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Abstract. We consider in this work the pricing and the sensitivity calculation of continuously
monitored barrier options. Although standard Monte Carlo algorithms work well for pricing these
options, they often do not behave in a stable way with respect to numerical differentiation. To bypass
this problem, one would generally either resort to regularized differentiation schemes or derive an
algorithm for precise differentiation. While the widespread solution of using a Brownian bridge ap-
proach leads to accurate first derivatives, they are not Lipschitz-continuous. This leads to instability
with respect to numerical differentiation for second-order Greeks.

To alleviate this problem - i.e. produce Lipschitz-continuous first-order derivatives - and reduce
variance, we generalize the idea of one-step survival to general scalar stochastic differential equations.
This approach leads to the new one-step survival Brownian bridge approximation, which allows for
stable second-order Greeks calculations.

This work proves unbiasedness and variance reduction of our new, one-step survival version, with
respect to the classical, Brownian bridge approach. Furthermore, we will present a new convergence
result for the Brownian bridge approach using the Milstein scheme under certain conditions. Overall,
these properties imply convergence of the new one-step survival Brownian bridge approach.

To show the new approach’s numerical efficiency, we present a respective Monte Carlo pathwise
sensitivity estimator for the first-order Greeks and study different approaches to compute second-
order Greeks stably. Finally, we develop a one-step survival Brownian bridge multilevel Monte Carlo
algorithm to reduce the computational cost in practice.

Key words. Monte Carlo, barrier options, pathwise sensitivities, Brownian bridge, one-step
survival, second-order Greeks

1. Introduction. In computational finance, Monte Carlo methods are used ex-
tensively in the pricing of financial derivatives and quantitative risk management
[24, 4]. We consider Monte Carlo pricing schemes for the prices and sensitivities of
different types of exotic options with discontinuous payoffs, especially the continu-
ously monitored barrier options. Whether a specific pre-defined barrier condition is
fulfilled or not, a continuously monitored barrier option is ”knocked-in” or ”knocked-
out” when the underlying asset crosses this barrier. For an overview of other exotic
options, see Zhang [34], particularly for options with a discontinuous payoff. For
an overview of various approaches that aim to price specific types of exotic options
through Monte Carlo simulation, we refer to the monograph by Glasserman [24].

In practice, both discretely [10], and continuously monitored barrier options [33]
are among the most frequently traded derivatives. Therefore, it is essential to price
barrier options under flexible models, irrespective of the monitoring frequency, to
describe the observed market option prices. Contributing to that effort, we look at
pricing and Greeks calculation of continuously monitored barrier options. For an
overview of discretely monitored barrier options, we refer to [18]. Even though some
analytical pricing formulas exist for some basic models, see, e.g., [30, 9], it is well
known that the classical Black-Scholes model lacks the necessary flexibility to fit the
observed market data, see, e.g., [17]. For the study of more complex stochastic models,
Monte Carlo simulation remains the preferred approach for pricing.

Besides pricing, financial institutions need to evaluate the sensitivities of their
portfolios due to regulations. Using finite-difference approximations to compute op-
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tion sensitivities is simple but can also be hard to control since it generally leads to
unstable results. Even the smallest numerical errors may have arbitrarily large effects
on the finite difference approximation. This property, known as ill-posedness, cf.,
Engl, Hanke and Neubauer [14], requires further studies. The challenges for barrier
options are usually handled in the following ways: payoff-smoothing combined with
finite differences or the Likelihood Ratio Method. For discretely observed barrier
options, Alm et al. [1] determined that the first approach is computationally more
efficient. Furthermore, the authors show that a Monte Carlo pricing algorithm that
uses a Lipschitz-continuous payoff allows stable differentiation by simple finite differ-
ences. We will see that the Brownian bridge approach’s lack of Lipschitz-continuity
leads to second-order Greeks’ instability with respect to numerical differentiation. To
overcome this problem, we combine the one-step survival strategy [25] with the Brow-
nian bridge method to obtain the new one-step survival Brownian bridge approach
that allows a stable second-order Greek computation through finite differences.

The central part of this work will be to show the one-step survival Brownian
bridge approaches’ unbiasedness and variance reduction. Specifically, in this work,
we consider unbiasedness to be understood with respect to the Brownian bridge ap-
proach or its derivatives. The unbiasedness and certain convergence properties of the
Brownian bridge approach, which we will discuss later, will lead to the new approach’s
overall convergence. Moreover, we will present the first partial derivatives, show their
unbiasedness and present the respective pathwise sensitivity Monte Carlo estimator.
In [11], Burgos proves that, under certain assumptions, the first derivatives of the
Brownian bridge approach satisfy weak convergence. Again, together with the unbi-
asedness, this convergence property will guarantee convergence of the new approach’s
first derivatives. Then, we discuss the one-step survival Brownian bridge approach’s
main practical advantage: Stable second-order Greeks calculation. Therefore, we dis-
cuss second-order pathwise sensitivities and extend the result of Alm et al. [1] to
stable second-order Greeks through finite differences.

Neither the pathwise sensitivities nor the Likelihood Ratio Method can be used
universally. Other estimators for price approximations and their Greeks using the
Malliavin calculus tools have been developed in [28, 15, 7]. However, in general,
Malliavin calculus, which is beyond this work’s scope, leads to random variables whose
simulations are costly in computational time. In [27], the authors, rather than using
Malliavin calculus techniques, successfully take advantage of the models’ Markovian
structure. Their essential idea consists of using suitable martingals to derive integra-
tion by parts formula, see, e.g., [32, 8], however, this is restricted to the Delta for
barrier options and bounded coefficient terms. For further developments on the com-
binations of pathwise sensitivities and the Likelihood Ratio Method, see, e.g., [22].
For further studies on the law’s properties associated with the first hitting time using
bounded coefficient assumptions and a parametric method, [2, 5], we refer to Frikha
Kohatsu-Higa and Li [16].

In this work, we are interested in the expected value E[P ] of a quantity that is a
functional P of the solution of a stochastic differential equation (SDE) with a general
drift and volatility term. It is well known that under certain conditions, see, e.g., [29],
one obtains convergence for the expectation of a Lipschitz-continuous payoff if it only
depends on the solutions’ time of maturity. In particular, for pricing an option, we
are interested in the (weak) convergence

E[P − P̂ ] ≤ Chα,(1.1)
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with a constant C > 0 and α > 0 for the approximated expected payoff P̂ evaluated
on a discretization of the SDE using a certain step width h. Using the appropriate
conditions on the drift and volatility terms, we know that the Euler-Maruyama or
Milstein schemes typically converge for specific payoffs. E.g., they converge for C4

P

with α = 1, for time-independent payoffs satisfying P ∈ C4
P (the space of functions

such that all partial derivatives up to and including 4 exist, are continuous and have
polynomial growth), see, e.g., [29].
We know from Asmussen, Glynn, and Pitman [3] that the convergence order is
bounded by α = 1/2 for any path-dependent payoff using the maximum (minimum)
of a discrete approximation as an approximation of the maximum (minimum), as one
does by default for the barrier options. To recover a convergence of order one, the
most frequently used approach is the Brownian bridge interpolation, which samples
if the maximum exceeds the barrier between two steps.

From Gobet [26], we know that this approach recovers α = 1 using the Euler-
Maruyama scheme while assuming stronger conditions on the drift and volatility,
i.e., C∞b , and on the support or regularity conditions on the payoff, i.e., the support
strictly excluded from, or vanishing at the barrier. Gobet explains how the drift and
volatility conditions can be weakened depending on the payoff structure, i.e., to C5

b

on the volatility for a vanishing payoff or to C7
b for a growth bounded payoff.

In the recent work on the Multilevel Monte Carlo analysis, Giles, Debrabant,
and Roessler [20] show there is weak order α = 1 for Lipschitz-continuous and Asian
options using the Milstein scheme for weaker assumptions. Furthermore, for barrier
options using the Brownian bridge approach with the Milstein scheme, they prove the
multilevel estimator’s convergence. They point out that their work could be modi-
fied to show that the Brownian bridge approach using the Milstein scheme satisfies
α = 1− δ, for any δ > 0, under these weaker assumptions. For the sake of complete-
ness, we will prove this property in the appendix. We will formulate the theorem on
unbiasedness and variance reduction quite generally, so that it can be applied inde-
pendently of specific model assumptions or respective weak convergence assumptions.
We will use the Milstein scheme in the main theorem due to its beneficial properties
for further computational savings. Nevertheless, the application to the less complex
Euler-Maruyama scheme is straightforward, as we will present in a lemma.

