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Introduction by the Organisers

Inverse scattering problems are of fundamental practical relevance, as the sensing
of scattered waves is one of our most profound interactions with our neighborhood.
Extracting information about the unknown medium or the force that is generating
the scattered wave is often also a question of high economical value.

To address these problems basic mathematical questions need to be answered,
including, for example, the following ones:

• What data are required to determine the shape of a scattering object
(uniqueness problem)?

• Is there a constructive method to do so?

This workshop brought together 26 participants from seven different countries
from all over the world, including both reknowned international experts as well as
promising young postdocs and PhD students. The contributed presentations were
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mostly dealing with inverse scattering problems and electrical impedance tomog-
raphy, but there also have been talks on related topics such as elastodynamics and
optical coherence tomography. Although the primary focus of the meeting was on
inverse problems there have also been contributed talks on the proper (well-posed)
formulation of the associated direct or forward problems, and on corresponding
existence and uniqueness theorems.

The majority of talks was addressing latest progress for the classical inverse ob-
stacle scattering problem, which comes in various flavors depending on the material
properties of the scatterer. These material properties can affect the boundary con-
ditions as well as the index of refraction in the interior of the scatterer. Concerning
the latter, a previous Oberwolfach meeting in 2012 had boosted the momentum
of the theoretical investigation of so-called transmission eigenvalues, i.e., specific
frequencies at which a certain obstacle or inhomogeneous medium is invisible for a
given primary excitation. While the theory of this highly nonstandard eigenvalue
problem was at its infancy at that meeting, there have meanwhile been many new
developments in this area. A number of participants, being the main players in
this area, gave fascinating insight into the possibilities that arise for the solution of
the inverse problems from a computation of these (or related) eigenvalues from the
data at hand. For the case of multiple scatterers alternative methods have been
proposed to split the measured data into the corresponding components from the
individual scatterers first, and then resort to any of the other methods for the full
reconstruction.

As far as impedance tomography has been concerned a promising new technique
was presented on how to see singularities of the conductivity with a backprojection
type method, while another talk demonstrated the dramatic influence of using
wrong assumptions about the geometry of the boundary of the object which is
being imaged.

Two talks were drawing connections between classical regularization theory and
inverse scattering and impedance tomography, respectively. In these presentations
rigorous convergence proofs of the numerical reconstructions were discussed when
the noise level in the data is going down to zero. Still, being severely ill-posed
problems, the corresponding stability estimates are only of logarithmic type.

The meeting also saw an increasing number of contributions addressing (closed
or open) wave guides. For the corresponding applications there are still funda-
mental problems in formulating and numerically solving the direct problems, but
due to recent progress it is now possible to also rigorously address the associated
inverse problems.

Having been a half-size workshop the schedule left enough space for very inter-
esting and intensive discussions between and after the presentations. At three of
the evenings some of the participants came with a glass of wine or beer to join
spontaneously organized “informal presentations” of newly emerging fascinating
inverse problems in different areas.

In the end all participants including those that could not present a talk for
the lack of time agreed to have enjoyed a very special and informative meeting,
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and we all look forward to reconvene at this wonderful spot for a similar event.
Of course, the splendid support by service and staff was also responsible for this
positive reception of the particpants and the great success of this workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting John Sylvester in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Inverse obstacle scattering with a generalized impedance boundary
condition

Rainer Kress

(joint work with Fioralba Cakoni)

The use of generalized impedance boundary conditions (GIBC) in the mathe-
matical modeling of wave propagation has gained considerable attention in the
literature over the last decades. This type of boundary conditions is applied to
scattering problems for penetrable obstacles to model them approximately by scat-
tering problems for impenetrable obstacles in order to reduce the cost of numerical
computations. We will consider boundary conditions that generalize the classical
impedance boundary condition, which is also known as Leontovich boundary condi-
tion, by adding a term with a second order differential operator. As compared with
the Leontovich condition, this wider class of impedance conditions provides more
accurate models, for example, for imperfectly conducting obstacles (see [3, 4]).

To formulate the scattering problem, let D be a simply connected bounded
domain in R2 with boundary ∂D of class C4,α and denote by ν the unit normal
vector to ∂D oriented towards the complement R2 \D. We consider the scattering
problem to find the total wave u = ui+us ∈ H2

loc(R
2 \D) satisfying the Helmholtz

equation

∆u+ k2u = 0 in R
2 \D

with positive wave number k and the generalized impedance boundary condition

∂u

∂ν
+ ik

(
λu− d

ds
µ
du

ds

)
= 0 on ∂D

where d/ds is the tangential derivative and µ ∈ C1(∂D) and λ ∈ C1(∂D) are
complex valued functions. The incident wave ui is assumed to be a plane wave
ui(x) = eik x·d with a unit vector d describing the direction of propagation. The
scattered wave us has to satisfy the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |r|,

uniformly with respect to all directions. The derivative for u|∂D ∈ H3/2(∂D) with
respect to arc length s in the boundary condition has to be understood in the weak
sense.

The Sommerfeld radiation condition is equivalent to the asymptotic behavior
of an outgoing cylindrical wave of the form

us(x) =
eik |x|
√
|x|

{
u∞(x̂) +O

(
1

|x|

)}
, |x| → ∞,

uniformly for all directions x̂ = x/|x| where the function u∞ defined on the unit
circle S1 is known as the far field pattern of us. Besides the direct scattering
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problem to determine the scattered wave us for a given incident wave ui the two
inverse scattering problems that we will consider are to determine the boundary
∂D, for given impedance functions, or the impedance coefficients µ and λ, for
a given boundary, from a knowledge of the far field pattern u∞ on S1 for one
or several incident plane waves. The first problem we will call the inverse shape
problem and the second the inverse impedance problem.

For the solution of a related boundary value problem for the Laplace equation
with a generalized impedance boundary condition Cakoni and Kress [2] have pro-
posed a single-layer potential approach that leads to a boundary integral equation
or more precisely a boundary integro-differential equation governed by a pseudo-
differential operator of order one. We will extend this approach to the direct
scattering problem. As to be expected, the single-layer approach fails when k2 is
an interior Dirichlet eigenvalue for the negative Laplacian in D and to remedy this
deficiency we describe a modified approach by a combined single- and double-layer
approach that leads to a pseudo-differential operator of order two. We then pro-
ceed with describing the numerical solution of the integro-differential equation via
trigonometric interpolation quadratures and differentiation that lead to spectral
convergence.

We begin our analysis of the inverse problems with reviewing two uniqueness
results, one for the inverse impedance problem using three incident fields (see [2])
and one for the full inverse problem using infinitely many incident fields at one
wave number (see [1]). Our solution method for the inverse impedance problem
is based on the uniqueness proof and the method for the inverse shape problem is
based on a nonlinear boundary integral equation method in the spirit of the method
proposed by Johansson and Sleeman [5] for the Dirichlet boundary condition. In
both cases we follow the approach for the Laplace equation as developed by Cakoni
and Kress [2] and illustrate the feasibility by a couple of numerical examples.
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Differential imaging for locally perturbed periodic layers

Houssem Haddar

(joint work with Thi Phong Nguyen)

We consider the problem of identifying and reconstructing the geometry of a de-
fect inside a periodic layer from measurements of scattered waves at a fixed fre-
quency. We first extend the applications of so-called sampling methods (Factor-
ization Method [5] and the Generalized Linear Sampling Method [1, 3]) to the
problem of finding the geometry of both the defect and the periodic background.
We treat the scalar case where the defect is modeled with a change in the re-
fractive index of the medium. Our main contribution is on the design of a new
imaging functional capable of directly reconstructing the geometry of the defect.
Our method is inspired by the sampling method proposed in [2] but does not
rely on differential measurements. The idea is to exploit the periodicity of the
background to introduce a differential imaging functional between periods with
defects and periods without defects. This construction is possible by using the
measurement operator associated with a single Floquet-Bloch mode. The latter is
obtained by restricting the incident waves and the measurements of the scattered
waves to those that have a fixed quasi-periodicity factor. Analyzing the properties
of this operator and applying the GLSM theory necessitate the analysis of a new
type of interior transmission problems. The latter point is the main difficulty that
necessitate the technical assumption of truncating the domain in the periodicity
directions with periodic boundary conditions and thus allowing the possibility of
using discrete Floquet-Bloch transformation. We refer to [4] where the truncation
is shown to be equivalent to a uniform semi-discretization of the direct problem
with respect to the Floquet-Bloch variable. The 2D numerical experiments for
synthetic data show that the new sampling method is capable of identifying the
geometry of the defect even though the background is complex and cannot be
accurately reconstructed.

References

[1] L. Audibert and H. Haddar, A generalized formulation of the Linear Sampling Method with
exact characterization of targets in terms of farfield measurements, Inverse Problems 30,
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versity Press, Oxford, 2008.
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Stability estimates and variational source conditions

Thorsten Hohage

(joint work with Frederic Weidling)

Introduction. Inverse problems are often formulated as operator equations

(1) F (f) = g

with an injective forward operator F : D(F ) ⊂ X → Y between Hilbert or Ba-
nach spaces. For simplicity we will confine ourselves to the case of Hilbert spaces
although many of the results can be generalized to Banach space settings. Typi-
cally, inverse problems are ill-posed in the sense that F−1 is not continuous. Let
f † denote the unknown exact solution and gδ ∈ Y noisy data with noise level
δ ≥ ‖gδ − F (f †)‖. A commonly used method to obtain stable solutions to (1) is
Tikhonov regularization

(2) f δα ∈ argminf∈D(F )

[
‖F (f)− gδ‖2 + α‖f − f‖2

]

with regularization parameter α > 0 and initial guess f ∈ X. Here ‖F (f)− gδ‖2
could be replaced by a more general data fidelity term and ‖f − f‖2 by a more
general penalty term. The aim of regularization theory is to estimate the worst
case error sup{‖f δα − f †‖ : gδ ∈ Y, ‖F (f †) − gδ‖ ≤ δ} as δ → 0. Classically the
worst case error has been studied under spectral source conditions

(3) f † − f ∈ R(ϕ(F ′[f †]∗F ′[f †]))

where ϕ : [0,∞) → [0,∞) is some index function (i.e. continuous, increasing,
and ϕ(0) = 0), and ϕ(F ′[f †]∗F ′[f †]) is understood in the sense of the spectral
functional calculus. More recently, starting with [3], variational source conditions
(VSCs) in the form of a variational inequality

(4) ∀f ∈ D(F ) :
1

2
‖f †−f‖2 ≤ ‖f −f‖2+‖f †−f‖2+ψ

(
‖F (f †)− F (f)‖2

)
,

or equivalently

∀f ∈ D(F ) : 2〈f † − f, f † − f〉 ≤ 1

2
‖f † − f‖2 + ψ

(
‖F (f †)− F (f)‖2

)

have been studied. Here ψ is a concave index function. As shown in [2], (4) implies
the convergence rate ‖f δαopt

− f †‖2 ≤ 8ψ(δ2) for (2) with an optimal choice αopt of
α. The same convergence rate can also be shown for regularized Newton methods
and computable a-posteriori parameter choice rules (see [6]). Note that as opposed
to (3), the VSC (4) does not involve a derivative of F , and hence no restrictive
assumptions relating F and F ′ such as the tangential cone condition are needed,
at least for Tikhonov regularization.

It is obvious that a VSC (4) for all f † in a smoothness class K ⊂ D(F ) implies
the conditional stability estimate

∀f1, f2 ∈ K :
1

2
‖f1 − f2‖2 ≤ ψ

(
‖F (f1)− F (f2)‖2

)
.
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However, the converse implication is not obvious.

