is kept fixed.

To be precise, we assume throughout that there is a fixed convex reference do-
main Q ⊂ Rn−1 with |Q| = 1 and 0 ∈ Q, such that, for each positive parameter
h < h0, the electrode ehm ⊂ ∂Ω, with m fixed, is given by a one-to-one parameteri-
zation

ehm = Xh
m(Qh) with Qh = hQ ,

which stands for
ehm =

{
x = Xh

m(s)
∣∣ s ∈ Qh

}
.

We assume that Xh
m is a diffeomorphism between Qh and ehm, i.e., both Xh

m

and its inverse are infinitely times continuously differentiable, and that there are
universal constants 0 < c < C <∞, independent of h and m, such that the surface
element dS on ehm satisfies

(11) dS = σh
m(s) ds with c ≤ σh

m(s) ≤ C ,
where ds is the Lebesgue’s volume element of Qh. To be precise, by the first part
of (11) we mean that ∫

ehm

g dS =

∫
Qh

(g ◦Xh
m)σh

m ds

for any integrable function g on ehm, i.e., σh
m is the local stretching factor corre-

sponding to the parameterization Xh
m. In addition, we need some extra control

over the first and second order derivatives of Xh
m, namely we require that

(12) ‖Xh
m‖C2(Qh) ≤ C .
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It is easy to see that under these assumptions there holds

(13) ‖ψ ◦Xh
m‖H1(Qh) ≤ C‖ψ‖H1(ehm)

for every ψ ∈ H1(ehm), and

(14) |Γ| ≤ C|(Xh
m)−1(Γ)|

for any smooth curve Γ ⊂ ehm. (In fact, for (13) and (14) to hold the assumption on
the second order derivatives of Xh

m is redundant; however, such an assumption is
needed in the proof of Lemma 3.2 below.) We point out that because of the above
stipulations the area covered by ehm is given by

(15) |ehm| =

∫
ehm

dS =

∫
Qh

σh
m(s) ds = hn−1

∫
Q

σh
m(hs) ds

{
≤ Chn−1

≥ chn−1 .

Finally, concerning the interplay between the two electrode models, we assume
that xm ∈ ehm, more precisely, that

xm = Xh
m(0) ,

and, to enable an O(h2) approximation property to be established below we require
that

(16)

∫
Qh

s σh
m(s) ds = 0 ,

i.e., that the origin (the preimage of xm under Xh
m) is a (weighted) center of mass

of Qh.
Some interpretation of the above assumptions may be useful:

• For n = 2, i.e., in two space dimensions, the boundary of Ω is a closed curve,
and it is most natural to assume that ehm are electrodes of length |ehm| = h,
say. In this case one can choose Q = [−1/2, 1/2], Qh = [−h/2, h/2], and
let Xh

m be, for all h > 0, an arc length parameterization of the boundary.
In this case σh

m ≡ 1, and the condition (16) is equivalent to saying that the
position xm = Xh

m(0) of the point electrode is half way (along the boundary
of Ω) between the two end points of the electrode ehm.
• In three space dimensions, one can think of Qh being a planar reference

shape for each of the electrodes, that is shrinking with decreasing size pa-
rameter h. Think of these electrodes as being elastic, so that they can be
attached to the surface ∂Ω around xm. The corresponding deformation is
determined by Xh

m, with

σh
m(s) =

∣∣∣∂Xh
m

∂s1
(s)× ∂Xh

m

∂s2
(s)
∣∣∣ , s = (s1, s2) ,

being the local stretching factor. In order to satisfy condition (16), one
has to make sure that the position of the point electrode is some kind of
center of ehm (which is not the center of mass, though, as the latter does
not usually sit on ∂Ω).
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2.4. The main result. We are now ready to formulate the main result of this
paper. Recall that, given a current pattern I, we denote by Uh and Uh

0 the volt-
ages on the finite size electrodes corresponding to the admittance σ of (1) and
to the background admittance σ0, respectively. Similarly, in the framework of
point electrodes, u and u0 stand for the respective potentials of Subsection 2.2,

and W :=
[
(u− u0)(xm)

]M
m=1

∈ CM/C contains the relative voltages on the point
electrodes.

Theorem 2.2. Under the assumptions from Subsection 2.3,∥∥(Uh − Uh
0 )−W

∥∥
CM/C ≤ Ch

2 ‖I‖CM ,

where C > 0 is independent of h ∈ (0, h0) and I ∈ CM
� .