Monte Carlo methods can be computationally expensive, as in stochastic differ-
ential equations, particularly since the cost of generating the individual stochastic
samples is very high. It is well established that the computational complexity (cost)
to achieve an error ε is of order O(ε−3), see, e.g., [13], provided that the stochastic
differential equations satisfy certain conditions [29, 6, 31]. Giles [21, 19] shows that
multigrid ideas can be used to reduce the computational complexity to O(ε−2) using
the multilevel Monte Carlo and the Milstein scheme. The Multilevel Monte Carlo
method got various generalizations and extensions, see, e.g., [23], for an overview.
Giles, Debrabant, and Roessler [20] showed that the Brownian bridge approach for
barrier options satisfies the necessary convergence properties leading to an efficient
multilevel Monte Carlo method. Unfortunately, this approach cannot be straightfor-
wardly applied to the one-step survival Brownian bridge estimator since the coarse
path modification used would lead to biased survival probabilities. Nevertheless, we
present a modification to the one-step survival Brownian bridge approach and show
its numerical efficiency. For further studies on the Brownian bridge multilevel Monte
Carlo approach, we refer to [12, 11].

The structure of this work is as follows. In section 2, we present the main result
of the one-step survival Brownian bridge approximation. Then, we study first and
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second-order Greeks, including the pathwise sensitivity approximation for the one-
step survival Brownian bridge approach and the stability result for second-order finite
differences. In section 3, we present the multilevel Monte Carlo algorithm for the new
approach. Numerical results for the variance reduction, Greeks’ stability, and the
multilevel algorithm’s efficiency are provided in section 4. Section 5 contains some
concluding remarks. In the appendix, we present the convergence result.

2. One-step survival Brownian bridge Monte Carlo estimator for con-
tinuously monitored barrier options. We will focus on barrier options, which
only depend on one underlying asset. We are interested in the expected value of a
payoff P that is a functional of the asset price. In particular, we suppose that we have
the following model for the asset price.

Definition 2.1. The underlying asset price S(t) is a continuous-time stochastic
process whose evolution SDE is of the generic form

dS(t) = µ(S, t)dt+ σ(S, t)dW (t),(2.1)

on the time interval t ∈ [t0, T ], with initial value S0, drift µ, volatility σ and the
Brownian motion W .

Now, we will introduce continuously monitored barrier options.

Definition 2.2. The payoff of a continuously observed up-and-out barrier call
option is given by

P (S) :=

(S(T )−K)
+

=: q(S(T )) max
t∈[t0,T ]

S(t) ≤ B

0 otherwise,
(2.2)

with barrier value B, strike price K, time of maturity T and current time t0.

As stated above, we are interested in such an instrument’s expected value, which
is defined as follows, where for the sake of simplicity, we set r = 0.

Definition 2.3. The present value of an option with payoff (2.2) is given by the
discounted expected payoff

PVt0 = E[P (S)],

at the current time t0 and at the time of maturity T .

Classic weak convergence theory, see, e.g., [29], shows, that the Milstein scheme

Ŝn+1 = Ŝn + µ(Ŝn, tn)h+ σ(Ŝn, tn)
√
h∆Zn

+
1

2
σ(Ŝn, tn)σ′(Ŝn, tn)

(
(
√
h∆Zn)2 − h

)
,

(2.3)

where σ′ denotes the derivative of σ(S, t) with respect to S, with n = 0, . . . , N − 1

discretization steps, ∆Zn ∼ N(0, 1), Ŝ0 = S0, h = T/N , tn the time t at step
n, converges in the sense of (1.1), with α = 1 for the Lipschitz-continuous payoff
functions (only depending on the time of maturity), see, e.g., [24]. The same result
holds for the Euler-Maruyama scheme, which is defined similarly but without the
last summand, i.e., if the derivative of the volatility vanishes both schemes are equal.
From Asmussen, Glynn, and Pitman [3], we know that for any path-dependent payoff
using the maximum (minimum) of a discrete approximation as an approximation
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of the maximum (minimum), as one would do by default for barrier options, the
convergence order is bounded by α = 1/2.

The difficulty of recovering the convergence order for the barrier options can be
circumvented by sampling if the maximum exceeds the barrier between two discretiza-
tion steps, instead of sampling the maximum itself, see, e.g., Glasserman [24] for a
derivation. We use

p̂n = exp

(
−2(B − Ŝn)+(B − Ŝn+1)+

σ(Ŝn, tn)2h

)
,(2.4)

with n = 0, . . . , N − 1, which is the conditional probability of crossing the barrier
between two steps. Then, the Brownian bridge approximation of the payoff (2.2) is
defined by

P̂
(
ŜN , p̂0, . . . , p̂N−1

)
= q(ŜN )

N−1∏
n=0

(1− p̂n) ,(2.5)

with q from (2.2). By sampling a sequence of possible realizations (ŝ1,N , . . . , ŝM,N ),

m = 1, . . . ,M , of the random variables (Ŝ1, . . . , ŜN ), we obtain the one-step survival
Brownian bridge Monte Carlo estimator for PVt0 , see e.g. [24].

Corollary 2.4. The Brownian bridge Monte Carlo estimator for the present
value of a up-and-out barrier option is given by the average

PM :=
1

M

M∑
m=1

[
q(ŝN,m)

N−1∏
n=0

(1− p̂n,m)

]
.

Algorithm 1 presents a procedure for an estimator of Corollary 2.4 while using the
Milstein scheme. The algorithm can be easily modified to use the Euler-Maruyama
scheme by omitting the last summand of the Milstein scheme of line 7. Fixing the
discretization scheme still leaves open some flexibility in choosing the process to apply
it, e.g., for a geometric Brownian motion, the transformation to X(t) = logS(t) would
be exact and lead to a constant volatility coefficient.

Algorithm 1 The Brownian bridge Monte Carlo estimator for an up-and-out barrier
option

1: Initialize random seed
2: for m = 1, . . . ,M do
3: for n = 0 : N − 1 do
4: Sample z ∼ N(0, 1)

5: Ŝn+1 = Ŝn + µ(Ŝn, tn)h+ σ(Ŝn, tn)
√
hz

6: + 1
2σ(Ŝn, tn)σ′(Ŝn, tn)

(
(
√
hz)2 − h

)
7: p̂n = exp

(
−2(B−Ŝn)+(B−Ŝn+1)+

σ(Ŝn,tn)2h

)
8: end for
9: P̂m = q(ŜN )

∏N−1
n=0 (1− p̂n)

10: end for
11: return PVt0 := 1

M

∑M
m=1 P̂m
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2.1. One-step survival Brownian bridge approximation. We now combine
the Brownian bridge approximation with the one-step survival idea of Glasserman and
Staum [25] to define the one-step survival Brownian bridge approximation and show
that it leads to an unbiased expectation and a variance reduction. Furthermore, we
will see that the new approximation will be Lipschitz-continuous since we smooth
out the indicator functions of the crossing probabilities (2.4). Now, we will shortly
explain the new approach for a simplified case. Then, we present an algorithm and
the theorem on unbiasedness and variance reduction.

Consider using only h = T for the Milstein scheme, i.e., N = 1. For this simplified
case, the expectation of the Brownian bridge (2.5) for given S0 is given by

E[P̂ ] =

∫
R

φ(z) (1− p̂0) q
(
Ŝ1(z)

)
dz,

with the standard normal density φ, the crossing probability

p̂0 = exp

(
−2(B − S0)+(B − Ŝ1)+

σ(S0, t0)2h

)
,

and the discretization step

Ŝ1(z) = S0 + µ(S0, t0)h+ σ(S0, t0)
√
hz +

1

2
σ(S0, t0)σ′(S0, t0)h

(
z2 − 1

)
.

The issue of non-Lipschitz-continuous first-derivatives arises since Ŝ1 could lay above
the barrier B and we therefore need the indicator functions in p̂0. To overcome this
problem we use the following considerations: Since we know that 1− p̂0 becomes zero
if Ŝ1 lays above the barrier we obtain

E[P̂ ] =

∫
R

φ(z) (1− p̂0) q
(
Ŝ1(z)

)
dz =

∫
Ŝ1(z)<B

φ(z) (1− p̂0) q
(
Ŝ1(z)

)
dz.