Main lemma. The strength and weakness of source conditions is that they
present a single assumption which can be used conveniently in convergence proofs
for regularization methods. On the other hand, source conditions are often difficult
to interpret. The reason is that they combine two different factors influencing the
rate of convergence of regularization methods into a single condition: smoothness
of the solution and the degree of ill-posedness of F . The following simple lemma
from [5] expresses these factors as sufficient conditions for a VSC in terms of a
family of (bounded linear projection) operators Pr. (Actually, the operators Pr
can be arbitrary, but this is how they will be chosen below.)

Lemma 1. Let X be a Hilbert space and f † ∈ X. Moreover, let Pr : X → X be a
family of operators, indexed by r in some index set J , and let κ, σ : J → [0,∞)
be two functions and C > 0 a constant such that

(1) ‖(I − Pr)(f
† − f)‖ ≤ κ(r) for all r ∈ J , and infr∈J κ(r) = 0,

(2) for all f ∈ D(F ) with ‖f † − f‖ ≤ 4‖f † − f‖ and all r ∈ J we have

〈Pr(f † − f), f † − f〉 ≤ σ(r)‖F (f) − F (f †)‖+ Cκ(r)‖f − f †‖.
Then the VSC (4) holds true with the concave index function

ψ(t) := 2 inf
r∈J

[
(C + 1)2κ(r)2 + σ(r)

√
t
]
.

Note that the second assumptions (with C = 0) describes the growth of Lips-
chitz stability constants on (finite dimensional) subspaces.

Linear inverse problems. Suppose first that T = F : X → Y is bounded and
linear. Then Lemma 1 with the spectral projection Pr = 1[r,∞)(T

∗T ), r > 0 as
well as results from [1, 7] yield the following result shown in [5]:

Theorem 2. Let f † 6= 0, f = 0, and consider estimators f δα defined by (iter-
ated) Tikhonov regularization, Landweber iteration, Lardy’s or Showalter’s method.
Moreover, let ϕ be an index function for which t 7→ tµ−1ϕ(t)2 is decreasing for
some µ ∈ (0, 1), and ϕ2 is concave. Moreover, define

ψ(t) := ϕ
(
Θ−1(

√
t)
)2

with Θ(λ) :=
√
λϕ(λ).

Then the following statements are equivalent:

(1) f † satisfies the VSC (4).
(2) supr>0 ϕ(r)

−1‖(I − Pr)f
†‖ <∞.

(3) supδ>0
1

ψ(δ) sup‖gδ−Tf†‖≤δ infα>0 ‖f δα − f †‖ <∞.

In other words, the VSC is not only sufficient for the convergence rate ψ (with
optimal choice of α), but even necessary. In contrast, the corresponding spectral
source conditions (3) are only sufficient. The conditions on ϕ exclude Hölder source
conditions ϕ(t) = tν with ν ≥ 1/2.

For a number of interesting inverse problems including the backward and side-
ways heat equation, satellite gradiometry, and elliptic pseudodifferential operators,
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both VSCs and spectral source conditions for certain ϕ, ψ can be interpreted in
terms of Besov spaces. In all such cases we have

(5) (3) ⇔ f † ∈ Bs2,2 =W s
2 , VSC (4) ⇔ f † ∈ Bs2,∞.

In particular, on an interval the difference set B
1/2
2,∞([0, 1]) \ B1/2

2,2 ([0, 1]) contains
piecewise smooth function with jumps. If we try to describe the smoothness of such
functions in terms of spectral source conditions or equivalently Sobolev spaces, we
never obtain the optimal rate, whereas the use of VSCs or equivalently Besov-
Nikol′skĭı-spaces does yield the optimal rate.

Inverse medium scattering problems. Let us consider the acoustic scattering
problem described by the differential equation

(6) ∆u+2 n(x)u = 0, in R
3

in combination with the Sommerfeld radiation condition, and suppose the contrast
f := 1− n is supported in B(π) := {x ∈ R3 : |x| ≤ π}. We first consider the near
field problem described by the forward operator F : Hm

0 (B(π)) → L2(∂B(R)2),
R > π, mapping f to the Green’s function of (6) restricted to ∂B(R)2. Again
using Lemma 1 as well as Complex Geometrical Optics solutions, the following
result has been shown in [4]:

Theorem 3. Suppose 3
2 < m < s, s 6= 2m+ 3/2 and f † satisfies ‖f †‖Bs

2,∞
≤ Cs

for some Cs ≥ 0. Then a VSC (4) holds true with

ψ(t) := A
(
ln(3 + t−1)

)−2µ
, µ := min

{
1, s−m

m+3/2

}

where the constant A > 0 depends only on m, s, Cs, κ, and R.

Similar results have been shown for far field data ([4]) and for electromagnetic
medium scattering problems ([8]).
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Homogenization of a transmission problem

Shari Moskow

(joint work with Fioralba Cakoni and Bojan Guzina)

We study the homogenization of a transmission problem arising in the scatter-
ing theory for bounded inhomogeneities with periodic coefficients modeled by the
anisotropic Helmholtz equation. The coefficients are assumed to be periodic func-
tions of the fast variable, specified over the unit cell with characteristic size ǫ. By
way of multiple scales expansion, we focus on the O(ǫk), k = 1, 2 bulk and bound-
ary corrections of the leading-order (O(1)) homogenized transmission problem.
The analysis in particular provides the H1 and L2 estimates of the error commit-
ted by the first-order-corrected solution considering i) bulk correction only, and ii)
boundary and bulk correction. We treat explicitly the O(ǫ) boundary correction
for the transmission problem when the scatterer is a unit square and show it has
L2-limit as ǫ → 0, provided that the boundary cut-off of cells is fixed. We also
establish the O(ǫ2)-bulk correction describing the mean wave motion inside the
scatterer. Our analysis also highlights a previously established, yet scarcely recog-
nized fact that the O(ǫ) bulk correction of the mean motion vanishes identically.

More precisely, the scattering problem for an inhomogeneous obstacle D with
periodically varying coefficients is formulated as a transmission problem for uǫ := u
(the total field) in D and uǫ := us (the scattered field) in Rd \D as follows:

∇ ·
(
a(x/ǫ)∇uǫ

)
+ k2n(x/ǫ)uǫ = 0 in D

∆uǫ + k2uǫ = 0 in R
d \D(1)

u+ǫ − u−ǫ = f on ∂D

(∇uǫ · ν)+ − (a(x/ǫ)∇uǫ · ν)− = g on ∂D

where uǫ satisfies the Sommerfeld radiation condition at infinity. The data is pre-
scribed by the incident wave f := ui and g := ν · ∇ui on ∂D, and the superscripts
“+” and “−” denote the respective limits on ∂D from the exterior and interior of
D. We follow along well known asymptotic theory for this problem as ǫ→ 0. One
expects the homogenized or limiting problem to read

∇ · (A∇u0) + k2nu0 = 0 in D

∆u0 + k2u0 = 0 in R
d \D

u+0 − u−0 = f on ∂D(2)

(∇u0 · ν)+ − (A∇u0 · ν)− = g on ∂D

where u0 satisfies the Sommerfeld radiation condition at infinity; n denotes the
unit cell average of n, i.e.

n =

∫

Y

n(y)dy,

and A is a constant-valued matrix given by the weighted averages

(3) Aij =

∫

Y

(
aij(y)− aik(y)

∂χj

∂yk
(y)

)
dy,
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using Einstein summation, and where χj(y) are the so-called cell functions which
represent the Y -periodic solutions to

(4)
∂

∂yi

(
aij(y)− aik(y)

∂χj

∂yk
(y)

)
= 0.

We prove the following estimates:

Theorem 1. Let uǫ be the solution to (1), u0 the solution to (2), u(1) =
∑
χj ∂u0

∂xj

the usual bulk correction and θǫ the boundary corrector. Then for any ball BR of
radius R > 0 which contains D,

‖uǫ − (u0 + ǫu(1) + ǫθǫ)‖L2(BR) ≤ CRǫ
2‖u0‖H4(D)

and

‖uǫ − (u0 + ǫu(1) + ǫθǫ)‖H1(D) + ‖uǫ − (u0 + ǫθǫ)‖H1(BR\D) ≤ CRǫ
3/2‖u0‖H4(D)

where the constant CR is independent of ǫ and u0.

The first order boundary corrector function θǫ is the solution to

(5)

∇ · a(x/ǫ)∇θǫ + k2n(x/ǫ)θǫ = 0 in D

∆θǫ + k2θǫ = 0 in R
d \D

θ+ǫ − θ−ǫ = u(1) on ∂D

(∇θǫ · ν)+ − (a(x/ǫ)∇θǫ · ν)− =

(
v0 − v0

ǫ
+ v(1)

)
· ν on ∂D

with Sommerfeld radiation conditions at infinity, and where v0 and v(1) are stan-
dard bulk terms in the asymptotic expansion of a(x/ǫ)∇uǫ. For the case when the
scatterer D is a square and the period cell is always cut by the boundary in the
same way, we describe the boundary corrector limit θ∗. If we view instead a sim-
plified θǫ ( the actual θǫ is just a sum of eight similar functions, two corresponding
to the data on each edge of D),

(6)

∇ · a(x/ǫ)∇θǫ + k2n(x/ǫ)θǫ = 0 in D

∆θǫ + k2θǫ = 0 in R
2 \D

θ+ǫ − θ−ǫ = χ1(x/ǫ)
∂u0
∂x1

on ∂D ∩ {x1 = 1}

θ+ǫ − θ−ǫ = 0 on ∂D \ {x1 = 1}

(∇θǫ · ν)+ − (a(x/ǫ)∇θǫ · ν)− =
1

ǫ
g1(x/ǫ)

∂u0
∂x1

+ v(1)
∂Ω

on ∂D ∩ {x1 = 1}

(∇θǫ · ν)+ − (a(x/ǫ)∇θǫ · ν)− = 0 on ∂D \ {x1 = 1}
together with the Sommerfeld radiation condition at infinity and where

(7) g1(x/ǫ) = a11(x/ǫ)− a1k(x/ǫ)
∂χ1

∂yk
(x/ǫ)−A11.

Then we prove the theorem:
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Theorem 2. Let D = (0, 1) × (0, 1) be the unit square and let ǫk be a sequence
approaching zero such that 1

ǫk
− ⌊ 1

ǫk
⌋ = δ for all k. Then if θǫk solves (6) for

ǫ = ǫk, we have that θǫk → θ∗ strongly in L2
loc(R

2) where θ∗ solves

∇ ·A∇θ∗ + k2nθ∗ = 0 in D

∆θ∗ + k2θ∗ = 0 in R
2 \D

(θ∗)+ − (θ∗)− = χ∗
1

∂u0
∂x1

on ∂D ∩ {x1 = 1}

(θ∗)+ − (θ∗)− = 0 on ∂D \ {x1 = 1}

(∇θ∗ · ν)+ − (A∇θ∗ · ν)− = a12(δ, y2)w(0, y2)−
∂2u0
∂x1∂x2

+ v(1)
∂Ω

on ∂D ∩ {x1 = 1}

(∇θ∗ · ν)+ − (A∇θ∗ · ν)− = 0 on ∂D \ {x1 = 1}
where w(y1, y2) is the unique solution on a doubly infinite strip to

(8)

∇y · a(y1 + δ, y2)∇w = 0 in G−

∆yw = 0 in G+

w(0, y2)
+ − w(0, y2)

− = χ1(y2)− χ∗
1

∂y1w(0, y2)
+ − a1i(δ, y2)∂yiw(0, y2)

− = g1(y2)

w [0, 1]− periodic in y2

There exists γ > 0 such that eγy1∇w ∈ L2(G+)

and e−γy1∇w ∈ L2(G−).

which decays exponentially to zero in both zero directions (and χ∗ is the only such
constant for which doubly exponentially decaying w exists). The two halves of the
strip are given by

G+ = {y1 > 0; y2 ∈ [0, 1]}
and

G− = {y1 < 0; y2 ∈ [0, 1]}.
We then go on to consider mean field effects, which do not appear at first order

but appear in general for higher order terms in the expansion.