For the corresponding measurement maps of the complete electrode model and
the point electrode model,

Rh : I 7→ Uh, Rh
0 : I 7→ Uh

0 , and A : I 7→W,

we deduce that A is an accurate approximation of Rh − Rh
0 , provided that the

parameter h, which measures the diameter of the electrodes, is relatively small.

Corollary 2.3. Under the assumptions from Subsection 2.3,∥∥(Rh −Rh
0 )−A

∥∥
L(CM

� ,CM/C)
≤ Ch2,

where C > 0 is independent of h ∈ (0, h0).

Remark 2.4. Suppose that the point electrode locations {xm} are not the centers
of the corresponding finite size electrodes {ehm} in the sense of (16). In such a
case Theorem 2.2 and Corollary 2.3 are no longer valid. However, as long as only
xm ∈ ehm, m = 1, . . . ,M , one can still obtain the weaker convergence rate

(17)
∥∥(Rh −Rh

0 )−A
∥∥
L(CM

� ,CM/C)
≤ Ch.

In fact, the proof of Lemma 3.2 below could be shortened considerably, and also
the geometrical assumptions about the finite size electrodes could be weakened, if
the aim was only to prove an O(h)-estimate.

Furthermore, it is easy to see from the proof of Theorem 2.2 that its assertion
remains valid, if one or all xm deviate from the center of the respective electrode(s)
by O(h2).

3. Proof of the Main Result

This section is devoted to proving Theorem 2.2. For a current pattern I ∈
CM
� , let (uh, Uh) and (uh0 , U

h
0 ) be the solution pairs of (3) corresponding to the

admittance σ from (1) and the background admittance σ0, respectively, and set
(wh,Wh) := (uh − uh0 , Uh − Uh

0 ).
We begin with a refinement of the inequality (5) for the complete electrode

model, which – in contrast to (5) – is only valid on the electrodes.

Lemma 3.1. The component uh of the solution to (3) satisfies

‖ν · σ∇uh‖2H1(Eh) ≤ C
M∑

m=1

|Im|2/|ehm|,

where C > 0 is independent of the electrode configuration, and of h, in particular.
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8 MARTIN HANKE, BASTIAN HARRACH, AND NUUTTI HYVÖNEN

Proof. Because σ is smooth in a neighborhood of ∂Ω, the Neumann-to-Dirichlet
map corresponding to the first equation of (3) is bounded from the subspace of
L2(∂Ω)-functions with zero integral mean to H1(∂Ω)/C (cf., e.g., [9, Theorem A.3]),
and thus (5) gives

‖uh‖2H1(∂Ω)/C ≤ C
M∑

m=1

|Im|2/|ehm|.

Hence, it follows from the third equation of (3) that (cf. [7, p. 146, Remark 6])

‖ν · σ∇uh‖2H1(Eh) ≤ C
M∑

m=1

‖Uh
m − uh‖2H1(ehm)

≤ C
M∑

m=1

(
‖uh‖2H1(ehm)/C + ‖Uh

m − uh‖2L2(ehm)

)
≤ C

(
M∑

m=1

|Im|2/|ehm|+
M∑

m=1

‖Uh
m − uh‖2L2(ehm)

)
.

For the second term on the right hand side we have

M∑
m=1

‖Uh
m − uh‖2L2(ehm) ≤ C

M∑
m=1

(
‖Uh

m − c‖2L2(ehm) + ‖c− uh‖2L2(ehm)

)
≤ C

(
‖uh − c‖2H1(Ω) +

M∑
m=1

‖Uh
m − c‖2L2(ehm)

)
,

where we have applied the trace theorem. By taking the infimum over c ∈ C, and
using (4) it thus follows that

M∑
m=1

‖Uh
m − uh‖2L2(ehm) ≤ C

M∑
m=1

|Im|2/|ehm|,

which completes the proof. �

Next we provide a first result (in a comparatively weak norm) on how well uh

approximates the potential u of Subsection 2.2 for point electrodes on ∂Ω.

Lemma 3.2. Under the assumptions from Subsection 2.3 we can find for every
ε > 0 some Cε > 0 such that

‖ν · σ∇(uh − u)‖H−(n+3)/2−ε(∂Ω) ≤ Cεh
2‖I‖CM

for every 0 < h < h0 and all I ∈ CM
� .