Here, φ(z) is no longer a probability density and so use the normalization

p̃0 : =

∫
Ŝ1(z)<B

φ(z) dz

to obtain

E[P̂ ] = p̃0

∫
Ŝ1(z)<B

φ(z)

p̃0
(1− p̂0) q

(
Ŝ1(z)

)
dz.(2.6)

By using this normalized probability density the indicator functions in p̂0 would not
be required anymore, leading to a Lipschitz-continuous first derivative. However,
for a Monte Carlo estimator the current representation would need to sample from
the normalized density in each discretization step. Therefore, we will transform the
integral to the unit cube. This will lead to only uniformly sampled random variables
being required for a Monte Carlo estimator. Consider σ′(S0, t0) 6= 0, we have that

Ŝ1(z) < B if and only if

0 > −
B − Ŝ1 − µ(S0, t0)h+ 1

2σ(S0, t0)σ′(S0, t0)h

σ(S0, t0)
√
h

+ z +
1

2
σ′(S0, t0)

√
hz2.
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Therefore, we define

z <

−1 +

√
1± 4

(
1
2σ
′(S0, t0)

√
h
)(

B−S0−µ(S0,t0)h+ 1
2σ(S0,t0)σ′(S0,t0)h

σ(S0,t0)
√
h

)
σ′(S0, t0)

√
h

:= Φ−1(p̃±0 )

with the cumulative standard normal distribution function Φ and p̃0 := p̃+
0 − p̃−0 .

Now, we have

E[P̂ ] = p̃0

Φ−1(p̃+0 )∫
Φ−1(p̃-0)

φ(z)

p̃0
(1− p̂0) q

(
Ŝ1(z)

)
dz.

By substituting with z = Φ−1(p̃-
0 + (p̃+

0 − p̃-
0)u), we obtain

E[P̂ ] = p̃0

1∫
0

(1− p̂∗0) q
(
S̃1(u)

)
du := E[P̃ ],(2.7)

with the modified discretization step

S̃1(u) = S0+µ(S0, t0)h+ σ(S0, t0)Φ−1(p̃-
0 + up̃0)

+
1

2
σ(S0, t0)σ′(S0, t0)h

(
(Φ−1(p̃-

0 + up̃0))2 − 1
)

and the modified probability

p̂∗0 := exp

(
−2(S0 −B)(S̃1 −B)

σ(S0, t0)2h

)
.(2.8)

For the easier case σ′(S0, t0) = 0, the Milstein scheme simplifies to the Euler scheme
and we can transform the integral by using the substitution z = Φ−1(p̃0u), with

p̃0 = Φ

(
B − S0 − µ(S0, t0)h

σ(S0, t0)
√
h

)
.

We know that Ŝ1(z) < B if, and only if,

0 > −B − S0 − µ(S0, t0)h

σ(S0, t0)
√
h

+ z.

Considering general N , we can iteratively split the integral expression; see Theo-
rem 2.6 for the profound derivation.

Corollary 2.5. The new one-step survival Brownian bridge Monte Carlo esti-
mator for the expected value is given by

PM :=
1

M

M∑
m=1

[
q(sN,m)

N−1∏
n=0

(
1− p̂∗n,m

)N−1∏
n=0

p̃n,m

]
.(2.9)
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Algorithm 2 The one-step survival Brownian bridge Monte Carlo estimator for an
up-and-out barrier option

1: Initialize random seed
2: for m = 1, . . . ,M do
3: for n = 0 : N − 1 do
4: if σ′(S̃n, tn) 6= 0 then

5: p̃+
n = Φ

−1+

√
1+4( 1

2σ
′(S̃n,tn))

(
B−S̃n−µ(S̃n,tn)h+1

2
σ(S̃n,tn)σ′(S̃n,tn)h

σ(S̃n,tn)

)
σ′(S̃n,tn)

√
h


6: p̃−n = Φ

−1−

√
1+4( 1

2σ
′(S̃n,tn))

(
B−S̃n−µ(S̃n,tn)h+1

2
σ(S̃n,tn)σ′(S̃n,tn)h

σ(S̃n,tn)

)
σ′(S̃n,tn)

√
h


7: p̃n = p̃+

n − p̃−n
8: Sample u ∼ U(0, 1)

9: S̃n+1 = S̃n + µ(S̃n, tn)h+ σ(S̃n, tn)
√
hΦ−1(p̃−n + p̃nu)

10: 1
2σ(S̃n, tn)σ′(S̃n, tn)h

(
(Φ−1(p̃−n + p̃nu))2 − 1

)
11: else
12: p̃n = Φ

(
B−S̃n−µ(S̃n,tn)h

σ(S̃n,tn)
√
h

)
13: Sample u ∼ U(0, 1)

14: S̃n+1 = S̃n + µ(S̃n, tn)h+ σ(S̃n, tn)
√
hΦ−1(p̃nu)

15: end if
16: p̂∗n = exp

(
−2(B−S̃n)(B−S̃n+1)

σ(S̃n,tn)2h

)
17: end for
18: P̃m = q(S̃N )

∏N−1
n=0 (1− p̂∗n)

∏N−1
n=0 p̃n

19: end for
20: return PVt0 := 1

M

∑M
m=1 P̃m

Algorithm 2 presents a procedure for an estimator of Corollary 2.4 while using the
Milstein scheme.

Now, we present the main theorem, proving unbiasedness and a variance reduction
property for the new one-step survival Brownian bridge approach.

Theorem 2.6. Consider an SDE (2.1) with positive volatility and the modified
Milstein scheme:

S̃n+1 = S̃n + µ(S̃n, tn)h+ σ(S̃n, tn)
√
hΦ−1(p̃−n + p̃nun)

+
1

2
σ(S̃n, tn)σ′(S̃n, tn)h

(
(Φ−1(p̃−n + p̃nun))2 − 1

)
,

(2.10)

for the steps n = 0, . . . , N − 1, with un ∼ U(0, 1) i.i.d., S̃0 = S0, the cumulative
standard normal distribution function Φ, the survival probabilities

p̃n = p̃+
n − p̃−n ,(2.11)
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and with

p̃+,−
n = Φ

−1±
√

1 + 4
(

1
2σ
′(S̃n, tn)

)(
B−S̃n−µ(S̃n,tn)h+ 1

2σ(S̃n,tn)σ′(S̃n,tn)h

σ(S̃n,tn)

)
σ′(S̃n, tn)

√
h

 .

(2.12)

Furthermore, for each n = 0, . . . , N − 1 with σ′(S̃n, tn) = 0 consider the simplified
scheme

S̃n+1 = S̃n + µ(S̃n, tn)h+ σ(S̃n, tn)
√
hΦ−1(p̃nun)(2.13)

with

p̃n = Φ

(
B − S̃n − µ(S̃n, tn)h

σ(S̃n, tn)
√
h

)
.(2.14)

Then, the one-step survival Brownian bridge approximation defined by

P̃
(
S̃N , p̂

∗
0, . . . , p̂

∗
N−1, p̃0, . . . , p̃N−1

)
:= q(S̃N )

N−1∏
n=0

(1− p̂∗n)

N−1∏
n=0

p̃n,(2.15)

with

p̂∗n = exp

(
−2(B − S̃n)(B − S̃n+1)

σ(S̃n, tn)2h

)
.(2.16)

satisfies

E[P̃ ] = E[P̂ ](2.17)

and

Var[P̃ ] ≤ Var[P̂ ].(2.18)

Proof. First, we verify the equivalence of the expected values (2.5) and (2.15).

For simplicity, we will omit the cases σ′(Ŝn, tn) = 0 in the following derivation since
they are applied straightforwardly.