A unified framework of direct sampling methods for general inverse
problems

Jun Zou

(joint work with Y. T. Chow, K. Ito, B. Jin)

Direct sampling methods have been developed in recent few years and proved
effective, robust and computationally less expensive for locating and determin-
ing the scattering objects or inhomogeneous inclusions in various ill-posed inverse
problems, especially when the observation data is limited, e.g., when the data is
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only available from one single incident field or for one single pair of Cauchy data.
These methods were motivated by a class of sampling-type reconstruction meth-
ods that were developed to determine the location and shape of the scattering
objects approximately in inverse medium or obstacle scattering problems, such as
linear sampling methods, factorization methods, point source method, and their
many variants. These sampling-type methods were initiated by a simple method
proposed by Coloton and Kirsch in 1996 [5], and we refer to several systematic
reviews and surveys on these methods and their developments in the monographs
[1, 2, 5, 9, 10]. Compared with the traditional iterative-type or optimization-type
reconstruction methods, these sampling methods are revolutionary and present
many novel features: they are very easy to implement, no a priori information
about the scattering objects is needed, no regularization parameters or stopping
criteria need to be selected. But these sampling-type methods may be still com-
putationally expensive, sufficient amount of data may be required in order to
generate a reasonable reconstruction, and it may not be easy to determine appro-
priate cut-off values of the related indicator functions numerically. Considering
the limitations of these sampling-type methods, direct sampling methods were
proposed and investigated. They were developed first for wave type inverse prob-
lems [6, 8, 7, 11], then have been extended for solving other nonlinear severely
ill-posed non-wave type inverse problems in recent years [3, 4], including the re-
construction of stationary and unstationary inclusions. In this talk, we discussed
a general framework to unify the existing effective and robust direct sampling
methods for both wave-type and non-wave type nonlinear inverse problems, such
as inverse acoustic and electromagnetic scattering problems, electric impedance
tomography and diffusive optical tomography problems, etc. We presented the
motivations, derivations and justifications of direct sampling methods for some
representative inverse problems, then discussed their unified general framework.
Numerical simulations were shown to demonstrate the effectiveness and robustness
of these methods for various inverse problems.
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Uncertainty principles for far field patterns with applications to
inverse source problems

Roland Griesmaier

(joint work with John Sylvester)

We consider the following inverse problems for time-harmonic acoustic or electro-
magnetic wave propagation at a fixed frequency in two-dimensional free space:

• Given the far field of a wave radiated by a collection of compactly supported
sources, recover the far field components radiated by each of the individual
sources separately.

• Given the far field radiated by a compactly supported source on most of the
unit circle, restore the missing data segments.

Although both inverse problems are severely ill-conditioned in general, we give
precise conditions relating the wavelength, the diameters of the supports of the
individual source components and the distances between them, and the size of the
missing data segments, which guarantee that stable recovery in presence of noise
is possible. The only additional requirement is that a priori information on the
approximate location of the individual sources is available. Earlier works with
related view points are, e.g., [2, 3].

To be more specific, let f ∈ L2
0(R

2) be a compactly supported acoustic or elec-
tromagnetic source in the plane. The time-harmonic wave u ∈ H1

loc(R
2) radiated

by f at a fixed wave number k > 0 solves the Helmholtz equation

−∆u− k2u = k2f in R
2

together with the Sommerfeld radiation condition at infinity. Writing u in terms
of the fundamental solution to the Helmholtz equation it follows immediately that
the radiated field has the asymptotic behavior

u(x) =
eiπ/4√
8π

eik|x|√
k|x|

u∞(x̂) + O(|x|−3/2) for |x| → ∞ ,

where x̂ := x/|x| ∈ S1. The far field u∞ radiated by f is given by

u∞(x̂) = k2f̂(kx̂) , x̂ ∈ S1 ,

i.e., it coincides with the Fourier transform of k2f evaluated on the circle kS1.
An analysis of the singular values of the operator that maps sources supported

in the ball BR(0) of radius R centered at the origin to their radiated far field, i.e.,

FBR(0) : L
2(BR(0)) → L2(S1) , FBR(0)f := k2f̂

∣∣
kS1 ,
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shows that up to an L2-small error, a far field radiated by a limited power source
in BR(0) is L

2-close to a far field that belongs to the subspace of non-evanescent
far fields, the span of {einθ} with |n| ≤ N , where N is a little bigger than kR.
Because the far field is a restricted Fourier transform, the formula for the Fourier
transform of the translation of a function:

̂f(·+ c)(θ) = eic·θf̂(θ) , θ ∈ S1 , c ∈ R
2 ,

can be utilized to extend this observation to arbitrary balls BR(c) of radius R
centered at c ∈ R2. We use Tc to denote the map from L2(S1) to itself given by

Tc : α(θ) 7→ eikc·θα(θ) .

Classical uncertainty principles in signal processing limit the amount of simul-
taneous concentration of a signal with respect to time and frequency (cf., e.g., [1]).
The main ingredient in our analysis of far field splitting is the following theorem,
which we call an uncertainty principle for the translation operator:

Theorem 1. Let α, β ∈ L2(S1) such that the corresponding Fourier coefficients
{αn} and {βn} satisfy supp{αn}⊂W1 and supp{βn}⊂W2 with W1,W2⊂Z, and let
c ∈ R2. Then,

|〈Tcα, β〉L2(S1)| ≤
√
|W1||W2|
|kc|1/3 ‖α‖L2(S1)‖β‖L2(S1) .

We use this uncertainty principle to show that the angle between translates of
two far fields is bounded below when the translation parameter is large enough,
so that we can split the sum of the two non-evanescent far fields into the original
two summands.

We also make use of another uncertainty principle:

Theorem 2. Let α, β ∈ L2(S1) such that the corresponding Fourier coefficients
{αn} satisfy supp{αn}⊂W with W⊂Z and suppβ⊂Ω with Ω⊂S1, and let c ∈ R2.
Then,

|〈Tcα, β〉L2(S1)| ≤
√

|W ||Ω|
2π

‖α‖L2(S1)‖β‖L2(S1) .

Corollaries of this theorem tell us that, if a far field is radiated from a small ball,
and measured on most of the circle, then it is possible to recover its non-evanescent
part on the entire circle.

To illustrate our findings, we consider a scattering problem with three obstacles
as shown in figure 1 (left), which are illuminated by a plane wave ui(x) = eikx·d,
x ∈ R, with incident direction d = (1, 0) and wave number k = 1. The scattered
field us satisfies the homogeneous Helmholtz equation outside the obstacles, the
Sommerfeld radiation condition at infinity, and it is well known that u∞ can be
written as a superposition of three far fields radiated by three individual smooth
sources supported in arbitrarily small neighborhoods of the scattering obstacles.
Figure 1 (right) shows the real part (solid line) and the imaginary part (dashed
line) of the corresponding far field u∞.
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Geometry and a priori information
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Figure 1. Left: Geometry of the scatterers (solid) and a priori infor-
mation on the source locations (dashed). Right: Real part (solid) and
imaginary part (dashed) of the far field.

Observed farfield
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Figure 2. Left: Observed far field. Middle: Reconstruction of the
missing part. Right: Difference between exact far field and recon-
structed far field.

We assume that the far field cannot be measured on the segment

Ω = {θ = (cos t, sin t) ∈ S1 | π/2 < t < π/2 + π/3} ,

and we apply a least squares procedure using the dashed circles shown in figure 1
(left) as a priori information on the approximate source locations. Figure 2 shows a
plot of the observed data (left), of the reconstruction of the missing data segment
obtained by the least squares algorithm (middle) and of the difference between
the exact far field and the reconstructed far field (right). Again the solid line
corresponds to the real part while the dashed line corresponds to the imaginary
part.

For a complete description of the results outlined in this abstract we refer to
[4].
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Evanescence and uncertainty principles in the inverse source problem

John Sylvester

(joint work with Roland Griesmaier)

The inverse source problem for the Helmholtz equation (time harmonic wave equa-
tion) seeks to recover information about a radiating source from remote observa-
tions of a monochromatic (single frequency) radiated wave measured far from the
source (the far field). The two properties of far fields that we use to deduce infor-
mation about shape and location of sources depend on the physical phenomenon of
evanescence, which limits imaging resolution to the size of a wavelength, and the
formula for calculating how a far field changes when the source is translated. We
show how adaptations of uncertainty principles provide a very useful and simple
tool for this kind of analysis.

Our version of an uncertainty principle is the following theorem:

Theorem 1. Suppose that

A : L2 7→ L2 suppf ⊂ T

A−1 : L1 7→ L∞ suppAg ⊂W

then
|(f, g)| ≤ |T | 12 |W | 12 ||A|| ||A−1|| ||f ||2||g||2(1)

We call this an uncertainty principle because, if we can set g = f in (1), i.e. if
there exists an f satisfying suppf ⊂ T and suppAf ⊂W , then (1) becomes

1 ≤ |T | 12 |W | 12 ||A|| ||A−1||
In the case that A is the N-point DFT, this inequality becomes

N ≤ |T ||W |
which is Theorem 1 in [1]. Our reformulation as an inner product is useful in cases
where a single f that satisfies both support conditions does not exist. This is the
case, for example, if the operator A is the Fourier transform or the operator which
maps far fields (functions in L2(S1) or L2(S2)) to their expansion in Fourier series
or spherical harmonics.
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Our main new application is to take A = Tc, where Tc is the far field translation
operator, α(Θ) 7→ eic·Θα(Θ), which represents the action induced by translation
of a source f on its far field α, which is the Fourier transform of f restricted to
the sphere of radius k.

We also show that we can combine different uncertainty principles to simultane-
ously complete data and split far fields from well-separated sources, in situations
where it would not be possible to carry out either the data completion or the
source splitting one after the other.
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Uniqueness in inverse medium scattering problems

Guanghui Hu

(joint work with Johannes Elschner)

Consider a time-harmonic acoustic wave incident onto a bounded penetrable scat-
terer D ⊂ Rn (n = 2, 3) embedded in a homogeneous isotropic medium. The
incident field uin is supposed to satisfy the Helmholtz equation

∆w + k2w = 0 in R
n,(1)

with the wavenumber k > 0. It is supposed that uin does not vanish identically
and that the complement De := Rn\D of D is connected. The acoustic properties
of the scatterer can be described by the refractive index function q ∈ L∞(Rn) such
that q ≡ 1 in De. Hence, the contrast function 1− q is supported in D. The wave
propagation is then governed by the Helmholtz equation

(2) ∆u+ k2q u = 0 in R
n.

In (2), u = uin+usc denotes the total wave where usc is the scattered field satisfying
the Sommerfeld radiation condition, which leads to the asymptotic expansion

(3) usc(x) =
eik|x|

|x|(n−1)/2
u∞(x̂) +O

(
1

|x|n/2
)
, |x| → +∞,

uniformly in all directions x̂ := x/|x|, x ∈ Rn. The function u∞(x̂) is an analytic
function defined on Sn−1 and is referred to as the far-field pattern or the scattering
amplitude. We consider the following two questions:

(i): Does a penetrable obstacle scatter any incident wave trivially (that is,
us ≡ 0) ?