Proof. 1. Let ϕ ∈ C∞(∂Ω) be fixed, and denote ν · σ∇uh|∂Ω by fh. Note that it
follows from Lemma 3.1 and (15) that

(18) ‖fh‖2H1(ehm) ≤ Ch1−n‖I‖2CM .
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According to the boundary conditions of (3) and (7), we can therefore rewrite

∣∣〈ν · σ∇(uh − u), ϕ〉
∣∣ =

∣∣∣∣∣
∫
∂Ω

fhϕdS −
M∑

m=1

Imϕ(xm)

∣∣∣∣∣
=

∣∣∣∣∣
M∑

m=1

∫
ehm

fh
(
ϕ− ϕ(xm)

)
dS

∣∣∣∣∣
≤

M∑
m=1

∣∣∣∣∣
∫
ehm

(fh − Im/|ehm|)
(
ϕ− ϕ(xm)

)
dS +

Im
|ehm|

∫
ehm

(
ϕ− ϕ(xm)

)
dS

∣∣∣∣∣ ,
and hence,

(19)

∣∣〈ν · σ∇(uh − u), ϕ〉
∣∣ ≤ M∑

m=1

‖fh − Im/|ehm|‖L2(ehm)‖ϕ− ϕ(xm)‖L2(ehm)

+

M∑
m=1

|Im|
|ehm|

∣∣∣∣∣
∫
ehm

ϕdS − ϕ(xm)|ehm|

∣∣∣∣∣ .
The terms that enter on the right-hand side of (19) will now be treated separately
for any fixed m ∈ {1, . . . ,M}.

2. To begin with, we remark that, according to (3), ψ = fh − Im/|ehm| has
vanishing integral mean over ehm, i.e.,

0 =

∫
ehm

ψ(x) dS =

∫
Qh

ψ(Xh
m(s))σh

m(s) ds = hn−1

∫
Q

ψ(Xh
m(hs))σh

m(hs) ds .

Therefore the Poincaré-Friedrichs inequality for the domain Q yields∫
Q

∣∣∣ψ(Xh
m(hs))σh

m(hs)
∣∣∣2 ds ≤ C

∫
Q

∣∣∣∇s

(
ψ(Xh

m(hs))σh
m(hs)

)∣∣∣2 ds

≤ Ch2h1−n
∫
Qh

∣∣∣∇s

(
ψ(Xh

m(s))σh
m(s)

)∣∣∣2 ds ,

and hence, as σh
m is bounded by c from below,

‖fh − Im/|ehm|‖2L2(ehm) = ‖ψ‖2L2(ehm) ≤
1

c

∫
Qh

∣∣∣ψ(Xh
m(s))σh

m(s)
∣∣∣2 ds

=
1

c
hn−1

∫
Q

∣∣∣ψ(Xh
m(sh))σh

m(sh)
∣∣∣2 ds

≤ Ch2

∫
Qh

∣∣∣∇s

(
ψ(Xh

m(s))σh
m(s)

)∣∣∣2 ds .

Due to (12), σh
m is uniformly bounded in C1(Qh) with respect to h, and we can

continue by using (13) to obtain

‖fh − Im/|ehm|‖2L2(ehm) ≤ Ch2‖ψ ◦Xh
m‖2H1(Qh) ≤ Ch2‖ψ‖2H1(ehm)

≤ Ch2
(
‖fh − Im/|ehm|‖2L2(ehm) + ‖fh‖2H1(ehm)

)
,
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and hence, assuming that Ch2 ≤ 1/2 and using (18), we conclude that

(20) ‖fh − Im/|ehm|‖L2(ehm) ≤ Ch‖fh‖H1(ehm) ≤ Ch3/2−n/2‖I‖CM .

3. Due to (14), for any x ∈ ehm there exists a smooth curve Γ ⊂ ehm connecting
x and xm such that

|Γ| ≤ Ch.

Indeed, one can construct such a Γ by taking the line segment between the points
(Xh

m)−1(x) and (Xh
m)−1(xm) in Qh, and mapping it back onto ehm with Xh

m. As a
consequence, ∣∣ϕ(x) − ϕ(xm)

∣∣ ≤ Ch‖ϕ‖C1(∂Ω) ,

and hence, by virtue of (15) there holds

(21) ‖ϕ− ϕ(xm)‖2L2(ehm) ≤ Ch2|ehm|‖ϕ‖2C1(∂Ω) ≤ Chn+1‖ϕ‖2C1(∂Ω) .