Considering N = 2, the expected value is given by

E[P̂ ] =p̃0

1∫
0

(1− p̂∗0)

 ∫
Ŝ2(z)<B

φ(z) (1− p̂1) q
(
Ŝ2(z, u)

)
dz

du,

with

Ŝ2(z, u) = S̃1(u) + µ(S̃1(u), t1)h+ σ(S̃1(u), t1)z

+
1

2
σ(S̃1(u), t1)σ′(S̃1(u), t1)h

(
z2 − 1

)
.
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Again by splitting, substituting and using p̃1 = p̃−1 − p̃
+
1 we obtain

E[P̂ ] = p̃0

1∫
0

(1− p̂∗0)

∫
Ŝ2(z)<B

φ(z) (1− p̂1) q
(
Ŝ2(z, u)

)
dz du,

= p̃0

1∫
0

(1− p̂∗0)

Φ−1(p̃+1 )∫
Φ−1(p̃−1 )

φ(z) (1− p̂1) q
(
Ŝ2(z, u)

)
dz du,

= p̃0

1∫
0

(1− p̂∗0) p̃1

1∫
0

(1− p̂∗1) q
(
Ŝ2(u1, u0)

)
du1 du0,

with

S̃2(u1, u0) = S̃1(u0) + µ(S̃1(u0), t1)h+ σ(S̃1(u0), t1)Φ−1(p̂−1 + p̃1u1)

+
1

2
σ(S̃1(u0), t1)σ′(S̃1(u0), t1)h

(
(Φ−1(p̂−1 + p̂1u1))2 − 1

)
,

p̂∗1 = exp

(
−2(S̃1 −B)(S̃2 −B)

σ(S̃1, t1)2h

)
and p̂∗0 from (2.8). For general N , we obtain

E[P̂ ] =

∞∫
−∞

· · ·
∞∫
−∞

φ(z0) · · ·φ(zN−1)q(ŜN (zN−1, . . . , z0))

N−1∏
n=0

(1− p̂n) dzN−1 · · · dz0,

=

1∫
0

· · ·
1∫

0

q(S̃N (uN−1, . . . , u0))

N−1∏
n=0

(1− p̂∗n)

N−1∏
n=0

p̃n duN−1 · · · du0

= E[P̃ ],

(2.19)

with (2.12), (2.11), (2.10) and (2.16). To prove (2.18), we use analogue techniques
leading to

E[P̂ 2] =

∞∫
−∞

· · ·
∞∫
−∞

φ(z0) · · ·φ(zN−1)q(ŜN (zN−1, . . . , z0))2

·
N−1∏
n=0

(1− p̂n)
2

dzN−1 · · · dz0,

=

1∫
0

· · ·
1∫

0

q(S̃N (uN−1, . . . , u0))2
N∏
n=0

(1− p̂∗n)
2
N∏
n=0

(p̃n) duN−1 · · · du0

≥
1∫

0

· · ·
1∫

0

q(S̃N (uN−1, . . . , u0))2
N∏
n=0

(1− p̂∗n)
2
N∏
n=0

(p̃n)
2

duN−1 · · · du0

= E[P̃ 2],

.(2.20)
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which holds since we have p̃n ∈ [0, 1] and therefore, we have

N∏
n=0

p̃2
n ≤

N∏
n=0

p̃n.(2.21)

All in all, by using the unbiasedness of the first part, we obtain

Var[P̃ ] = E[P̃ 2]− E[P̃ ]2 = E[P̃ 2]− E[P̂ ]2 ≤ E[P̂ 2]− E[P̂ ]2 = Var[P̂ ],

which completes the proof.

Remark. The variance reduction is a consequence of (2.21), which is most sig-
nificant near the barrier.

Remark. Suppose we use the Euler-Maruyama scheme for the discretization of
the Brownian bridge approach. In that case, the one-step survival Brownian bridge
approach can be defined through a modified scheme, as in (2.13), which will analo-
gously lead to the unbiasedness and variance reduction property. Similar ideas hold
for Algorithm 2: By omitting line 4 to 10, we can modify the algorithm to only use
the Euler-Maruyama scheme for the discretization.

Corollary 2.7. Consider an SDE (2.1) with drift and positive volatility so that
the Brownian bridge approximation (2.4), using a Milstein or Euler scheme converges
with α > 0 in the sense of (1.1). Then, the one-step survival Brownian bridge ap-
proach, using the respective modified scheme, satisfies convergence with order α.

By forcing the path to stay below the barrier, we smooth out the indicator function,
leading to a Lipschitz-continuous first derivative. As explained above, the Lipschitz-
continuous first derivative will be the key point to achieve stable second-order Greeks.

Remark. A modified substitution leads to an extension to down-and-out barrier
options, as, e.g., explained in [18]. The extension to knock-in options is not straight-
forward. However, with the in-out parity, the pathwise sensitivities can be calculated
through the pathwise sensitivities of knock-out barrier options and plain vanilla op-
tions.

2.2. Partial derivatives, pathwise sensitivities, and finite difference:
first-order Greeks. In this section we will study different ways of calculating first-
order Greeks for barrier options with payoff (2.2). Therefore, consider the stochastic
differential equation

dS(t) = µ(S, t, a) dt+ σ(S, t, b) dW (t), 0 < t ≤ T,(2.22)

with initial value S(0) = s0 ∈ R+, time of maturity T ∈ R+, drift µ(S, t, a) and
volatility σ(S, t, b), with a = (a1, . . . , am) ∈ Rm and b = (b1, . . . , bs) ∈ Rs.

Let the stochastic process Sa,b,s0,T be the solution of the SDE (2.22) defined by
the parameters a, b, s0 and T . Consider a family of barrier payoff functions V (S, v),
with v = (v1, . . . , vr) ∈ Rr. We are be interested in the expected value of

P : Θ 7→ V (Sa,b,s0,T (T ), v) ,(2.23)

for

Θ := (a, b, v, s0, T ) ∈ Y ⊂ RV × R2
+,(2.24)



12 THOMAS GERSTNER, BASTIAN HARRACH, DANIEL ROTH

with V = m + s + r. From section 2.6.2 of [11] we know that the derivatives of the
survival probabilities (2.5) of the Brownian bridge approach for an up-and-out barrier

option P̂ with respect to Θ, assuming P̂ (Θ) sufficiently regular in Θ, are given by

∂P̂

∂Θi
=

(
1ŜN>K

∂ŜN
∂Θi

N−1∏
n=0

(1− p̂n)

+
(
ŜN −K

)+ N−1∑
n=0

 N−1∏
k=0,k 6=t

(1− p̂k(Θ, u))
∂p̂n
∂Θi

 .(2.25)

with

∂p̂n
∂Θi

= 1Ŝn,Ŝn+1<B
p̂n

[
−2(B − Ŝn+1)

σ(Ŝn, tn)2h
+
−2(B − Ŝn)

σ(Ŝn, tn)2h
+

4(B − Ŝn+1)(B − Ŝn)

σ(Ŝn, tn)3h

]

and ∂Ŝn
∂Θi

, as similarly defined later. As mentioned above, we will see that the one-step

survival Brownian bridge approach does not need the indicator functions, as in ∂p̂n
∂Θi

,
leading to the following considerations. Before presenting the following theorem, we
wish to remark that we can smooth out the indicator function arising in (2.25) by
forcing the path to stay between B and K at the final step, see, e.g., [18] for further
information. However, to keep the presentation simple, we omit the smoothing in the
following theorem. Furthermore, we will use a more general notation for (2.10) to
(2.16).

Theorem 2.8. The partial derivatives of the one-step survival Brownian bridge
payoff P̃ with respect to a vector of inputs Θ, if Ŝ(Θ) is sufficiently regular in Θ, are
given by

∂P̃

∂Θi
=

1S̃N>K ∂S̃N∂Θi

N−1∏
j=0

p̃j

N−1∏
n=0

(1− p̂∗n)

+q(S̃N )

N−1∑
j=0

 ∂p̃j
∂Θi

N−1∏
k 6=j

p̃k

N−1∏
n=0

(1− p̂∗n)

−q(S̃N )

N−1∑
n=0

 N−1∏
k=0,k 6=t

(1− p̂∗k)
∂p̂∗n
∂Θi

N−1∏
j=0

p̃j

 .

(2.26)

where P̃ , p̃n, p̂
∗
n, and S̃ depend on (Θ, u). The derivatives of p̃−n (Θ, u), p̃n(Θ, u),

S̃n(Θ, u), p̂n(Θ, u), µn(Θ, u), σn(Θ, u), and σ′n(Θ, u) are computed recursively as fol-
lows: Let f2(∗5)|∗2 := p̃−n (Θ, u), with

∗5 := (ν, ς, ς ′, s, ϑ)

∗2 :=
(
ν = µ(S̃n(Θ, u), tn), ς = σ(S̃n(Θ, u), tn), ς ′ = σ′(S̃n(Θ, u), tn),

s = S̃n(Θ, u), ϑ = Θ
)
.

I.e., we will use the symbolic vector ∗5 for the calculation of partial derivatives of
p̃−n (Θ, u) and ∗2 will be the vector of inputs at the computation process. Then, the
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partial derivatives are recursively given by

∂p̃−n
∂Θi

(Θ, u) =
∂f2

∂s
(∗5)|∗2

∂S̃n
∂Θi

(Θ, u) +
∂f2

∂ν
(∗5)|∗2

∂µn
∂Θi

(Θ, u)

+
∂f2

∂ς
(∗5)|∗2

∂σn
∂Θi

(Θ, u) +
∂f2

∂ς ′
(∗5)|∗2

∂σ′n
∂Θi

(Θ, u) +
∂f2

∂ϑi
(∗5)|∗2 .