(ii): Does the far-field pattern of a single plane wave uniquely determine the
shape of a penetrable obstacle ?
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Figure 1. P ∈ ∂D is a corner of the curvilinear polygon D,
whereas P ′ is not a corner.

Define K = Kω := {(r, θ) : r > 0, 0 < θ < ω}, a sector in R2 with the opening
angle ω ∈ (0, 2π) at the origin. Denote by Ba(P ) := {x ∈ Rn : |x − P | < a}
the ball centered at P with radius a > 0, and by I the n-by-n identity matrix in
Rn×n. For simplicity we write Ba(O) = Ba. We first introduce the concepts of
(planar) corner points in R2, and edge and circular conic points in R3; see Figure
1 for illustration of planar corners of a curvilinear polygon.

Definition 1. (see e.g., [7, Chapter 1.3.7]) Let D be a bounded open set of R2.
The point P ∈ ∂D is called corner point if there exist a neighbourhood V of P , a
diffeomorphism Ψ of class C 2 and an angle ω = ω(P ) ∈ (0, 2π)\{π} such that

∇Ψ(P ) = I ∈ R
2×2, Ψ(P ) = O, Ψ(V ∩D) = Kω ∩B1.(4)

We shall say that D is a curvilinear polygon, if for every P ∈ ∂D, (4) holds with
ω(P ) ∈ (0, 2π).

Definition 2. Let D ⊂ R3 be a bounded open set. The point P ∈ ∂D is called
a vertex if there exist a neighbourhood of V of P , a diffeomorphism Ψ of class
C 2 and a polyhedral cone Π with the vertex at O such that ∇Ψ(P ) = I ∈ R3×3,
Ψ(P ) = O and Ψ maps V ∩ D onto a neighbourhood of O in Π. P is called an
edge point of D if

Ψ(V ∩D) = (Kω ∩B1)× (−1, 1)(5)

for some ω(P ) ∈ (0, 2π)\{π}. We shall say that D is a curvilinear polyhedron if,
for every point P ∈ ∂D, either (5) applies with ω(P ) ∈ (0, 2π) or P ∈ ∂D is a
vertex.

A curvilinear polygon resp. polyhedron allows both curved and flat surfaces
near a corner resp. edge point (see Figure 1). The conditions (4) and (5) exclude
peaks at O (for which the opening angle of the planar sector is 0 or 2π).
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Let C = Cω be an infinite circular cone in R3 defined as

C := {(r, θ, ϕ) : r > 0, 0 < θ < ω, 0 ≤ ϕ < 2π}(6)

for some ω ∈ (0, π)\{π/2}.

Definition 3. We say that a bounded open set D ⊂ R3 has a circular conic point
P ∈ ∂D if D ∩ Ba(P ) coincides with C ∩ Ba for some a > 0 up to a coordinate
translation or rotation. D is called a circular conical domain if it has at least one
circular conic point.

Let D be a bounded penetrable obstacle in Rn, with O ∈ ∂D being a planar
corner point in R2, and an edge or circular conic point in R3. Denote by Wκ,p

and Hκ =Wκ,2 the standard Sobolev spaces. We make the following assumption
on q in a neighborhood of O.

Assumption (a). There exist l ∈ N0, s ∈ (0, 1), ǫ > 0 such that

q ∈ C l,s(D ∩Bǫ) ∩W l,∞(Bǫ), ∇l (q − 1) 6= 0 at O.(7)

By the Assumption (a), q is required to be C l,s continuous up to the boundary
only in a neighborhood of O. The relation (7) with l = 0 means the discontinuity
of q at O, i.e., q(O) 6= 1, and has been assumed in [8, 1, 2, 4] in combination with
other smoothness conditions on q|D near O. A piecewise constant potential such
that q|D ≡ q0 6= 1 fulfills the Assumption (a) with l = 0. When l ≥ 1, it follows

from the Sobolev imbedding relation W l,∞(Bǫ) ⊂ Cl−1(Bǫ) that the function q is
Cl−1-smooth in Bǫ, implying that q(x) = 1 +O(|x|l) as |x| → 0 in D. Physically,
this means a lower contrast of the material on D∩Bǫ compared to the background
medium.

The main results of this paper are stated as follows.

Theorem 4. Under the Assumption (a), a penetrable obstacle with a planar corner
point in R2, and with an edge or a circular conic point in R3 scatters every incident
wave non-trivially.

Theorem 5. Let Dj (j = 1, 2) be two penetrable obstacles in Rn (n = 2, 3).
Suppose that the potentials qj associated to Dj fulfill the Assumption (a) for each
corner, edge and circular conic point. If ∂D2 differs from ∂D1 in the presence
of a corner, edge or circular conic point lying on the boundary of the unbounded
component of Rn\(D1 ∪D2), then the far-field patterns corresponding to Dj and
qj incited by any incoming wave cannot coincide.

Corollary 6. If the potential fulfills the Assumption (a) near each corner resp.
vertex, then the shape of a convex penetrable polygon resp. polyhedron with flat
sides can be uniquely determined by a single far-field pattern.

Our approach relies on the singularity analysis of the inhomogeneous Laplace
equation in a cone (see e.g., [5, 7]).
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Figure 2. D1 and D2 cannot generate the same far-field pattern
due to the presence of the corner point O ∈ (∂D2\∂D1) ∩ ∂Ω,

where Ω is the unbounded component of R2\(D1 ∪D2). The cor-
ner point P lies on ∂D2\∂D1, but P /∈ ∂Ω.
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Inverse problems for abstract evolution equations with applications in
electrodynamics and elasticity

Andreas Kirsch

(joint work with Andreas Rieder)

It is common knowledge – mainly based on experience – that parameter identifica-
tion problems for partial differential equations are ill-posed. We model parameter
identification problems for abstract evolution equations by introducing an addi-
tional (bounded) operator in the equation and present a general theory which
explains not only the local ill-posedness of the corresponding inverse problem but
also provides the Frechét derivative of the parameter-to-solution map and its ad-
joint which is needed, e.g., in Newton like solvers. Our abstract results are applied
to the standard parameter identification problems for Maxwell’s equations and the
elastic wave equation. By the concept of mild solutions we were able to weaken
the assumptions on the parameters considerably.

The talk is based on the recent article [1]
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An inverse problem for a waveguide in the frequency and the time
domain

Virginia Selgas

(joint work with Peter Monk)

We consider the problem of locating and imaging an obstacle in a sound-hard infi-
nite tubular waveguide from measurements of the scattered field for point sources
and receivers placed on a pair of surfaces located inside the waveguide. To deal
with this problem, the Linear Sampling Method (LSM) was already used in [1] for
detecting sound-soft obstacles. The assumption therein of a sound hard-pipe is
in accordance with the application we have in mind, which is the use of acoustic
techniques to inspect underground pipes such as sewers.

First, we study the frequency domain inverse problem for detecting a penetra-
ble obstacle which may lie on the walls of the pipe. We analyze both the forward
problem and the associated interior transmission problem, which we use to adapt
and analyze the LSM and the Reciprocity Gap Method (RGM) to deal with this
inverse problem. We also study the relationship between these two methods, show-
ing that the RGM can be understood as a generalized LSM where the sources and
receivers are placed on different surfaces.

Next, we consider the inverse problem in the time domain. Under the assump-
tion that the obstacle is impenetrable, we adapt and analyze the Time Domain
Linear Sampling Method (TD-LSM) to the waveguide problem. This involves
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Figure 1. Blocked pipe, 6KHz: Exact object (left panel), and
LSM reconstructions with distant (central panel) or near (right
panel) measurements. The method fails to detect the end of the
pipe using measurements far from the blockage (central panel)
and succeeds for close measurements (right panel).

proving new time domain estimates for the forward problem, as well as analyzing
several time domain operators arising in the inversion scheme.

For both the frequency and time domain inverse problems, we present numerical
results which confirm the expected behaviour of the methods under study; in
particular, and as expected, the TD-LSM improves the image reconstructed by
the LSM for a suitable choice of the time modulation of the incident wave; see [5].

In this talk, we focus on the difficulties inherent in using waves travelling along
waveguides. On one hand, for the frequency domain case, we showed in [4] that
the LSM did not detect a completely blocked three-dimensional pipe. Although
this situation was not covered by our theory, we found it to be (as far as we were
aware) the first example where the LSM or RGM failed completely to detect a
scatterer; see Fig.1 (central panel). Later, we investigated a modal solution of
the blocked pipe, which suggests the necessity of using some evanescent modes to
detect the end of the pipe. This is in good agreement with our new numerical
results, where we move the measurement surface closer to the blockage in order
to capture some evanescent modes, which do allow us to detect the blockage; see
Fig.1 (right panel). On the other hand, in the time domain, we found in [5] that
a standard Gaussian modulated input pulse requires very long simulation times
(and hence computing time is too long). For example, when we considered a
two-dimensional waveguide with unit height and a target occupying a circle of
radius 0.1 centered at (0,0.6), we were able to compute sufficient forward data
to resolve an obstacle when the transducers were close to the obstacle (on x1 =
−2), but not when they were further away (on x1 = −5); see the corresponding
reconstructions on Fig.2 (top row). For those experiments, we chose the incident
waves from point sources whose time shape was given by χ(t) = (−3.2 sin(ωt) t+
ω cos(ωt) + 9.6 sin(ωt)) exp(−1.6(t − 3)2), with central frequency ω = 10 or 15.
Following the ideas of [2], we have now considered a specially designed time profile

ξ(t) =
∑5

n=1 ξn(t), where ξn(t) =
d
dt (sin(Ant)e

−Bn(t−Cn)
2

) and An, Bn, Cn ∈ R are
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Contour plots of the indicator function for transducers close to the target, using
the Gaussian modulated pulse χ(t)

 

 
 

 

Contour plots of the indicator function for transducers near (above) or far
(below) from the target, using the incident modulation ξ(t) from [2]

Figure 2. Reconstructions of a small circle using measurements
near (top and middle rows) or far (bottom row) from the obstacle.
We investigate different choices of the time modulation of the
sources (χ(t) in top row, and ξ(t) in middle and bottom rows).
Different columns correspond to different Tikhonov regularization
parameters.

fixed to select the mean frequency and the support of the signal in the frequency

domain. Indeed, choosing An = π(n − 0.5) − 4Bn

π(n−0.5) , Bn = π2

200 and Cn =
5√
2Bn

, each function ξn(t) is such that the support of its Fourier-Laplace transform

does not have significant amplitude at any of the cut-off frequencies corresponding
to vanishing group velocities. Since these cut-off frequencies are avoided, the
scattered fields in the time domain decrease quite rapidly to 0 when t → +∞.
As shown in Fig.2 (middle and bottom rows), the usage of this time profile for
the incident waves allows us to work within a reasonable final time of the forward
computation that provides suitable synthetic data and, hence, obtain admissible
reconstructions of the target.

The analysis of the TD-LSM when the obstacle touches the walls of the pipe, as
well as the usage of experimental data, are to be studied in future.
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Towards combining optimization-based techniques with shape
reconstruction methods in EIT

Bastian Harrach

(joint work with Mach Nguyet Minh)

Electrical Impedance Tomography (EIT) is a newly emerging imaging method,
where electrical currents are driven through an imaging subject to image its interior
conductivity distribution. In the so-called continuum model, EIT leads to the
mathematical inverse problem of recovering the coefficient function σ ∈ L∞

+ (Ω) in

(1) ∇ · (σ(x)∇u(x)) = 0, x ∈ Ω,

from knowledge of the Neumann-Dirichlet operator

Λ(σ) : L2
⋄(∂Ω) → L2

⋄(∂Ω), g 7→ u|∂Ω,
where u ∈ H1

⋄ (Ω) solves (1) with σ∂νu|∂Ω = g.
To alleviate modelling errors, one often compares measurements with that of a

reference state σ0 and aims to reconstruct the conductivity difference σ− σ0 from
noisy difference measurements

Λδmeas ≈ Λ(σ)− Λ(σ0).