4. According to (16), the quadrature formula

(22)

∫
ehm

ϕdS =

∫
Qh

(ϕ ◦Xh
m)σh

m ds ≈ ϕ(xm)|ehm|

is exact whenever ϕ ◦Xh
m is a polynomial of degree less or equal to one. Because

Qh is convex, we can expand

(ϕ ◦Xh
m)(s) = ϕ(xm) + s · ∇s(ϕ ◦Xh

m)(0) + r(s) ,

where

|r(s)| ≤ C|s|2‖ϕ‖C2(∂Ω)

because of (12). Hence,

(23)

∣∣∣∣∣
∫
ehm

ϕdS − ϕ(xm)|ehm|

∣∣∣∣∣ =

∣∣∣∣∫
Qh

r(s)σh
m(s) ds

∣∣∣∣ ≤ Chn+1‖ϕ‖C2(∂Ω) .

5. Inserting the three estimates (20), (21), and (23), together with (15) into
(19), we finally arrive at∣∣〈ν · σ∇(uh − u), ϕ〉

∣∣ ≤ Ch2‖I‖CM ‖ϕ‖C2(∂Ω) .

Now, if ε > 0 then H(n+3)/2+ε(∂Ω) is continuously embedded in C2(∂Ω) according
to the Sobolev embedding theorem, cf. Hebey [10], and hence, there is Cε > 0 such
that ∣∣〈ν · σ∇(uh − u), ϕ〉

∣∣ ≤ Cεh
2‖I‖CM ‖ϕ‖H(n+3)/2+ε(∂Ω) .

Because C∞(∂Ω) is dense in H(n+3)/2+ε(∂Ω) (see, e.g., [16, Chapter 1, Section 7.3]),
we deduce that

‖ν · σ∇(uh − u)‖H−(n+3)/2−ε(∂Ω) ≤ Cεh
2‖I‖CM ,

which completes the proof. �

Due to the regularity properties of elliptic partial differential equations, the
approximation of Lemma 3.2 gets stronger if one concentrates on the behavior
of the corresponding potentials at some distance from the boundary ∂Ω. This
statement is made concrete by the following corollary.
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Corollary 3.3. Let Ω0 ⊂ Rn be a nonempty domain such that Ω0 ⊂ Ω. Then,
there holds that

‖uh − u‖H1(Ω0)/C ≤ Ch2‖I‖CM ,

and

‖uh‖H1(Ω0)/C + ‖u‖H1(Ω0)/C ≤ C‖I‖CM ,

where C = C(Ω0) > 0 is independent of h.

Proof. Since uh− u satisfies the conductivity equation for the admittance σ of (1),
and since σ is smooth in some neighborhood of ∂Ω, it follows from Lemma 3.2 and
the continuous dependence on the boundary data for the Neumann problem (cf. [9,
(A.5)]) that

(24) ‖uh − u‖H−n/2−ε(Ω)/C ≤ Cεh
2‖I‖CM

for some Cε > 0.
Using a similar interior regularity argument as in the proof of Lemma 2.1, we

see that uh − u satisfies the Neumann problem

(25) ∇ · σ∇(uh − u) = 0 in Ω0, ν · σ∇(uh − u) = g on ∂Ω0

for any smooth domain Ω0 with connected complement such that suppκ ⊂ Ω0 and
Ω0 ⊂ Ω, and for some mean-free g with ‖g‖L2(∂Ω0) ≤ C(Ω0)h2‖I‖CM . Notice that
a more general Ω0 can be enclosed by a domain with these properties. Hence, the
claim about uh − u follows from the continuous dependence on the Neumann data
in (25); see, e.g, the variational techniques in [7].

The estimate for u is obtained in the exactly same manner, with (9) playing the
role of (24). Finally, the claim about uh follows from the triangle inequality. �

We can now deduce Theorem 2.2 from Corollary 3.3 by a duality argument.