The remaining derivatives are calculated and simulated through the following: Let
h(∗4)|∗1 := p̂∗n(Θ, u), f2(∗5)|∗2 := p̃−n (Θ, u), f(∗5)|∗2 := p̃n(Θ, u), and g(∗6)|∗3 :=

S̃n+1(Θ, u), with

∗1 :=
(
ς = σ(S̃n(Θ, u), tn), s1 = S̃n(Θ, u), s2 = S̃n+1(Θ, u), ϑ = Θ

)
,

∗3 :=
(
ν = µ(S̃n(Θ, u), tn), ς = σ(S̃n(Θ, u), tn), ς ′ = σ′(S̃n(Θ, u), tn), π = p̃n(Θ, u),

π2 = p̃−n (Θ, u), s = S̃n(Θ, u), ϑ = Θ, ω = uN−1

)
,

∗4 := (ς, s1, s2, ϑ)

∗6 := (ν, ς, ς ′, π, π2, s, ϑ, ω)

and u = (uN−1, . . . , u0). Then, the partial derivatives are recursively given by

∂p̃n
∂Θi

(Θ, u) =
∂f

∂s
(∗5)|∗2

∂S̃n
∂Θi

(Θ, u) +
∂f

∂ν
(∗5)|∗2

∂µn
∂Θi

(Θ, u) +
∂f

∂ς
(∗5)|∗2

∂σn
∂Θi

(Θ, u)

+
∂f

∂ς ′
(∗5)|∗2

∂σ′n
∂Θi

(Θ, u) +
∂f

∂ϑj
(∗5)|∗2

∂p̂∗n
∂Θi

(Θ, u) =
∂h

∂s1
(∗4)|∗1

∂S̃n
∂Θi

(Θ, u) +
∂h

∂s2
(∗4)|∗1

∂S̃n+1

∂Θi
(Θ, u)

+
∂h

∂ς
(∗4)|∗1

∂σn
∂Θi

(Θ, u) +
∂h

∂ϑi
(∗4)|∗1 ,

∂S̃n+1

∂Θi
(Θ, u) =

∂g

∂ν
(∗6)|∗3

∂µn
∂Θi

(Θ, u) +
∂g

∂ς
(∗6)|∗3

∂σn
∂Θi

(Θ, u) +
∂g

∂ς ′
(∗6)|∗3

∂σ′n
∂Θi

(Θ, u)

+
∂g

∂π
(∗6)|∗3

∂p̃n
∂Θi

(Θ, u) +
∂g

∂π2
(∗6)|∗3

∂p̃−n
∂Θi

(Θ, u) +
∂g

∂s
(∗6)|∗3

∂S̃n
∂Θi

(Θ, u)

+
∂g

∂ϑi
(∗6)|∗3 .

The derivatives of the local drift and volatility are given by

∂µn
∂Θi

(Θ, u) =
∂k

∂s
(s, ϑ)|∗7

∂S̃n
∂Θi

(Θ, u) +
∂k

∂ϑi
(s, ϑ)|∗7 ,

∂σn
∂Θi

(Θ, u) =
∂l

∂s
(s, ϑ)|∗7

∂S̃n
∂Θi

(Θ, u) +
∂l

∂ϑi
(s, ϑ)|∗7 ,

∂σ′n
∂Θi

(Θ, u) =
∂m

∂s
(s, ϑ)|∗7

∂S̃n
∂Θi

(Θ, u) +
∂m

∂ϑi
(s, ϑ)|∗7 ,

with ∗7 :=
(
s = S̃n(Θ, u), ϑ = Θ

)
.
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Proof. (2.26) is the derivative of the integrand of (2.15). For (2.12), (2.10), (2.11)
and (2.16) we have

f2(∗5) = Φ

−1−
√

1 + 4
(

1
2 ς
′
√
ϑ1

) (ϑ2−s−νϑ1+ 1
2 ςς
′ϑ1

ς
√
ϑ1

)
ς ′
√
ϑ1

 ,

f(∗5) = Φ

−1 +

√
1 + 4

(
1
2 ς
′
√
ϑ1

) (ϑ2−s−νϑ1+ 1
2 ςς
′ϑ1

ς
√
ϑ1

)
ς ′
√
ϑ1

 ,

− Φ

−1−
√

1 + 4
(

1
2 ς
′
√
ϑ1

) (ϑ2−s−νϑ1+ 1
2 ςς
′ϑ1

ς
√
ϑ1

)
ς ′
√
ϑ1

 ,

g (∗6) = s+ νϑ1 + ς
√
ϑ1Φ−1 (π2 + πω) ,

+
1

2
ςς ′ϑ1

(
(Φ−1 (π2 + πω))2 − 1

)
,

h(∗4) = exp

(
−2(ϑ2 − s1)(ϑ2 − s2)

ς2ϑ1

)
.

The recursive formulas follow through differentiation with the product rule.

Lemma 2.9. Consider an SDE (2.1) with drift and positive volatility such that the
partial derivatives of the Brownian bridge approximation (2.4), using the Milstein- or
Euler-Maruyama scheme, converges with α > 0 in the sense of (1.1). Then, the partial
derivatives of the one-step survival Brownian bridge approach satisfy convergence with
order α.

Proof. Since having compact domains in (2.19) and a Lipschitz-continuous inte-
grand, the interchange of differentiation and expectation is justified for the one-step
survival Brownian bridge approach. For the Brownian bridge approach, we can sub-
stitute the integral with z = Φ−1(u) in each discretization step to obtain a Lipschitz-
continuous integrand and compact domains. Thus, the one-step survival Brownian
bridge derivatives are unbiased with respect to the Brownian bridge derivatives.

For a convergence result on the Brownian bridge derivatives, assuming certain
assumptions, we refer to section 7 of [11]. For both (2.25) and (2.26), one could
formulate corollaries of an unbiased pathwise sensitivity Monte Carlo estimator. We
remark that one can automate most of the calculations, e.g., as in [18] by MATLAB.

For a more accessible alternative, the first-order Greeks can be calculated with
finite differences under a specific stability condition. Nevertheless, finite differences
add an error source and should be used carefully.

Definition 2.10. We say that a Monte Carlo estimator PM with Monte Carlo
payoff Q allows for stable differentiation by finite differences if there exists C > 0
such that

Var
(
DhPM

)
≤ 1

M
C

with a positive constant C.
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In theorem 2.2 of [1], the authors show that if both P̂ and its Monte Carlo payoff
depend Lipschitz-continuously on Θ, the estimator allows for stable differentiation
with respect to Θ. This is the case for the Monte Carlo estimators PM for both
the Brownian bridge approximation P̂ and the one-step survival Brownian bridge
approximation P̃ .

2.3. Pathwise sensitivities, and finite difference: second-order Greeks.
In this section, we study three different ways to obtain second-order Greeks for barrier
options. As already mentioned, (2.25) is not Lipschitz-continuous, and hence it is
firstly not differentiable and secondly does not apply for theorem 2.2 of [1]. The
mentioned theorem would imply stable second-order Greeks through the first-order
Greeks’ finite differences if the first-order Greeks were Lipschitz-continuous. However,
we have a, at least twice, continuously differentiable payoff, for the one-step survival
Brownian bridge approximation. One could calculate the Greeks through pathwise
sensitivities, which can be done by a straightforward extension of Theorem 2.8.

Alternatively, the theorem 2.2 of [1] can be applied, i.e., one could use finite
differences of the first-order Greeks (gained through pathwise sensitivities or finite
differences). We present a third alternative in the following theorem, which uses
second-order finite differences and is noted quite generally.

Theorem 2.11. If all, PVt0(Θ), PV ′t0(Θ),Q(Θ, u), and Q′(Θ, u), depend Lipschitz-
continuously on Θ, resp., (Θ, u), then the Monte Carlo estimator allows for stable
second-order differentiation by means of Definition 2.10.