A natural and generic approach is to linearize the difference measurements

Λδmeas ≈ Λ(σ)− Λ(σ0) ≈ Λ′(σ0)(σ − σ0)

and to approximate the conductivity difference κ ≈ σ − σ0 by minimizing a lin-
earized and regularized data-fit functional

(2) ||Λ′(σ0)κ− Λδmeas||2 + regularization→ min!

Such algorithms are widely used in practice but their theoretical justification has
remained an open question, and the choice of regularization is often heuristic.

For exact data (δ = 0) and piecewise analytic conductivities σ and σ0, the result
in [3] showed that a piecewise analytic solution κ of the linearized EIT equation

(3) Λ′(σ0)κ = Λ(σ)− Λ(σ0)
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fulfills

supp∂Ωκ = supp∂Ω(σ − σ0),

where supp∂Ω denotes the outer support, i.e., the support together with all parts
that cannot be reached from the boundary ∂Ω without crossing the support.

This result suggests that the generic optimization-based approach of minimiz-
ing the linearized data-fit functional (2) is capable of correctly determining shapes
in the difference image, i.e., those parts of the domain where the conductivity σ
differs from the reference value σ0. However, the result in [3] requires an exact
solution of the linearized equation (3) with noiseless measurements in the contin-
uum model. In a practical setting, one can only access a matrix of noisy voltage
and currents measurements on finitely-many electrodes which can be regarded as
a (finite-dimensional and noisy) approximation Λδmeas to the idealized difference of
Neumann-Dirichlet operators Λ(σ) − Λ(σ0). A crucial question is how to design
a regularization strategy for the standard optimization-based approach (2) that
ensures convergence of the reconstructed shapes in the limit of more and more
precise measurements on more and more electrodes.

To develop such a regularization strategy we combine the standard optimi-
zation-based approach with the following novel monotonicity-based shape recon-
struction technique based on [4]. To explain the basic idea assume that σ0 = 1
and σ = 1 + χD where D denotes the outer support of the conductivity change.
Let P ⊆ Ω denote a test domain, e.g. a pixel from the partition on which σ − σ0
is to be reconstructed. The monotonicity method developed in [4] shows that

(4) P ⊆ D if and only if ∃α > 0 : αΛ′(σ0)χP ≥ Λ(σ) − Λ(σ0),

where the monotonicity inequality on the right hand side of (4) is to be understood
in the sense of definiteness of self-adjoint compact operators.

For the k-th pixel Pk we calculate the maximal constant βk ≥ 0 such that the
monotonicity inequality on the right hand side of (4) holds true for all α ∈ [0, βk].
For noisy data Λδmeas ≈ Λ(σ)−Λ(σ0) we regularize this quantitative monotonicity
test by calculating the maximal constant βδk ≥ 0 with

βδkΛ
′(σ0)χP ≥ Λδmeas − δI.

Note that in the numerical implementation, βδk can be obtained from calculating
the minimal eigenvalue of an auxiliary matrix as explained in [1, 2]. From the
theory in [4] it follows that

βδk → βk, and βk fulfills

{
βk = 0 if Pk 6⊆ D,
βk ≥ 1

2 if Pk ⊆ D.

Hence, a plot of βk will show the correct shape ofD up to the resolution determined
by the pixel partition, and, for noisy data, a plot of βδk converges against the
correct shape in the limit of δ → 0. However, in practice, the reconstructions
tend to be very sensitive to noise, cf. the example with 1% noise in figure 1 where
the result of the standard heuristic linearized method (for which no convergence
results are known) shown in the second image is clearly better than the result from
the rigorously justified monotonicity method shown in the third image.
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Figure 1. True conductivity (left image) and reconstructions ob-
tained with a standard linearized method with Tikhonov regular-
ization (2nd image), the monotonicity method (3rd image), and
the monotonicity-regularized linearized method (4th image) using
data with 1% relative noise.

To improve the practical performance of the monotonicity method without
loosing its rigorous convergence properties we combine the monotonicity-based
approach with the standard optimization-based approach (2). We minimize

(5) ||Λ′(σ0)κ− (Λ(σ) − Λ(σ0))||2 → min!

under the constraint that κ is a non-negative function which is piecewise constant
with respect to the pixel partition, and fulfills κ|Pk

≤ min{γ, βk} on each pixel.
For noisy data we minimize

(6) ||Λ′(σ0)κ− Λδmeas||2 → min!

under the constraint that 0 ≤ κ|Pk
≤ min{γ, βδk}. The constant γ > 0 is deter-

mined from the minimal inclusion contrast according to the theory developed in [4]
(e.g. γ = 1/2 for σ = 1 + χD). For the functional in (5) we use a Frobenius norm
of a finite-dimensional Galerkin projection of the Neumann-Dirichlet operators so
that this is a convex minimization problem under box constraints.

Due to the definition of βk the minimizer of (5) will be zero on each pixel which
is not contained in the outer support of σ − σ0. Moreover, it is shown in [2] that
in each pixel contained in the outer support, βk ≥ γ and raising the value of κ|Pk

,
at least up to γ, will always lower the functional (5). Hence, the monotonicity-
constrained minimizer of (5) will show the correct outer support up to the pixel
partition. For noisy data it can be shown, see [2], that minimizers κδ of (6) exist
and that κδ → κ. In that sense, we have succeeded in developing the first regular-
ization strategy for the standard linearized residuum minimization algorithm for
which convergence of the reconstructed shapes can be rigorously guaranteed. The
fourth image in figure 1 shows that the monotonicity-regularized linearized method
clearly outperforms the monotonicity method. For more numerical results and the
mathematical details of the above arguments we refer to the recent publication [2].
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Polynomial surrogates and inaccurately known measurement
configurations in electrical impedance tomography

Nuutti Hyvönen

(joint work with Vesa Kaarnioja, Lauri Mustonen and Stratos Staboulis)

The objective of electrical impedance tomography (EIT) is to reconstruct the con-
ductivity inside a physical body based on currents and voltages measured at a
finite number of contact electrodes attached to the object boundary. The most
accurate model for EIT is the complete electrode model (CEM) that accounts for
the electrode shapes and the contact resistances at the electrode-object interfaces
[5, 10]. For information on potential applications of EIT, we refer to the review
articles [2, 4, 11] and the references therein.

In a real-world application of EIT, the conductivity is practically never the only
unknown; the knowledge about the contact resistances, the electrode positions
and the shape of the examined body is typically also imperfect. Even marginal
mismodeling of the measurement setup is known to ruin the reconstruction of the
conductivity in absolute EIT [3]. In consequence, it is well motivated to develop
algorithms that are robust with respect to (geometric) modeling errors. See [6, 8, 9]
for some previous techniques for dealing with uncertainties in the measurement
configuration of EIT.

This work employs (stochastic) polynomial collocation for handling absolute
EIT imaging with an unknown object shape; consult [7] for more detailed infor-
mation. The conductivity, the contact resistances, the electrode positions and
the exterior boundary of the imaged body are parametrized by a vector whose
components live in a bounded interval. The forward problem of the CEM is then
considered as a parametric elliptic boundary value problem; the associated solu-
tion depends not only on the current feed and the spatial variable but also on the
high-dimensional parameter vector. This forward problem is tackled by a (stochas-
tic) collocation finite element method [1]: The CEM problem is first solved with
a standard finite element method for the conductivities and measurement settings
defined by a sparse grid of Clenshaw–Curtis quadrature points in the parame-
ter hypercube. The dependence of the forward solution on the parameter vector
is subsequently generalized to the whole hypercube using collocation by tensor
products of Legendre polynomials. This enables simultaneous reconstruction of
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all the unknown parameters defining the measurement setup, e.g., by Tikhonov
regularization, which leads to minimizing an explicitly known squared multivariate
polynomial. The described approach results in a functional reconstruction algo-
rithm that can be applied to both simulated and experimental data; see [7] for the
details.
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Detecting inclusions within inclusions in electrical impedance
tomography

Samuli Siltanen

(joint work with Allan Greenleaf, Matti Lassas, Matteo Santacesaria and
Gunther Uhlmann)

Electrical impedance tomography (EIT) aims to reconstruct the electric conduc-
tivity inside a body from current and voltage measurements at the boundary. In
many important applications of EIT the interest is in detecting the location of
interfaces between regions of smooth conductivity.

In [5], a method is introduced for recovering singularities in conductivity from
EIT measurements. The method is based on a novel use of the so-called complex
geometrical optics (CGO) solutions introduced by Sylvester and Uhlmann [7], and
it is capable of detecting inclusions within inclusions in an unknown inhomogeneous
background conductivity. This property is crucial for example in using EIT for
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no jump jump down jump up

Figure 1. Jumps in the conductivity cause signals in the data
analogously to parallel-beam X-ray tomography. We illustrate
this here using stroke-type phantoms. Left: Intact brain. Dark
blue ring, with low conductivity, models the skull. Middle: Is-
chemic stroke, or blood clot preventing blood flow to the dark blue
area. The conductivity in the affected area is lower than back-
ground. Right: Hemorrhagic stroke, or bleeding in the brain.
The conductivity in the affected area is higher than background.
The function shown is T a,+µ(t/2, eiϕ) − T a,−µ(t/2, eiϕ), and ϕ
indicates a direction perpendicular to the virtual “X-rays.”

classifying strokes into ischemic (an embolism preventing blood flow to part of the
brain) and hemorrhagic (bleeding in the brain).

EIT can be modeled mathematically using the inverse conductivity problem of
Calderón [4]. Consider a bounded, simply connected domain Ω ⊂ R2 with smooth
boundary and a scalar conductivity coefficient σ ∈ L∞(Ω) satisfying σ(x) ≥ c > 0
almost everywhere. Applying a voltage distribution f at the boundary leads to
the elliptic boundary-value problem

(1) ∇ · σ∇u = 0 in Ω, u|∂Ω = f.

Infinite-precision measurements are modeled by the Dirichlet-to-Neumann map

(2) Λσ : f 7→ σ
∂u

∂~n

∣∣∣
∂Ω
,

where ~n is the outward normal vector of ∂Ω.
In [2], the construction of the CGO solutions was done via a Beltrami equation.

Identify R2 with C by setting z = x1 + ix2 and define a Beltrami coefficient,

µ(z) = (1− σ(z))/(1 + σ(z)).
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We have |µ(z)| ≤ 1− ǫ for some ǫ > 0. Further, if we assume σ ≡ 1 outside some
Ω0 ⊂⊂ Ω, then supp(µ) ⊂ Ω0. Now consider the unique solution of

(3) ∂̄zf±(z, k) = ±µ(z)∂zf±(z, k); e−ikzf±(z, k) = 1 + ω±(z, k),

where ikz = ik(x1 + ix2) and ω
±(z, k) = O(1/|z|) as |z| → ∞. Here z is a spatial

variable and k ∈ C a spectral parameter. Also, u = Ref+ satisfies (1).
The new idea is to apply a partial Fourier transform in the radial direction of

k. Write k = τeiϕ and define

(4) ω̂±(z, t, eiϕ) = Fτ→t

(
ω±(z, τeiϕ)

)
.

Recall that the traces of CGO solutions can be recovered perfectly from Λσ [2, 1]
and approximately from practical EIT data [3]. Figure 1 suggests that what we
can recover resembles parallel-beam X-ray projection data of the singularities of σ.
Indeed, in [5] reconstruction formulae are derived for σ analogous to the classical
filtered back-projection method of X-ray tomography.