Proof of Theorem 2.2. Let I ∈ CM
� be arbitrary and choose an auxiliary domain

Ω0 such that suppκ ⊂ Ω0 and Ω0 ⊂ Ω. We fix the ground level of potential, i.e.,
choose a representative of a quotient equivalence class, so that

(26) J := Wh −W = ((Rh −Rh
0 )−A)I ∈ CM

� ,

where Wm = w(xm) is defined as in (10). We denote by (vh, V h) ∈ H the solu-
tion of the complete electrode problem (3) for this newly defined electrode current
pattern J = [Jm]Mm=1. The variational formulation for this problem in [20, Propo-
sition 3.1] gives

M∑
m=1

JmW
h
m =

∫
Ω

σ∇vh · ∇wh dx+
M∑

m=1

1

zm

∫
ehm

(vh − V h
m)(wh −Wh

m) dS

= −
∫

Ω0

κ∇uh0 · ∇vh dx,(27)

where the second step is a consequence of the very same variational formulation
for the pairs (uh, Uh) and (uh0 , U

h
0 ), respectively, together with the definition of

(wh,Wh).
Similarly, let v ∈ H(4−n)/2−ε(Ω)/C solve the forward problem

∇ · σ∇v = 0 in Ω, ν · σ∇v = g on ∂Ω,

 
Electronic version of an article published as Math. Models Methods Appl. Sci. 21(6), 2011, 1395-141 

http://dx.doi.org/10.1142/S0218202511005362  
© World Scientific Publishing Company http://www.worldscinet.com/m3as



12 MARTIN HANKE, BASTIAN HARRACH, AND NUUTTI HYVÖNEN

with the point current pattern

g =
M∑

m=1

Jm δxm
.

We introduce a mean-free sequence (gk) ⊂ C∞(∂Ω) that converges towards g in the
topology of H(1−n)/2−ε(∂Ω) (cf., e.g., [16, Chapter 1, Section 7.3]). As in the proof
of Corollary 3.3, it follows from interior regularity arguments that the solutions
(vk) ⊂ H1(Ω)/C of

∇ · σ∇vk = 0 in Ω, ν · σ∇vk = gk on ∂Ω,

fulfill

lim
k→∞

‖vk − v‖H1(Ω0)/C = 0.

Since ∫
∂Ω

gkw dS =

∫
Ω

σ∇vk · ∇w dx = −
∫

Ω0

κ∇u0 · ∇vk dx,

and since w is smooth on ∂Ω (cf. Lemma 2.1), we obtain that

(28)
M∑

m=1

JmWm = lim
k→∞

∫
∂Ω

gkw dS = −
∫

Ω0

κ∇u0 · ∇v dx.

Combining (26), (27) and (28), we deduce that

‖Wh −W‖2CM =

∫
Ω0

(κ∇u0 · ∇v − κ∇uh0 · ∇vh) dx

≤ C
(
‖u0 − uh0‖H1(Ω0)/C‖v‖H1(Ω0)/C

+ ‖uh0‖H1(Ω0)/C‖v − vh‖H1(Ω0)/C

)
≤ Ch2‖Wh −W‖CM ‖I‖CM ,

where the last step follows by applying Corollary 3.3 to each of the four distributions
u0−uh0 , v, uh0 and v− vh. In consequence, division by ‖Wh−W‖CM completes the
proof. �

Concerning Remark 2.4 we note that the special definition (16) of xm as the
weighted center of mass of ehm is only used in the fourth part of the proof of
Lemma 3.2: Assuming merely that xm belongs to ehm reduces the accuracy of
the quadrature formula (22), so that it is exact only for constants. Accordingly,
this decreases the exponent of h on the right-hand side of (23) by one, which car-
ries over to (19) and, eventually, to the conclusion of Lemma 3.2. This first order
convergence rate in h then transports trivially to Corollary 3.3 and Theorem 2.2.

4. Electrode Dipoles and Backscatter Data

In this section we restrict our attention to two space dimensions, i.e., n = 2, and
to the case where there are only two small electrodes attached close to each other
on ∂Ω. For any fixed y ∈ ∂Ω we let X ∈ C∞(R;R2) be a counterclockwise |∂Ω|-
periodic parameterization of ∂Ω with respect to arc length, such that X(0) = y,
and

∂Ω =
{
X(s)

∣∣ −|∂Ω|/2 ≤ s < |∂Ω|/2
}
.
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JUSTIFICATION OF POINT ELECTRODE MODELS IN EIT 13

Then we define a pair of electrodes centered around y via

eh+ =
{
X(s)

∣∣ h/2 < s < 3h/2
}
,

and
eh− =

{
X(s)

∣∣ X(−s) ∈ eh+
}
,

where h > 0 is the length of the electrodes. The idea is to drive 1/(2h) units of
current from eh+ to eh− and measure the resulting potential difference.