Proof. For an estimator in the form (2.9) and U ∼ U(0, 1)N , we have that

Var
(
D

(2)
h PM (Θ)

)
=

1

M
Var

(
D

(2)
h Q(Θ, U)

)
≤ 1

M

∫
(0,1)N

(
D

(2)
h Q(Θ, u)−D(2)

h PVt0(Θ)
)2

du

≤ 1

M

∫
(0,1)N

(∣∣∣D(2)
h Q(Θ, u)

∣∣∣+
∣∣∣D(2)

h PVt0(Θ)
∣∣∣)2

du.(2.27)

For the left-hand side of the integrand, we obtain

D
(2)
h Q(Θ, u) =

Q(Θ + h, u)− 2Q(Θ, u) +Q(Θ− h, u)

h2

=
1
h

∫ 1

0
Q′(Θ + ht, u)hdt− 1

h

∫ 1

0
Q′(Θ− ht, u)hdt

h

≤
∫ 1

0
|Q′(Θ + ht, u)−Q′(Θ− ht, u)|dt

h
≤ L |2h|

h
≤ C.

Analogue relations hold for the right-hand side of the integrand in (2.27). Together,
we obtain

1

M

∫
(0,1)N

(∣∣∣D(2)
h Q(Θ, u)

∣∣∣+
∣∣∣D(2)

h PVt0(Θ)
∣∣∣)2

du ≤ 1

M
C,

which completes the proof.

3. Multilevel one-step survival Monte Carlo method. This section will
present a multilevel algorithm for the one-step survival Brownian bridge Monte Carlo
estimator. We will briefly explain the issues arising from the multilevel approach and
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how to overcome them. For a more in-depth introduction to the multilevel approach,
we refer to [21]. For the complexity theorem of Giles [19], one wishes most of all to have

level estimators with variance V [Ŷl] ≤ cM−1
l hβl of order β > 1, for a positive constant

c, Ml simulations on level l = 0, . . . , L. From Giles [19], we know that standard
implementation of the Brownian bridge approach and the use of the Milstein scheme
numerically leads to β ≈ 0.5. Furthermore, Giles introduces a path modification
leading to numerically β ≈ 1.5. However, for the one-step survival Brownian bridge
approximation, we have to overcome the issue of not using this path modification
technique since the used midterm interpolation would lead to biased one-step survival
probabilities. Nevertheless, we found a way to modify the one-step survival Brownian
bridge coarse path simulation so that it numerically achieved β ≈ 1.5. The algorithm
of the procedure can be found in Algorithm 3.

Algorithm 3 Multilevel one-step survival Brownian bridge Monte Carlo coarse path
computation

1: Initialize random seed
2: for n = 0 : N − 1 do

3: p̃n = Φ

 1
2νn

√
σ2nh−2νn(S̃n+µh− 1

2
νn−B)

( 1
2
νn)2

−σn
√
h

νn


4: Sample u1 ∼ U(0, 1)

5: S̃n+ 1
2

= S̃n + µh+ σn
√
hΦ−1(pnu1) + νn

((
Φ−1(pnu1)

)2 − 1
)

6: p̃n+ 1
2

= Φ

−σn√h−νnΦ−1(u1)+

√
(σn
√
h+νn)

2−νn
(
S̃
n+1

2
+µnh−B+ 1

2νn

)
νn


7: Sample u2 ∼ U(0, 1)

8: S̃n+1 = S̃n+ 1
2

+ µnh+ σn
√
hΦ−1(u2)

9: + 1
2νn

(
2Φ−1(u1)Φ−1(p̃n+ 1

2
u2) + (Φ−1(p̃n+ 1

2
u2))2 − 1

)
10: p̃n = p̃n · p̃n+ 1

2

11: p̂∗n =

(
1− exp

(
−2(B−S̃

n+1
2

)(B−S̃n+1)

σ(S̃n,tn)2h

))(
1− exp

(
−2(B−S̃n)(B−S̃

n+1
2

)

σ(S̃n,tn)2h

))
12: end for
13: return S̃, p̃, p̂∗

In the following we will explain Algorithm 3: First of all, the algorithm only con-
siders the (more complex) case σ′n(S̃n, tn) 6= 0. Furthermore, for an easier readability,

we consider p̃−n = 0. The extension to general σ′n(S̃n, tn) and p̃−n is straightforward as

described in Algorithm 2. We use a simplified notation, i.e. we use σn := σ(S̃n, tn),

µn := µ(S̃n, tn), σ′n := σ′n(S̃n, tn) and νn = σnσ
′
nh. Instead of one coarse step, using

the one-step survival Brownian bridge discretization, with step-width 2h, the algo-
rithm computes two steps with step-width h. However, it slightly differs from the fine
path simulation: We reuse the random sample u1 used for the first step (line 5) to
simulate the second step (line 9). Furthermore, we do not use σn+ 1

2
or µn+ 1

2
at any

time. That means, even though two discretization steps are used, the discretization
error of the coarse step-width 2h prevails. Finally, in line 11, the Brownian bridge
probability is applied for both Sn+ 1

2
and Sn+1.
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Parameter Value
t0 0
T 1
S0 1
B 1.1
r 5 %
b 0 %
σ 20 %
K 1

Table 4.1
Parameters used for the simulation of the up-and-out barrier option.

For a better understanding of this modification, we will give a short derivation of
the coarse modification. Starting with the unmodified Milstein scheme on the coarse
path using, e.g., step-width 2h, we have:

Ŝn+1 = Ŝn + µn2h+ σn
√

2hZn+1 +
1

2
νn

((√
2Zn+1

)2

− 2

)
.

Now, using the relation Zn+1 =
Zn+Z

n+1
2√

2
, we obtain

Ŝn+1 = Ŝn + µnh+ σn
√
hZn +

1

2
νn

(
(Zn)

2 − 1
)

+ µnh+ σn
√
hZn+ 1

2
+

1

2
νn

(
2ZnZn+ 1

2
+ Z2

n+ 1
2
− 1
)
.

Now, we denote the first part of the above expression to be Sn+ 1
2
, leading to

Ŝn+1 = Sn+ 1
2

+ µnh+ σn
√
hZn+ 1

2
+

1

2
νn

(
2ZnZn+ 1

2
+ (Zn+ 1

2
)2 − 1

)
.

Here, the differences between the two fine discretization steps become quite clear: We
reuse the first step’s random variable, and the drift and volatility are evaluated at
n. Applying the Brownian bridge crossing probability to Sn+ 1

2
with Zn and to Sn+1

with Zn+ 1
2

while assuming that Zn is a constant, leads to Algorithm 3.

4. Numerical Results. This section will provide some numerical results for
the one-step survival Brownian bridge estimator and its derivatives. Therefore, we
consider a simple, continuously observed, up-and-out barrier option. We will use
parameters, as presented in Table 4.1, whereby the example is fictitious.

In the first column of Figure 4.1, we see the estimated mean squared error of
the options’ present value with respect to the Monte Carlo samples. In the second
column, we see the estimated absolute error with respect to the calculation time.
The Brownian bridge estimator results and the one-step survival Brownian bridge
estimator are plotted in a blue line and a red line. We observe the proven variance
reduction, which depends on (2.21), as mentioned above. However, the computation
time for a specific error ε is similar since, for the one-step survival Brownian bridge
approach, more terms have to be evaluated. Nevertheless, one could observe better
results for initial values nearer to the barrier.

Next, we want to take a more in-depth look at comparing the two estimators
for the sensitivity calculation. Therefore, we analogously compare the mean squared
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Fig. 4.1. The figures show the mean squared error of the present value calculation of the one-
step survival Brownian bridge estimator (red line) and the Brownian bridge estimator (blue line),
depending on the amount of Monte Carlo simulations on the left side and calculation time (CPU)
on the right.
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Fig. 4.2. The figures show the absolute error of the Delta calculation of the one-step survival
Brownian bridge estimator (red line) and the Brownian bridge estimator (blue line), depending on
the amount of Monte Carlo simulation on the left side and calculation time (CPU) on the right.

error and the calculation time in Figure 4.2, but on this occasion, the options’ Delta
is calculated through the pathwise sensitivity approach. The results are again plotted
in a blue line for the Brownian bridge estimator and in a red line for the one-step
survival Brownian bridge estimator.

Here, we see the strength and advantage of the discussed properties of the first
derivative of the one-step survival Brownian bridge estimator, leading to a significant
variance reduction and time savings.

Now, we study the stability of the second-order Greeks. Figure 4.3 shows the
second derivative of the barrier options present value with respect to the under-
lying price (the Gamma) calculated by applying second-order finite differences as
in Theorem 2.11, to both the Brownian bridge estimator and the one-step survival
Brownian bridge estimator plotted in a blue line and a red line, respectively. The plot
demonstrates the Brownian bridge estimator’s instability with respect to second-order
numerical differentiation and the stability of the Brownian bridge one-step survival
estimator.