Formally one can view the Beltrami equation (3) as a scattering equation, where
µ is considered as a compactly supported scatterer and the “incident field” is the
constant function 1. Consider a “scattering series” for the unaveraged ω±,

(5) ω± =
∞∑

j=0

ω±
j

and set ω̂±
j = Fτ→tω

±
j as in (4). The derivation of (5) makes use of [6].

Let X = {µ ∈ L∞(Ω); supp(µ) ⊂ Ω0, ‖µ‖L∞(Ω) ≤ 1 − ǫ}, recalling that
Ω0 ⊂⊂ Ω. The expansion in (5) comes from the following:

The nonlinear operator Wk : X → L2(Ω), defined by

W±
k (µ) = ω±

µ ( · , k)
has Fréchet derivatives, denoted by DjWk|µ, of all orders j ∈ N at µ ∈ X and the
multiple scattering terms in (5) are given by

(6) ω±
j = DjW±

k |0(µ, µ, . . . , µ).
The j-th order scattering operators,

(7) T±
j : µ 7→ ω̂±

j := Fτ→t(ω
±
j (z, τe

iϕ)), z ∈ ∂Ω, t ∈ R, eiϕ ∈ S
1,

are generalized Fourier integral operators whose wave-front relations can be ex-
plicitly computed (see [5]).

Define averaged operators T a,±j for j = 1, 2, 3, . . . and T a,± by the complex
contour integral,

T a,±j µ(t, eiϕ) =
1

2πi

∫

∂Ω

ω̂±
j (z, t, e

iϕ)dz,(8)

T a,±µ(t, eiϕ) =
1

2πi

∫

∂Ω

ω̂±(z, t, eiϕ)dz,(9)

with ω±
j defined via formulas (6)–(7) and ω± defined via (3). Now T a,± are recov-

erable from EIT data, and one can (to some extent) understand its singularities,
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and derive approximate reconstruction formulas, by analyzing the operators T a,±j .

See [5] for more details.
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Stekloff eigenvalues in inverse scattering

David Colton

We consider a problem in non-destructive testing in which small changes in the
(possibly complex valued) refractive index n(x) of an inhomogeneous medium of
compact support are to be determined from changes in measured far field data due
to incident plane waves. The problem is studied by considering a modified far field
operator F whose kernel is the difference of the measured far field pattern due to
the scattering object and the far field pattern of an auxiliary scattering problem
with the Stekloff boundary condition imposed on the boundary of a domain B
where B is either the support of the scattering object or a ball containing the
scattering object in its interior. It is shown that F can be used to determine
the Stekloff eigenvalues corresponding to B where if B 6= D the refractive index
is set equal to one in B \ D. A formula is obtained relating changes in n(x) to
changes in the Stekloff eigenvalues and numerical examples are given showing the
effectiveness of determining changes to the refractive index in this way.
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A fast and robust sampling method in inverse acoustic scattering
problems

Xiaodong Liu

In the last twenty years, sampling methods for shape reconstruction in inverse
scattering problems have attracted a lot of interest. Typical examples include the
Linear Sampling Method by Colton and Kirsch [3], the Singular Sources Method
by Potthast [11] and the Factorization Method by Kirsch [6]. The basic idea is
to design an indicator which is big inside the underlying scatterer and relatively
small outside. We refer to the monographs of Cakoni and Colton [1], Colton and
Kress [4] and Kirsch and Grinberg [7] for a comprehensive understanding. We also
refer to Liu and Zhang [10] for a recent progress on the Factorization Method.
Recently, a type of direct sampling methods are proposed for inverse scattering
problems, e.g., Orthogonality Sampling by Potthast [12], Direct Sampling Method
by Ito et.al. [5], Single-shot Method by Li et.al. [8], Reverse Time Migration
by Chen et.al. [2]. These direct sampling methods inherit many advantages of
the classical ones, e.g., they are independent of any a priori information on the
geometry and physical properties of the unknown objects. The main feature of
these direct sampling methods is that only inner product of the measurements with
some suitably chosen functions is involved in the computation of the indicator, thus
is robust to noises and computationally faster than the classical sampling methods.
However, the theoretical foundation of the direct sampling methods is far less well
developed than for the classical sampling methods. In particular, there are no
theoretical analysis of the indicators for the sampling points inside the scatters.

In this talk, we propose a new direct sampling method for inverse acoustic
scattering problems by using the far field measurements. The proposed indicator
is given by

(1) Inew(z) :=

∣∣∣∣
∫

Sn−1

e−ikθ̂·z
∫

Sn−1

u∞(x̂, θ̂)eikx̂·zds(x̂)ds(θ̂)

∣∣∣∣
ρ

, z ∈ R
n.

In this talk, we showed the following behaviors of the new indicator

• Inew(z) has a positive lower bound for each sampling points inside.
• Inew(z) → 0 as |z| → ∞;
• Inew(z) decays like bessel functions as the sampling point z away from the
boundary;

• Inew(z) is robust to noise.

Here is an example. We choose a kite shaped domain with Dirichlet boundary
condition as an unknown object. We set three different wave numbers k = 5, 10
and 15 and three different powers ρ = 1, 2 and ρ = 8. The corresponding ob-
servation and incident direction number N = 16 ∗ k. The research domain is
[−4, 4]× [−4, 4] with 151×151 equally spaced sampling points. Figure 1 shows the
corresponding reconstructions. Obviously, the shadows are greatly reduced with
the increase of wave number k and the power ρ. To our surprise, it seems that
the indicator always takes its maximum on the boundary of the scatterer, which
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results in a sharper reconstruction of the boundary of the scatterer. However,
there is no general theory for this fact.

(a) k = 5, ρ = 1 (b) k = 5, ρ = 2 (c) k = 5, ρ = 8

(d) k = 10, ρ = 1 (e) k = 10, ρ = 2 (f) k = 10, ρ = 8

(g) k = 15, ρ = 1 (h) k = 15, ρ = 2 (i) k = 15, ρ = 8

Figure 1. Example HighResolution. Reconstruction by us-
ing different indicators Iρnew with different wave numbers k and
different powers ρ. 30% noise is added to the far field data.

We observe that the reconstructions are rather satisfactory, with the considera-
tion of the severe ill-posedness of the inverse scattering problems and the fact that
at least 30% noise is added in the measurements (far field patterns). Actually, the
recovering scheme works independently of the physical properties of the underlying
scatters. There might be several components with different physical properties, or
with different scalar sizes, presented simultaneously. Our method also allows us to
distinguish two components of distance about one half of the wavelength, which
is known to be challenging for numerical reconstruction. We refer to [9] for more
details and numerical examples.
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Halfspace matching for 2D open waveguides

Julian Ott

(joint work with A.S. Bonnet-ben-Dhia, S. Fliss, A. Tonnoir, C. Hazard)

We study a numerical method to compute solutions for scattering by a junction
of open waveguides in 2D, modeled by the Helmholtz equation with Dirichlet
boundary conditions

(1) ∆u(x) + (k2(x) + iǫ)u(x) = 0, x ∈ R
2 \D, u = f on ∂D, u ∈ L2(R2 \D),

with some limiting absorption ǫ > 0 and space–dependent wavenumber k : R2 \
D → R. The wavenumber is assumed to be piecewise constant, with a number
of unbounded perturbations, which we will call waveguides (see Figure 1). The
interior domain is assumed to be a triangle, but the method works identically if
D is a rectangle. We assume that the waveguides are semi–infinite strips, which
extend perpendicularly from the sides of the triangle to infinity. The basic idea
behind the method is the following: The exterior domain R2 \D is separated into
3 overlapping halfspaces Ωn, n = 1, 2, 3, with boundaries Γn = Γ+

n ∪Γ0
n ∪Γ−

n . The
methods now exploits that given some Dirichlet data u(0) ∈ H1/2(R), the Dirichlet
halfspace problem of finding a solution u : R× (0,∞) → C to

∆u(x) + (k2(x1) + iǫ)u(x) = 0, x ∈ R× (0,∞), u(x1, 0) = u(0)(x1) x1 ∈ R,
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Γ−
0

Γ+
0Γ−

1

Γ+
1

Γ+
2 Γ−

2

k1

k1

D

Ω0

Ω1

Ω2

Figure 1. Illustration of the geometry and notation: The exte-
rior of the triangle D is separated in 3 overlapping halfspaces Ωn,
n ∈ {0, 1, 2}. The wavenumber k(x) is equal to k1 inside the grey
areas, and equal to k0 outside.

allows an explicit representation with the help of the spectral family of A = ∂2

∂x2
1

+

k2(x1). Namely,

(2)

u(x) =

N∑

n=1

e−
√
λn−k20−iǫ x2φn(x1)〈u(0), φn〉L2(R)

+
1

2π

∑

ν∈{+,−}

∫

R

e−
√
λ−k20−iǫ x2ψνλ(x1)〈u(0), ψνλ〉L2(R) dλ.

The functions φn : R → C are L2(R) eigenfunctions of A, while for λ ∈ R the
functions ψ±

λ : R → C are so called generalized eigenfunctions of A: The eigen-
functions and generalized eigenfunctions can be computed explicitely for simple
forms of k. In particular for the case k(x1) = k1 if x1 ∈ (−h, h), and k(x1) = k0
else, they are readily available from literature (see [1, 2]). If k1 > k0, there is a
finite number of eigenfunctions of A, whose corresponding terms under the finite
sum in (2) are called “modes” of the open waveguide.

Going back to the exterior problem in R2 \D, the basic idea of the Halfspace
matching method is the following: If we know the traces

uνn := u|Γν
n
, ν ∈ {+,−}, n ∈ {0, 1, 2},

we can reconstruct the solution of (1) with the help of (2), applied to the different
halfspaces Ωn, n ∈ {1, 2, 3}. Hence, let us denote by Sn : H1/2(Γn) → H1(Ωn)
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the Halfspace solution operators, which map some Dirichlet data from H1/2(Γn)
to the solution on the Halfspace Ωn. Then, by considering a solution u of (1), we
obtain that it’s traces must fulfill

(3) u±n =
(
Sn(u

+
n + u0n + u−n )

)∣∣
Γ±
n±1

, n ∈ Z/3Z.

Let us comment a bit further on the last set of equations: It contains 6 unknowns,
the traces of the on the semi–infinity boundaries Γ+

n ,Γ
−
n , while the traces on the

bounded parts Γ0
n are known. It is also a set of 6 equations, for each halfspace

n ∈ {1, 2, 3} and each direction ± = + and ± = −. Our main result is the follow-
ing:

Theorem. The compatibility equations (3) are Fredholm in L2(Γ+
0 ) × L2(Γ−

0 ) ×
. . .× L2(Γ−

2 ) with trivial Kernel.

Hence we can solve the compatibilty equations (3) instead of the original problem
(1). This effectively reduces the dimension of the problem by one, and can be cou-
pled with a finite element method inside the bounded triangle D to numerically
approximate solutions on the whole of R2. Numerical examples and some appli-
cations were presented, where this method has been used to solve some scattering
problem.