In this setting, the forward solution of this problem is the unique pair (uh, Uh) ∈
H1(Ω)⊕ C that satisfies weakly

(29)

∇ · σ∇uh = 0 in Ω,

ν · σ∇uh = 0 on ∂Ω \ (eh+ ∪ eh−),

uh + z±ν · σ∇uh = ±Uh on eh±,∫
eh±

ν · σ∇uh dS = ±1/(2h),

where we have fixed the ground level of potential in an obvious way. Let (uh0 , U
h
0 ) ∈

H1(Ω) ⊕ C be the solution of (29) when σ of (1) is replaced by the smooth back-
ground admittance σ0. As in Section 3 we set (wh,Wh) = (uh−uh0 , Uh−Uh

0 ), and
define

bh = Wh/h.

Our goal is to prove that bh can be approximated by the corresponding backscat-
ter data introduced in [8, 9]1. Such data are defined via the following variant of the
point electrode forward problem introduced in Section 2.2:

(30) ∇ · σ∇u = 0 in Ω, ν · σ∇u = −δ′y on ∂Ω,

where the (mean-free) dipole current δ′y ∈ H−3/2−ε(∂Ω), ε > 0, is defined by virtue
of

(31) 〈δ′y, v〉 = −∂v(X(s))

∂s

∣∣∣
s=0

for v ∈ H3/2+ε(∂Ω). It follows, e.g., from the material in [9, Appendix] that (30)
has a unique solution u ∈ H−ε(Ω)/C for any ε > 0 satisfying

(32) ‖u‖H−ε(Ω)/C ≤ C,
where C = C(Ω, σ, ε) > 0 is independent of y. We denote by u0 the reference
potential, i.e., the solution of (30) with σ replaced by σ0, and set w = u − u0.
Then, the backscatter data of electrical impedance tomography at y is defined to
be

b = −〈δ′y, w〉.
Take note that b is a well defined number because the dipole δ′y does not see the
ground level of potential and, furthermore,

(33) ‖w‖Hr(∂Ω)/C ≤ C,
for any r ∈ R and C = C(r) > 0 that can be chosen independently of y ∈ ∂Ω.
This estimate follows by repeating the argumentation of Lemma 2.1 and noticing

1We mention that it has been shown in [8] that these backscatter data (as a function of the
point y ∈ ∂Ω) uniquely define a simply connected insulating obstacle within Ω, if the background

admittance σ0 is constant.
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that the appearing constants can be chosen so that they depend on κ, σ0 and the
geometry of Ω, but not on y.

The main result of this section is as follows:

Theorem 4.1. There holds
|bh − b| ≤ Ch,

where C > 0 is independent of h > 0 and y ∈ ∂Ω.

The rest of this section is devoted to proving Theorem 4.1. We start by presenting
the counterpart of Corollary 3.3 in this new setting.

Lemma 4.2. Let uh and u be given by (29) and (30), respectively. Furthermore,
let Ω0 ⊂ R2 be a nonempty domain such that Ω0 ⊂ Ω. Then there holds that

‖uh − u‖H1(Ω0)/C ≤ Ch,

and
‖uh‖H1(Ω0)/C + ‖u‖H1(Ω0)/C ≤ C,

where C = C(Ω0) > 0 is independent of h and y ∈ ∂Ω.

Proof. The leading idea of this proof is the same as in Lemma 3.2 and Corollary 3.3:
We first show that ν · σ∇uh|∂Ω provides an approximation of δ′y in some weak
Sobolev norm, after which the assertion follows by an interior regularity argument.
It is straightforward to see that the constants in the estimates below can be chosen
so that they depend on σ and the geometry of Ω, but not on y ∈ ∂Ω.