Lastly, we study the properties of the introduced multilevel modification. Fig-
ure 4.4 shows the behavior of both P̃l and P̃l − P̃l−1, with the logarithmic base 2 as

quantity versus the grid level. The slope of the line for P̃l − P̃l−1 is approximately
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Fig. 4.3. This figure shows the second-order Greek (Gamma) of the one-step survival Brownian
bridge estimator (red line) and the Brownian bridge estimator (blue line), depending on the initial
values of S0. Gamma was calculated through second-order finite differences with step width h = 10−3

of S0 and M = 105 Monte Carlo simulations.
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Fig. 4.4. The plot shows the behaviour of the variance of both P̂l (red line) and P̂l− P̂l−1 (blue
line).

1.5, indicating the wished beta.

5. Conclusion. We faced the problem that the Brownian bridge approximation
leads to a non-Lipschitz-continuous first derivative. As seen in the numerical results,
this leads to the Brownian bridge estimator’s instability for the second-order Greek
computation. We adapted the one-step survival Monte Carlo method to the Milstein
scheme and the Brownian bridge approach to overcome this issue. The adaption
resulted in a new one-step survival Brownian bridge approximation with a modi-
fied Milstein scheme and the slightly modified/smoothed crossing probabilities of the
Brownian bridge interpolation. We showed that this new approach is unbiased with
respect to the Brownian bridge approach and leads to variance reduction.

Furthermore, we presented the one-step survival Brownian bridge partial deriva-
tives and showed unbiasedness. In a numerical experiment, we saw huge variance
reductions for first-order Greeks. We theoretically showed that finite differences could
stably differentiate it. Furthermore, we presented a numerical example showing this
property.

We only presented first-order pathwise sensitivity results to simplify the presenta-
tion, but one could straightforwardly extend these results to the new approximation’s
second-order pathwise sensitivities.

Keeping the computational complexity in mind, we also provided a multilevel



20 THOMAS GERSTNER, BASTIAN HARRACH, DANIEL ROTH

Monte Carlo algorithm and demonstrated its computational efficiency.
Even if it is restricted to up-and-out barrier call options, the conversion to put or

down-and-out options is straightforward. Furthermore, we expect that the algorithms
could be extended to the multivariate case, similar to the ideas of [20] and [1].

In the appendix, we showed weak convergence of almost one and a variance bound
for the Brownian bridge approach. The proven (weak) convergence requires certain
assumptions on the stochastic differential equations using the Milstein scheme.

Finally, it should be mentioned that the new approach can be combined with other
variance reduction methods as well, such as antithetic sampling or control variates
[25].
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Appendix A. Convergence and variance bound for the Brownian bridge
and the one-step survival Brownian bridge approximation. This section pro-
vides some theoretical background and proves a convergence property for the Brow-
nian bridge approximation. It is well known, see, e.g., theorem 4.5.3 of [29], that,
under certain conditions, an SDE of the form (2.1) has a pathwise unique, strong
solution S(t) on [0, T ]. Allowing an application of the Milstein scheme, we assume
µ ∈ C1,1(R×R+) and σ ∈ C2,1(R×R+). Furthermore, consider the following assump-
tions for all x, y, t, s and with L0 ≡ ∂/∂t+ µ∂/∂x and L1 ≡ ∂/∂x:

• A1 (uniform Lipschitz-condition): There exists a constant K1 > 0 such that

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)|+ |L1σ(x, t)− L1σ(y, t)| ≤ K1|x− y|.

• A2 (linear growth bound): There exists a constant K2 > 0 such that

|µ(x, t)|+ |L0µ(x, t)|+ |L1µ(x, t)|+ |σ(x, t)|+ |L0σ(x, t)|
+|L1σ(x, t)|+ |L0L1σ(x, t)|+ |L1L1σ(x, t)| ≤ K2(1 + |x|).

• A3 (additional Lipschitz-condition): There exists K3 > 0 such that

|σ(x, t)− σ(x, s)| ≤ K3(1 + |x|)
√
|t− s|.

• A4: σmin ≡ inf [0,T ] |σ(B, t)| > 0.
• A5: inf [0,T ] S(t) has a bounded density in the neighbourhood of B.

Theorem A.1. Provided that assumptions A1 to A5 are satisfied and the Mil-
stein scheme is used, as described in (2.3), the Brownian bridge approximation (2.5)
satisfies

E[P − P̂ ] < ch1−δ,

Var[P̂ ] <∞,

for any positive c and δ.

Proof. See Appendix A.1.

Corollary A.2. The Brownian bridge Monte Carlo estimator for the present
value of an up-and-out barrier option, using the Milstein scheme and given by Corol-
lary 2.4, satisfies E[P − PM ] ≤ ch1−δ, for any positive c and δ. Furthermore, it
satisfies Var[PM ] ≤ C/M , for a positive constant C.

A.1. proof of Theorem A.1. In all the cases, the paths are discretized by
using the Milstein scheme. As explained above, the Brownian bridge approximation
(2.5) samples if the maximum exceeds the barrier between two discretization steps.
From, e.g., section 6.4. of [24], we know that the crossing probability (2.4) would
be accurate if facing an SDE with constant drift and volatility. However, we have to
study the discretisation error’s impact on these probabilities for general SDE’s. For
the proof, we first introduce some known results and present some lemmata.

Lemma A.3. Provided assumptions A1 to A3 are satisfied, then for all positive
integers m there exists a constant Cm such that

E
[

sup
0≤t≤T

|S(t)|m
]
< Cm.

Proof. See theorem 10.6.3. and Corollary 10.6.4. in [29].



CONVERGENCE OF MILSTEIN BROWNIAN BRIDGE MONTE CARLO METHODS 23

Definition A.4. The Kloeden & Platen continuous-time interpolant for tn ≤ t ≤
tn+1 is defined by

ŜKP (t) = Ŝn + µ(Ŝn, tn)(t− tn) + σ(Ŝn, tn)(W (t)−Wtn)

+
1

2
σ(Ŝn, tn)σ′(Ŝn, tn)

(
(W (t)−Wtn)2 − (t− tn)

)
.

Lemma A.5. Provided assumptions A1 to A3 are satisfied, then for all positive
integers m there exists a positive constant Cm such that

E
[

sup
0≤t≤T

|S(t)− ŜKP (t)|m
]
< Cmh

m,

E
[

sup
0≤t≤T

|ŜKP (t)|m
]
< Cm,

with h = tn+1 − tn.

Proof. See theorem 10.6.3. and Corollary 10.6.4. in [29].

Lemma A.6. Provided assumptions A1 to A3 are satisfied, then the approxima-
tion of a European call option, given by

P̂ europ. := q(ŜN ),

satisfies that for all integers m there exists a positive constant Cm such that

lim sup
h↓0

E
[
|P̂ europ.|m

]
< Cm.

Proof. We have that P̂ europ. is Lipschitz-continuous with L > 0. By using
Lemma A.5, we obtain

lim sup
h↓0

E
[
|P̂ europ.|m

]
≤ lim sup

h↓0
LmE

[
|ŜN |m

]
≤ LmE

[
lim sup
h↓0

|ŜN |m
]

≤ LmE
[
lim
h↓0

(
sup

0≤t≤T
|ŜKP (T )|m

)]
< LmCm

Since on tn and tn+1 the Milstein scheme’s discretisation steps equal the Kloeden &
Platen interpolant, the inequality holds.

Lemma A.7. Provided assumptions A1 to A3 are satisfied, then the Brownian
bridge approximation (2.5) satisfies that for all integers m there exists a positive con-
stant Cm such that

lim sup
h↓0

E
[
|P̂ |m

]
< Cm.(A.1)

Proof. Since p̂n ∈ [0, 1], we have lim suph↓0
∏N−1
n=0 (1 − p̂n) ≤ 1. Together with

Lemma A.6, we obtain

lim sup
h↓0

E
[
|P̂ |m

]
= lim sup

h↓0
E

[∣∣∣∣∣
(
N−1∏
n=0

(1− p̂n)

)
P̂ europ.

∣∣∣∣∣
m]

≤ lim sup
h↓0

E
[
|P̂ europ.|m

]
< Cm.
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Lemma A.8. Provided assumptions A1 to A3 are satisfied, then the expected value
of a up-and-out barrier call option (2.2) satisfies

E[|P |m] < Cm,

for all positive integers m.