This type of method has already been applied to different types of problem, see
[3, 4].
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Analysis of electromagnetic waves in random media

Liliana Borcea

(joint work with Josselin Garnier)

The understanding of the interaction of electromagnetic waves with heterogeneous
media with small microstructure is of great important in applications like polari-
metric radar imaging, specially in high frequency regimes like X-band, where the
waves are affected by atmospheric turbulence. We present an analysis of such an
interaction using Maxwell’s equations in random media with small fluctuations of
the electric permittivity. We consider a setup where the waves propagate toward
a preferred direction, in a beam-like manner. We decompose the electromagnetic
wave field in transverse electric and transverse magnetic plane waves, called modes,



Theory and Numerics of Inverse Scattering Problems 2611

with random amplitudes that model cumulative scattering effects in the medium.
Their evolution is described by a coupled system of stochastic differential equa-
tions driven by the random fluctuations of the electric permittivity. We analyze
the solution of this system with the Markov limit theorem and obtain a detailed as-
ymptotic characterization of the electromagnetic wave field. The asymptotic small
parameter is defined by the ratio of the wavelength to the distance of propaga-
tion, and scales the standard deviation of the random fluctuations of the electric
permittivity. We consider a scaling where these fluctuations cause a significant
net scattering effect on the electromagnetic waves. This effect is quantified by a
detailed characterization of the loss of coherence of the waves and of the energy
exchange between the wave modes. This energy exchange allows us to model the
loss of polarization of the waves induced by scattering. It is described mathemat-
ically by a transport equation satisfied by the Wigner transform (energy density)
of the electromagnetic wave field. This equation is a simplified version of Chan-
drasekar’s transport equations that so far do not have a rigorous mathematical
derivation. A main result of our study is the derivation of these equations in a
forward scattering regime. We also connect the results with the existing literature
in radiative transport and paraxial wave propagation.

Measuring electromagnetic chirality

Tilo Arens

(joint work with Felix Hagemann and Frank Hettlich)

An optically active material will produce a response to an electromagnetic wave
propagating through it that depends on the circular polarization state of the wave,
i.e. on its helicity. On the other hand, chirality may also be caused simply by the
geometry of an individual scatterer. Recently, a novel definition of chirality was
proposed in the Physics literature [1] for scattering of electromagnetic waves that
includes both aspects and moreover allows to measure how chiral a given scatterer
is. We will discuss this definition and some of its consequences in the mathematical
framework of time-harmonic wave propagation and incident Herglotz wave pairs.

A Herglotz wave pair (E,H) =
∫
S2
(A(d), d×A(d)) ei k d·x ds(d) is characterized

by its amplitude density A ∈ L2
t (S

2). Circularly polarized Herglotz wave functions
(i.e. fields of one helicity) can be characterized as eigenfunctions for the eigenvalues
±1 of the operator C : A 7→ i d × A(d) in L2

t (S
2). This space is hence seen to be

the direct sum of the corresponding orthogonal eigenspaces L2
t (S

2) = V + ⊕ V −.
A scattering problem in this framework is fully described by the far field operator

F : L2
t (S

2) → L2
t (S

2) mapping the amplitude function to the far field pattern
of the scattered electric field. Using the orthogonal projections P± onto V ±,
contributions due to different helicities can be identified by setting

Fpq = PpFPq , p, q ∈ {+,−} .
Hence F =

∑
p,q∈{+,−} Fpq. Translating the definition in [1] into this framework

yields the following



2612 Oberwolfach Report 45/2016

Definition The scatterer D is called electromagnetically achiral (em-achiral) if
there exist unitary operators U (j) in L2

t (S
2) with U (j)C = −CU (j), j = 1, . . . , 4,

such that
F++ = U (1)F−−U (2) , F−+ = U (3)F+−U (4) .

If this is not the case, we call the scatterer D em-chiral.

We show, firstly, that for the standard problems of scattering by a perfect con-
ductor or for a transmission problem for a bounded scatterer with constant ma-
terial properties, geometric achirality also implies em-achirality. Here, gemeotric
achirality means that the scatterer can be mapped onto itself by an affine transform
with an orthogonal matrix with determinant −1.

Secondly, following the idea in [1], a measure of chirality can be defined via
singular systems for the operators Fpq. Denoting by (σpqj , G

pq
j , H

pq
j ) a singular

system of Fpq for a scatterer D, we set

χ(F) =
(
‖(σ++

j )− (σ−−
j )‖2ℓ2 + ‖(σ+−

j )− (σ−+
j )‖2ℓ2

)1/2
.

Also using a singular system (σj , Gj , Hj) for F , define the total interaction cross
section of D by Cint(F) =

∑
j σ

2
j . It can be shown, that if a scatterer is invisible

to fields of one helicity, then it has maximum measure of chirality among all
scatterers of the same total interaction cross section. The reverse also holds true
if a reciprocity relation is fulfilled for the scattering problem under consideration.

Lastly, using results from [2], it can be shown that a scattering problem for a
ball made of a chiral material in the sense of the Drude-Born-Fedorov model, leads
to an em-chiral scatterer in the sense of the above definition. Hence the definition
indeed captures the complete range of chirality for electromagnetic wave scattering
problems.

Future research will be aimed at getting an improved understanding of this
notion of chirality. In particular, the proposed measure of chirality is to be used
to obtain scatterers close to invisible to one helicity by using shape optimization
techniques.
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The inverse electromagnetic scattering problem in OCT for
anisotropic media

Otmar Scherzer

(joint work with Peter Elbau, Leonidas Mindrinos)

In this work we consider the inverse electromagnetic scattering problem for inho-
mogeneous anisotropic media placed in an Optical Coherence Tomography (OCT)
system.
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OCT is a non-invasive imaging technique producing high-resolution images of
biological tissues. It is based on low (time) coherence interferometry and it is
capable of imaging micro-structures within a few micrometers resolution. Stan-
dard OCT operates using broadband and continuous wave light in the visible and
near-infrared spectrum. Images are obtained by measuring the time delay and
the intensity of back-scattered light from the sample under investigation. There
also exist contrast-enhanced OCT techniques like polarisation-sensitive OCT (PS-
OCT) which allows for simultaneously detecting different polarisation states of the
back-scattered light [2].

We model the propagation of electromagnetic waves through the inhomoge-
neous anisotropic medium using Maxwell’s equations [1]. The sample is hereby
considered as a linear dielectric non-magnetic medium. Moreover, we assume that
it is weakly scattering, meaning that the electromagnetic field inside the medium
is sufficiently well described by a first order Born approximation.

The optical properties of the medium are then characterised by the electric sus-
ceptibility χ : R×R3 → R

3×3, the quantity to be recovered, where the causality
requires that χ(t, x) = 0 for t < 0. The measurements M are given as a combi-
nation of the back-scattered field by the sample and the back-reflected field from
a reference mirror. In an OCT system, the detector is placed in a distance much
bigger than the size of the medium, therefore we consider as measurement data
the far field approximation of the electromagnetic field.

Then, the direct problem is modelled as an integral operator F mapping the
susceptibility χ to the measurement dataM. The inverse problem we are interested
in is to solve the operator equation

Fχ =M

for χ, given measurements for different positions of the mirror and different in-
cident polarisation vectors. Under some restrictions on the OCT setup [3] and
assuming that the incoming plane wave E(0) propagates in the direction −e3, we
can formulate the inverse problem as the reconstruction of χ from the expressions

(1) H−1
j M = pj

[
ϑ× (ϑ× χ̃(ω, ωc (ϑ+ e3))p)

]
j
, j = 1, 2,

where Hj are some explicitly known, well-posed operators, p ∈ R2 × {0} is the
polarisation of the initial illumination, ω ∈ R \ {0} is the frequency and ϑ ∈ S2

+

is the direction from the origin (where the sample is located) to a detector point.
Here χ̃ denotes the Fourier transform of χ with respect to time and space.

In the special case of an isotropic medium, meaning that χ is a multiple of the
unit matrix, it remains the problem to reconstruct the four dimensional suscep-
tibility from the three dimensional measurement data. We propose an iterative
scheme, assuming a certain discretisation of χ with respect to the detection points
and its support, that provides us with the values of a limited angle Radon trans-
form. For non-dispersive media, where the temporal Fourier transform χ̂ of χ
does not depend on frequency, the equation (1) determines the spatial Fourier
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transform of χ̂ in a cone. Thus, the problem reduces to the inversion of the three-
dimensional Fourier transform with limited data and there exist several algorithms
for recovering the scalar susceptibility under these assumptions.

Figure 1

For the most general case of a matrix valued susceptibility (non-symmetric), using
the discretisation of χ we show that three incident polarisation vectors uniquely
determine the Radon transform of the projection of χ over planes orthogonal to the
vector ϑ+e3, see Figure 1. To be able to recover the Fourier transform of χ we have
to repeat the experiment for different orientations of the sample. More precisely,
we have to tilt slightly the sample three times for every incident polarisation.
The above analysis concerns the study of standard OCT where the sample is
illuminated by light with fixed polarisation (usually linear).
On the other hand, in PS-OCT the interferometer with the addition of polarizers
and quarter-wave plates change the polarisation state of light to produce circularly
polarized light incident on the sample. The output signal now is split into its hor-
izontal and vertical components to be measured at two different photo detectors.
In this setting, we consider an orthotropic non-dispersive medium where the sus-
ceptibility is now a symmetric matrix with only four unknowns and its temporal
Fourier transform is frequency independent.
From [1] we know that the scattered field can be written as a linear integral

operator G applied to the product of the temporal Fourier transforms χ̂ and Ê(0)

of the susceptibility χ and the incident field E(0), respectively. The kernel of the
operator G is the Green tensor related to Maxwell’s equations in the frequency
domain. This relation is known as Lippmann–Schwinger equation. The kth order
Born approximation Ê(k) is defined by

Ê(k) = Ê(0) + G[χ̂Ê(k−1)], k ∈ N.

We consider the second order Born approximation together with the far field ap-
proximation, that affects only the Green tensor resulting to an operator G∞, which
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leads to

Ê(2) = Ê(0) + G∞[χ̂(Ê(0) + G[χ̂Ê(0)])].

We assume that the variations of χ̂ are small compared to the constant background
value χ̂0 (which is given), meaning χ̂ = χ̂0 + ǫχ̂1, for some small ǫ > 0. Equating
the first order terms we consider only the term

G∞[χ̂1(Ê
(0) + G[χ̂0Ê

(0)])] + G∞[χ̂0G[χ̂1Ê
(0)]]

as the one that has the necessary information. Similar to the derivation of (1),
the inverse problem of determining χ̂1 from the OCT measurements, related to
the field Ê(2), reduces to the reconstruction of χ̂1 from the expressions

(2) prj
[
ϑ× (ϑ× ((χ̃1 + χ̂0K[χ̃1] + L[χ̃1]χ̂0)p

s))
]
j
, j = 1, 2,

for some integral operators K and L related to G and polarisation vectors pr and
ps describing the change of the polarisation state of light travelling in the reference
and sample arm, respectively. These changes can be easily modelled using Jones
matrices.
We show that two linear independent incident polarisations provide enough in-
formation for recovering χ̂1. Expression (2), for two incident polarisations of the
form p = e1 and p = e2 results in a system of Fredholm integral equations of the
second kind for the three (out of four) unknown components of χ̂1. In addition,
the integral operator is compact. The fourth component is given as a solution of
a Fredholm integral equation of the first kind, where the right-hand side depends
on the three previously computed solutions.
As a future work we plan to consider the numerical implementation of the above
results for simulated and real data. Even though we have a theoretical result that
makes the reconstruction of χ̃ possible, we still have to tackle the ill-posedness of
the inverse problem. Recall that in a real world experiment we only have access to
noisy band-limited and limited-angle measurements due to the limited spectrum
of the light source and the size of the detector.
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Parameter identification for complex materials using transmission
eigenvalues

Isaac Harris

(joint work with Fioralba Cakoni, Houssem Haddar and Shari Moskow)

1. Homogenization of the Transmission Eigenvalues

The first problem that we consider is the transmission eigenvalue problem associ-
ated with a highly oscillating anisotropic and/or isotropic periodic media in the
frequency domain. This problem is derived from the time-harmonic wave prop-
agation with rapidly oscillating periodic coefficients which is typically associated
with materials containing a fine micro-structure. Such composite materials are
at the foundation of many modern engineering designs and are used to produce
materials with special properties by combining different materials in periodic pat-
terns. In practice, it is desirable to understand the macro-structure (large scale)
behavior of the composite materials which mathematically is achievable by using
Homogenization Theory [1], [2]. Here we are concerned with the real transmission
eigenvalues, in particular their behavior as the period in the medium approaches
zero. Transmission eigenvalue problems are a new class of eigenvalue problems
that are nonlinear and non self-adjoint which are not covered by standard theory.
Such eigenvalues can be determined from the scattering data [3], [4] and provide
information about material properties of the scattering media [5], and hence can
be used to estimate the effective material properties of the media.