A simple calculation utilizing the boundary conditions of (29) shows that∫
∂Ω

ν · σ∇uhϕdS =
1

2h2

∫
eh+

ϕdS +

∫
eh+

(ν · σ∇uh − 1/(2h2))(ϕ− ϕ(y)) dS

− 1

2h2

∫
eh−

ϕdS +

∫
eh−

(ν · σ∇uh + 1/(2h2))(ϕ− ϕ(y)) dS

for ϕ ∈ C∞(∂Ω). As ±1/(2h2) is the mean of ν · σ∇uh over eh±, the Poincaré
inequality and Lemma 3.1 provide the estimate

‖ν · σ∇uh ∓ 1/(2h2)‖L2(eh±) ≤ Ch‖ν · σ∇uh‖H1(eh±) ≤ Ch−1/2.

Furthermore, as in part 3 of Lemma 3.2, we have that for all x ∈ eh±,

|ϕ(x)− ϕ(y)| ≤ Ch‖ϕ‖C1(∂Ω),

so that we get from the Sobolev embedding theorem

‖ϕ− ϕ(y)‖L2(eh±) ≤ Ch3/2‖ϕ‖C1(∂Ω) ≤ Ch3/2‖ϕ‖H3/2+ε(∂Ω)

for any ε > 0 and some C = Cε > 0. Combining the above estimates, it follows
from the Schwarz inequality that∣∣∣∣∣

∫
∂Ω

ν · σ∇uhϕdS − 1

2h2

∫
eh+

ϕdS +
1

2h2

∫
eh−

ϕdS

∣∣∣∣∣ ≤ Ch‖ϕ‖H3/2+ε(∂Ω),

and hence, the triangle inequality gives

(34)
|〈ν · σ∇(uh − u), ϕ〉| ≤

∣∣∣∣∣∂ϕ(X(s))

∂s

∣∣∣
s=0
− 1

2h2

∫
eh+

ϕdS +
1

2h2

∫
eh−

ϕdS

∣∣∣∣∣
+ Ch‖ϕ‖H3/2+ε(∂Ω).
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Using Taylor’s theorem around s = 0 together with the Sobolev embedding theorem,
it is straightforward to deduce that (cf. [8, Appendix])∣∣∣∣∣∂ϕ(X(s))

∂s

∣∣∣
s=0
− 1

2h2

∫
eh+

ϕdS +
1

2h2

∫
eh−

ϕdS

∣∣∣∣∣ ≤ Ch‖ϕ‖H5/2+ε(∂Ω).

Hence, as C∞(∂Ω) is dense in H5/2+ε(∂Ω), the estimate

(35) ‖ν · σ∇(uh − u)‖H−5/2−ε(∂Ω) ≤ Ch, C = C(ε) > 0,

follows by taking the supremum over ϕ with ‖ϕ‖H5/2+ε(∂Ω) = 1 in (34). With (35)

in the role of Lemma 3.2 and (32) in that of (9), the assertion follows by repeating
the argumentation from the proof of Corollary 3.3. �

Now, we have gathered enough material to prove Theorem 4.1. The techniques
used below are in essence the same as in the proof of Theorem 2.2.

Proof of Theorem 4.1. Let us fix y ∈ ∂Ω, but note that all constants in the
following estimates can be chosen independently of y. Moreover, we choose an
auxiliary domain Ω0 such that suppκ ⊂ Ω0 and Ω0 ⊂ Ω.

The definition of bh and the variational formulation of the forward problem (29)
gives (cf. [20, Proposition 3.1])

bh = 2(1/(2h))Wh

=

∫
Ω

σ∇uh · ∇wh dx+
1

z+

∫
eh+

(uh − Uh)(wh −Wh) dS

+
1

z−

∫
eh−

(uh + Uh)(wh +Wh) dS

= −
∫

Ω0

κ∇uh0 · ∇uh dx.(36)

On the other hand, after approximating −δ′y by a sequence of smooth mean-free

functions (gk) in the topology of H−3/2−ε(∂Ω), exactly the same line of reasoning
as in the second paragraph of the proof of Theorem 2.2 indicates that

b = −〈δ′y, w〉 = lim
k→∞

∫
∂Ω

gkw dS = −
∫

Ω0

κ∇u0 · ∇u dx.

Combining this with (36) results in

|bh − b| =
∣∣∣∣∫

Ω0

(κ∇u0 · ∇u− κ∇uh0 · ∇uh) dx

∣∣∣∣ ≤ Ch,
where the last step follows with the same rationale that has been used for the last
estimate in the proof of Theorem 2.2, with Lemma 4.2 playing the role of Corollary
3.3. This completes the proof. �
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