Proof. Using Lemma A.3 and the Lipschitz-continuity, with positive constant L,
we obtain

E[|P |m] ≤ E
[∣∣∣(S(T )−K)

+
∣∣∣m] ≤ LmE [|S(T )|m] < Cm.

Lemma A.9. If Y is a scalar random variable, E[Y 2] <∞ , and for each p > 0,
the indicator function 1E (which takes value 1 or 0, depending on whether or not a
path lies within some set E), satisfies

E[1E ] = o(hp),

then for each p > 0,

E[|Y |1E ] = o(hp).

Proof. Immediate consequence of Hölder inequality.

Definition A.10. We define the Brownian bridge continuous-time interpolant
for tn ≤ t ≤ tn+1

Ŝ(t) = Ŝn +
(t− tn)

h
(Ŝn+1 − Ŝn)

+ σ(Ŝn, tn)
(
W (t)−W (t)

)
with the piecewise linear interpolant W (t) = Wn− (t−tn)

h (Wn+1−Wn) of the discrete
values of the Wiener process.

Lemma A.11. Provided assumptions A1 to A3 are satisfied, then for any γ > 0,
the probability that a Brownian path W (t), its increments ∆Wn, and the corresponding

SDE solution S(t) and its Brownian bridge continuous-time interpolant Ŝ(t), satisfy
any of the following extreme conditions

max
n

(
max(|S(nh)| , |Ŝn|)

)
> h−γ

max
n

(∣∣∣S(nh)− Ŝn
∣∣∣) > h1−γ

max
n
|∆Wn| > h1/2−γ

sup
[0,T ]

∣∣∣Ŝ(t)− S(t)
∣∣∣ > h1−γ

sup
[0,T ]

∣∣W (t)−W (t)
∣∣ > h1/2−γ

is o(hp) for all p > 0.
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If none of these extreme conditions is satisfied, and γ < 1/2 then there exist
positive constants c1, c2 and c3 such that

max
n
|Ŝn − Ŝn−1| < c1h

1/2−2γ

max
n
|σ(Ŝn, tn)− σ(Ŝn−1, tn−1)| < c2h

1/2−2γ

max
n

(
|σ(Ŝn, tn)|

)
< c3h

−γ .

Proof. See lemma 3.16 in [20].

Before presenting the first convergence result, we will shortly explain the proof’s
proceeding, which is predetermined by Lemma A.11. Studying the convergence, we
especially are interested in the difference between S and Ŝ near the barrier. Crucial
events may arise if, e.g., the maximum Smax of S lays above the B, but Ŝ stays below
the barrier and vice versa. We will divide the paths into different subsets: First, we
will see that paths that satisfy the extreme conditions can be neglected since they
are of order o(hp) for all p > 0. That means, that, near the barrier, we will be
able to focus on the following two non-extreme cases : |Smax − B| ≤ h1/2−4γ and
|Smax − B| > h1/2−4γ , for 0 < γ < 1

8 . For these, we will examine the difference

between S and Ŝ and, therefore, their contribution to E[P − P̂ ].

Lemma A.12. Provided assumptions A1 to A5 are satisfied, then the Brownian
bridge approach satisfies

E[P − P̂ ] < ch1/2−δ,

for any positive c and δ.

Proof. Let the maximum of S(t) be Smax. We divide the paths into the following
three subsets:

(i) Extreme conditions of Lemma A.11 are satisfied, for 0 < γ < 1
8 .

(ii) Extreme conditions of Lemma A.11 are not satisfied, but Smax satisfies |Smax−
B| > h1/2−4γ , for 0 < γ < 1

8 .
(iii) The rest

We have the following decomposition:

E[P − P̂ ] = E[(P − P̂ )1(i)] + E[(P − P̂ )1(ii)] + E[(P − P̂ )1(iii)],

with the indicator functions to be the unit value for paths in the respected subset.
For each subset we bound their contribution to E[P − P̂ ].

(i) Lemma A.7 and Lemma A.8 deliver bounds for E[|P̂ |2], E[|P |2], and E[(P −
P̂ )2]. Using Lemma A.11, we have that E[1(i)] is o(hp). Hence, using

Lemma A.9, we see that E[(P − P̂ )1(i)] is o(hp) for all p > 0.
(ii) Suppose S(t) attains its maximum at τ ∈ [tn, tn+1]. First, consider the case

Smax > B + h1/2−4γ . We study the Brownian bridge interpolant, since Smax

could lay between two discretization steps. The first summand of the right-
hand side of

|Ŝn − Smax| ≤ |Ŝn − Ŝ(τ)|+ |Ŝ(τ)− S(τ)|

can be written as

Ŝ(τ)− Ŝn =
τ − tn
h

(
Ŝn+1 − Ŝn

)
+ σ(Ŝtn , tn)

(
W (t)−W (t)

)
.
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From Lemma A.11, we obtain sup[0,T ] |Ŝ(t)− S(t)| < ch1−γ and maxn |Ŝn −
Ŝn−1| < c1h

1/2−2γ . Together, we can conclude that |Ŝn − Smax| < ch1/2−2γ ,

for a positive constant c. Hence, for sufficiently small h we have |Ŝn−Smax| <
h1/2−4γ and, therefore, Ŝ is guaranteed to be greater than B and hence
P̂ − P = 0. For the second case, we have Smax < B − h1/2−4γ . Here, we
study the conditioning probabilities. We have

max
n

max(Ŝn) < B − h1/2−4γ + h1−γ ,

since it is not extreme. Since h1−γ ≺ h1/2−4γ it follows that
∏
n(1 − p̂n) is

1−o(hp) for all p > 0. Hence, with the Lipschitz-condition and the bound on

ŜN − S(T ) for non-extreme paths, we obtain that E[(P − P̂ )1(ii)] is at most
O(h1−γ), since E[1(ii)] is 1.

(iii) We have that E[1(iii)] is O(h1/2−3γ) due to the bounded density of S in

the neighbourhood of B. Furthermore, E[|P̂ |2] and E[|P |2] are bounded.

Together, we obtain that E[(P − P̂ )1(iii)] is at most O(h1/2−3γ).

Finally, the proof is completed by choosing γ < min( 1
8 , δ/3).

We see that the third case is decisively for the inferior convergence order. Nevertheless,
we will overcome this issue through the following lemma. The proof is a modification
of the proof of theorem 3.16 of [20], where the authors prove E[(P̂l − P̂l−1)2] is of
o(h3/2−γ).

Lemma A.13. Provided assumptions A1 to A5 are satisfied, then the Brownian
bridge approach forms a Cauchy series. By using hl = 2−l, with l = 0, 1, . . . , the
series satisfies

E[P̂l − P̂l−1] < ch1−δ
l ,

for any positive c and δ.

Proof. See the proof of theorem 3.16 of [20]. Aiming to bound E[(P̂l − P̂l−1)2],
the authors prove the following results for the three subsets and for 0 < γ < 1

8 (see
the subsets of Lemma A.12):

(i) E[1(i)] is o(hp).

(ii) There exists a constant c > such that P̂l − P̂l−1 < ch1−γ .

(iii) There exists a constant c > such that P̂l − P̂l−1 < ch1/2−6γ .

Now, using slight modifications, aiming to bound E[P̂l − P̂l−1] instead of E[(P̂l −
P̂l−1)2], we obtain:

(i) E[(P̂l − P̂l−1)1(i)] is o(hp) for all p > 0.

(ii) E[(P̂l − P̂l−1)1(ii)] is O(h1−γ).

(iii) There exists a constant c > such that P̂l − P̂l−1 < ch1/2−6γ . We have that
E[1(iii)] is O(h1/2−3γ) due to the bounded density of S in the neighbourhood

of B. Together with P̂l− P̂l−1 < ch1/2−6γ , we obtain that E[(P̂l− P̂l−1)1(iii)]
is at most O(h1−9γ).

Finally, the proof is completed by choosing γ < min( 1
8 , δ/9).

Finally, we combine the results of Lemma A.12 and Lemma A.13 to formulate
the proof of Theorem A.1.

Proof of Theorem A.1. The weak convergence result of Lemma A.12 together
with the result on the Cauchy series of Lemma A.13, complete the first part of the
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proof. Moreover, by applying Lemma A.7, we obtain that there exits a positive con-
stant c such that

lim sup
h↓0

E
[
|P̂ |2

]
< c.

Thus, we obtain the variance bound

lim sup
h↓0

Var[P̂ ] = lim sup
h↓0

(E[P̂ 2]− E[P̂ ]2) ≤ lim sup
h↓0

E[P̂ 2] < c,

which completes the proof.
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