Now let D ⊂ Rm where m = 2, 3 be a bounded simply connected open set with
piecewise smooth boundary ∂D representing the support of the inhomogeneous
periodic media. We are interested in the limiting case as ε→ 0 for the transmission
eigenvalue problem given by: find non-trivial kε ∈ R+ and (wε, vε) such that

∇ · A(x/ε)∇wε + k2εn(x/ε)wε = 0 and ∆vε + k2εvε = 0 in D(1)

wε = vε and
∂wε
∂νA

=
∂vε
∂ν

on ∂D.(2)

Note that the spaces for the solution (wε, vε) will become precise later since
they depend on whether A = I or A 6= I. We assume that the matrix A(y) ∈
L∞ (Y,Rm×m) is Y -periodic symmetric positive definite and the function n(y) ∈
L∞(Y ) is a positive Y -periodic function. It is known that as ε→ 0

n(x/ε) → nh =
1

|Y |

∫

Y

n(y) dy weakly in L∞ and

A(x/ε) → Ah in the sense of H-convergence.

H-convergence is defined as: given uε
w−→ u in H1(D) then A(x/ε)∇uε w−→ Ah∇u

in [L2(D)]m. It can be shown that Ah is a constant symmetric positive definite
matrix. In [6] the following results are proven for an infinite set of eigenvalues.
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Convergence Result 1: Assume A = I and that n(y) > 1 or n(y) < 1, then
there is a subsequence of

{
kε, (wε, vε)

}
∈ R+ × L2(D)× L2(D) satisfying (wε, vε)

converges weakly to (v, w) ∈ L2(D)× L2(D) and kε → k such that

∆w + k2nhw = 0 and ∆v + k2v = 0 in D

w = v and
∂w

∂ν
=
∂v

∂ν
on ∂D.

Convergence Result 2: Assume that A(y)− I and n(y)− 1 have different sign
in Y , or n(y) = 1 and A(y)− I is positive (or negative) definite. Then there is a
subsequence of

{
kε, (wε, vε)

}
∈ R+×H1(D)×H1(D) satisfying (wε, vε) converges

weakly to (w, v) ∈ H1(D)×H1(D) and kε → k that satisfies

∇ ·Ah∇w + k2nhw = 0 and ∆v + k2v = 0 in D

w = v and
∂w

∂νAh

=
∂v

∂ν
on ∂D.

We then given some numerical examples of determining the real transmission
eigenvalues from the far field scattering data, then we conclude with some exam-
ples demonstrating that the first real transmission eigenvalue provides information
about the effective material properties Ah and nh of the periodic media.

Open Problem: Determining the corrector term in the asymptotic expansion for
transmission eigenvalues.

2. Asymptotic Expansion for Small Defects

Next, we consider the scattering by an anisotropic material with small volume
penetrable defects. The goal is to determine how the presence of these defects
affects the transmission eigenvalues. Just as in [7], we wish to provide an as-
ymptotic expansion valid for small defects by computing the first order correction
term using the analysis in [8]. In the previous section we see that the leading order
term (limiting value as ε → 0) can be used to determine information about the
macro-structure. Therefore, if we want to determine the micro-structure behavior
(i.e. coefficients in the defects) we need the correction formula. Having measured
transmission eigenvalues from the scattering data one can consider the inverse
spectral problem of determining the material properties of the defects using the
correction formula.

The time harmonic scattering problem for materials with small volume defects is
analogous to the scattering problem in the previous section and we can therefore
derive the transmission eigenvalue problem for the perturbed coefficients. The

defective regions are denoted by Dε =
⋃M
m=1(zm + εBm) a subset of D where

dist(Dε , ∂D) ≥ c0 > 0 and we let the perturbed coefficients be given by

Aε(x) = A(x)(1− χDε
) +

M∑

m=1

Amχ(zm+εBm)
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and

nε(x) = n(x)(1− χDε
) +

M∑

m=1

nmχ(zm+εBm).

The transmission eigenvalue problem for a material with small defects is given by
(1)-(2) with the perturbed coefficients Aε and nε. We show that the transmission
eigenvalues of the perturbed media converge to the transmission eigenvalues of the
unperturbed media as ε → 0. Then, we derive the correction formula for simple
eigenvalues with nm = n, which contain the matrix contrast in the defect Am−A
and a polarization constant (see [9] for details). Some technical limitations of our
analysis:
Open Problems:

• A− I and Am − I most both be positive (or negative definite)
• The asymptotic formula is only valid for simple eigenvalues
• The asymptotic formula is only valid when n = nm

This is forthcoming work:
F. Cakoni, I. Harris and S. Moskows, “The MUSIC algorithm and perturbation
of the transmission eigenvalues for an anisotropic media in the presence of small
inhomogeneities. Under Preparation-Working Title.
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The Bloch transform and scattering from
locally perturbed periodic structures

Armin Lechleiter

(joint work with Ruming Zhang)

Rather complex micro- or nano-structured dielectric structures become more and
more important for modern industrial products involving physical sensors, optical
components, or surface coatings. Non-destructive testing of these thin layers via
scattered incident electromagnetic waves is a promising way towards fast in-process
testing of such structures. As a first step towards a mathematical model for the
corresponding scattering process, we consider in this abstract scattering from a
locally perturbed periodic structure. This is intended as a first step towards the
full electromagnetic scattering problem from a basically random structure, given
that today’s state of the art of periodic scattering theory is still linked almost
exclusively to perfectly periodic settings. More precisely, for a periodic background
setting, our theory allows non-periodicity locally in the material parameters and/or
in the incident field illuminating the structure.

To simplify presentation, we restrict ourselves to scattering from a surface given
as graph of a C2-smooth function with Dirichlet boundary conditions in two di-
mensions. (But note that other scenarios can be treated as well, see [6, 5, 7, 8].)
Considering first arbitrary Lipschitz continuous surfaces Γ = {x2 = ζ(x1)} given
by a Lipschitz continuous function ζ : R → R that takes values in a bounded inter-
val (0, H), the domain above Γ is Ω = {x2 > ζ(x1)} and ΩH = {ζ(x1) < x2 < H}.
Recall the weighted Sobolev spaces

‖u‖Hs
r(ΩH ) =

∥∥∥(x1, x2) 7→ (1 + |x1|2)r/2 u(x1, x2)
∥∥∥
Hs(ΩH )

, s, r ∈ R

that are defined via the well-known Sobolev spacesHs(ΩH) and polynomial weight
functions. Then [1] states that for incident fields ui that belong to H1

r (ΩH) for
some r ∈ (−1, 1) and solve the Helmholtz equation ∆ui+k2ui = 0 in the weak sense
in Ω, there exists a unique total field u ∈ H1

r (ΩH) that solves the following surface
scattering problem: First, u is a weak solution to the Helmholtz equation that
vanishes on Γ, and second the scattered field us := u−ui is upwards radiating. The
latter condition is either formulated via the upwards radiation condition or, more
typical in our context, via the angular spectrum condition; the latter conditions
allow to extend us (or u) to all of Ω as a solution to the Helmholtz equation.

We next consider the setting where Γ is a periodic surface defined via a 2π-
periodic surface ζ ∈ C2(R) that is locally perturbed in one periodicity cell: For
ζp ∈ C2(R) such that ζp(x1) = ζ(x1) for |x1| ≥ π and 0 < ζp(x1) < H for all
x1 ∈ R, the perturbed domain is Ωp = {x2 > ζp(x1)} and Ωp

H = {ζp(x1) < x2 <
H}. Set, additionally, Q2π

H = {x ∈ ΩH : −π < x1 < π} to be the unit cell of the
2π-periodic strip ΩH and consider a C1-diffeomorphism Φp between ΩH and Ωp

H ,
such that Φp equals the identity in ΩH \Q2π

H′ for some H ′ < H .
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Rephrasing the above scattering problem via Φp one finds that the transformed
solution uT = u ◦ Φp ∈ H1

r (ΩH) satisfies

div (Ap∇uT) + k2cpuT = 0,

subject to Dirichlet boundary conditions on the periodic surface Γ and a radiation
condition for the corresponding scattered field. The coefficients Ap and cp equal
the unit matrix and one outside of Q2π

H , such that this problem can be reformulated
on a bounded domain by the (Floquet-)Bloch transform as we sketch next. (See [2,
3, 4] for motivation and alternatives for our approach.)

The Bloch transform J is defined in the above spaces Hs
r (ΩH) by density of

C∞
0 (ΩH) as

J u(α, x) =
∑

j∈Z

u(x1 + 2πj, x2)e
2πi j α, α ∈ R, x ∈ ΩH .

Apparently, J u is one-periodic in α and α-quasiperiodic with period 2π in x1,
that is,

J u(α, (x1 + 2π, x2)) = e−2πiαJ u(α, x), α ∈ R, x ∈ ΩH .

such that we merely need to consider J u as a (quasi-)periodic function in α and x.
Let us now denote the space of α-quasiperiodic functions in H1

loc(ΩH) by H1
α(Q

2π
H ).

Then one can show as in [5] that J is an isomorphism between Hs
r (ΩH) and the

Sobolev space Hr
per((−1/2, 1/2];Hs

α(Q
2π
H )), that the inverse of J equals

J −1w
(
x1+2πj
x2

)
=

∫ 1/2

−1/2

w(α, x)e2πi αj dα, x ∈ Q2π
H ,

and that J is unitary, i.e., its adjoint is its inverse. (The last integral in α
abbreviates a dual evaluation.) Moreover, partial derivatives with respect to
x1,2 commute with J , such that the Bloch transformed solution wB = J uT ∈
L2((−1/2, 1/2);H1

α(Q
2π
H )) satisfies the variational problem

∫ 1/2

−1/2

[∫

Q2π
H

∇xwB(α, ·) · ∇xvB − k2 wBvB dx−
∫

Γ2π
H

vB T
+
α wB ds

]
dα

+

∫

Q2π
H

[Ap − I2]∇J −1wB · ∇J −1vB − k2[1− cp]J−1wB J −1vB dx

=

∫ 1/2

−1/2

∫

Γ2π
H

J f(α, ·) vB(α, ·) ds dα

for all test functions vB ∈ L2((−1/2, 1/2);H1
α(Q

2π
H )) and a suitable right-hand

side f defined via the incident field ui; T+
α are quasiperiodic Dirichlet-to-Neumann

operators and Γ2π
H = (−π, π)×{H}, see [8]. Existence and regularity theory for this

problem in, e.g., L2((−1/2, 1/2);H1
α(Q

2π
H )) or in Hr

per((−1/2, 1/2];H1
α(Q

2π
H )) can

be deduced from the original surface scattering problem by equivalence. Moreover,
the Galerkin discretization of this problem turns out to be attractive if one uses
piecewise exponential ansatz functions in α as all integrals in α can be explicitly
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computed. For details (e.g., for convergence results, details on the numerical
implementation of the method and computational examples) we refer to [8], too.
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